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We need a causal understanding of the world, both for decision-making 
and for many forms of theory and research. 

What is the effect on global mean temperature if GHG emissions are increasing?

Will climate change lead to more intense extreme rainfall events in the UK? 

Is El Niño increasing the chance of drought in South Africa? 

What is the effect of melting Arctic sea ice on European climate?
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Soil moisture

sea surface 
temperatures

H

H
LSnow cover

§ Quantifying the causal 
contribution of teleconnections 
is key to improve our 
understanding of regional 
weather and climate variability 
(including attribution tasks!)

§ Extracting this information from 
data is usually difficult!



American Meteorological Society: “Teleconnection”

A significant [...] correlation in [...] widely separated points.

[...] such correlations suggest that information is propagating [...].

4https://glossary.ametsoc.org/wiki/Teleconnection
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Physics-based methods
As real-world experiments are usually not 
possible, numerical climate models are used to 
infer causal relationships of the climate system

Inferences about the real world depend on the 
realism of the climate model

In fact, we need causality to understand how 
deficiencies in the model affect the outcomes
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Data-driven methods
Statistics/data science are needed to study 
observational data

However, we are usually limited to detect statistical 
associations (e.g. correlations) but correlation does 
not imply causation

How can we infer causal relationships from data?
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- The concept of causality has long 
been missing in mathematics

- Causal inference: the science to 
extract causal information from data

1. learning causal relationships
2. quantifying causal 

relationships 

In this talk
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- Aim: predict the effect of an intervention based on observed data (without making the 
intervention)

Association: P(y | x )

Intervention: P(y | do(x) )

Counterfactuals: P(yx | x’, y’ )

Source: The book of why
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X causes Y? 
Y causes X?

A common driver Z affects X and Y? 

Data Doesn’t Speak for Itself!
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X: Pressure

Example

Y: Barometer

Intervening in Y will not change X
Intervening in X will change Y
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Regression involves a causal 
assumption, and breaks the 

mathematical symmetry in the data

The regression line of Y against X is 
shallower than the line of best fit

The regression line of X against Y is also 
shallower, when the axes are flipped

The two regression slopes are not 
reciprocals of each other
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To make sense of the data, we 

need causal knowledge about 

the data-generating

mechanisms



- A causal network consists of nodes
(representing variables, e.g. ENSO) and 
links (indicating the direction of causality)

- causal network = directed acyclic graph 
(DAG)

- a sequence of links “connecting” two 
nodes in the network is called a path 
(regardless of the direction of the arrows!)
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Z

X YU

Paths from X to Y:
X --> U --> Y
X <-- Z --> Y
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To quantify the causal effect of X on Y, 

all open paths between them (other than the one 

of interest) have to be blocked

To quantify the causal effect of X on Y, one needs to 

control for all confounding factors
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Z is a mediator of X and Y

Z is a common effect of X and Y

Z is a common driver of X and Y
X and Y are 
dependent

X and Y are 
independent 

conditional on Z

X and Y are 
independent

X and Y are 
dependent 

conditional on Z

The path from X to Y is open

The path from X to Y is 
blocked by conditioning on Z

The path from X to Y is 
blocked by Z

The path from X to Y is 
opened by conditioning on Z 
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(JJA mean, NCEP)

DK = -0.55 NAO + ɛ
MED = 0.42 NAO + ɛ

The causal effects explain the correlation

-0.25 ≈ -0.55 * 0.42

Summer precipitation in Denmark and the 
Mediterranean is significantly correlated

Corr(DK, MED) = -0.25

But independent conditional on NAO

à Corr(DK, MED | NAO) = 0.001

-0.55

0.42

Kretschmer et al., BAMS (2021)

Common driver
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(DJF mean, NCEP)

CA = 0.05 ENSO + 0.79 Jet  + ɛ

0.37 * 0.81 = 0.30

CA = 0.81 Jet + ɛ

What is the effect of ENSO on California 
winter precipitation?

x

Correct way: 

Jet = 0.37 ENSO + ɛ

CA = 0.34 ENSO + ɛ

Or via product along pathway:

0.37

0.81

Kretschmer et al., BAMS (2021)

Mediator
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Statistically, example 1 and 2 are indistinguishable 

The causal interpretation enters through our physical knowledge!

DK

MED
NAO

X and Y are correlated 
example 1: X = DK and Y = MED
example 2: X = ENSO and Y = CA 

X and Y are independent conditional on Z
example 1: Z = NAO
example 2: Z = Jet

example 1

ENSO Jet CA example 2

x

x

x
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Stratospheric polar vortex (SPV) 

Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)

Data from the seasonal forecasting model SEAS5

SP
V

Common effect
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SSWs := Days when the winds turn negative

SP
V

SPV 
anomaly

NAO

SSW

Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)



21Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)

Effect of SSWs on surface temperature
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SSWs := Days when the stratospheric polar 
vortex (SPV) winds turn negative

SP
V

SPV 
anomaly

NAO

SSW

month

Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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SSWs := Days when the stratospheric polar 
vortex (SPV) winds turn negative

SP
V

This explains the stronger impacts 

N
AO

 a
no

m
al

y 
(h

Pa
)

SPV anomaly (m/s)

Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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N
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)

SPV anomaly (m/s) SPV anomaly (m/s)

All winter days Only SSWs

Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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DK

MED
NAO

ENSO Jet CA

- There is an open path DK <-- NAO --> MED
- Conditioning on NAO blocks this path

- There is an open path ENSO --> Jet --> CA
- Conditioning on Jet blocks this path

SPV

SSW

month - The path SPV --> SSW <-- month is blocked
- Conditioning on SSW opens this path
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Task: What is the (average) causal effect of X on Y?

Z

X

Y

1. Use expert knowledge
to set a (plausible) causal

model

Vx

x

U

2. Collect data 3.  Control for 
confounders to isolate 

the causal effect

P(Y |do(X)))

linear case:
Y = a X + b Z

X

Y

Z

U

V

= P(Y | X, Z)

Confounding is anything that 
leads to P(Y|X) being different 

than P(Y|do(X))
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(OND mean, NCEP)

Jet = 0.14 ENSO  + ɛ

Jet = 0.04 ENSO  + 0.39 SPV + ɛ

SPV = 0.26 ENSO + ɛ

0.26 * 0.39 = 0.10

Total effect of ENSO on Jet:

Direct (tropospheric) pathway:

Indirect (stratospheric) pathway:

0.39

0.26

0.04

tropo + strato = 0.04 + 0.10
Total = 0.14

x
Jet = 0.39 SPV + 0.04 ENSO  + ɛ

xx

Kretschmer et al. (2021, BAMS)

Direct and indirect pathways



28Kretschmer et al., BAMS (2021)

The relationships likely involve non-
linearities

Precipitation in Australia (AU) is 
affected by ENSO and by the Indian 

Ocean Dipole (IOD)

Nonlinear case

(SON mean, NCEP)



29Kretschmer et al., BAMS (2021)

We stratify the data into different 
categories

AU: below/above average 

IOD: negative/neutral/positive phase 

ENSO: La Niña/neutral/El Niño
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We stratify the data into different 
categories

AU: below/above average 

IOD: negative/neutral/positive phase 

ENSO: La Niña/neutral/El Niño

Conditional probabilities for above average AU
La Niña Neutral El Niño Marginal

IOD - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50



La Niña Neutral El Niño Marginal
IOD - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50

31Kretschmer et al., BAMS (2021)

Conditional probabilities for above average AU

P(AU+ | El Niño ) = 0.22

P(AU+ | IOD+) = 0.30

Above average precipitation is 
unlikely during El Niño

Above average precipitation is 
unlikely during IOD+
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Conditional probabilities for above average AU
La Niña Neutral El Niño Marginal

IOD - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50

What is the added information 
provided by IOD, given ENSO?

P(AU+ | El Niño, IOD+) = 0.24

P(AU+ | El Niño) = 0.22

0.24/0.22 = 1.09 
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Conditional probabilities for above average AU
La Niña Neutral El Niño Marginal

IOD - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50

What is the added information 
provided by ENSO, given IOD?

P(AU+ | El Niño, IOD+) = 0.24

P(AU+ | IOD+) = 0.30

0.24/0.30 = 0.80

Interpretation of data depends on 
causal assumptions!

But what if we believed that IOD 
affected ENSO, rather than the other 

way around? 

The conditional proabability tables 
would be unchanged, but their 

interpretation would be completely 
different.
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Stratospheric polar vortex 
(SPV)

Barents and Kara sea ice
(BK)

Kretschmer et al.,  WCD (2020)

How strong is the causal effect of 
Barents Kara sea ice (BK) in autumn 

on the winter stratospheric polar 
vortex (SPV)?

A more complex example



35Kretschmer et al. WCD (2020), Kretschmer et al. BAMS (2021)

BK
Ural

SPV

ENSO

AL

MJO

A reduction in Barents and Kara sea ice
concentrations (BK) is assumed to enhance sea

level pressure over the Ural Mountain 
region (Ural). This causes a weakening of the

vortex (SPV). However, Ural sea level pressure also 
affects BK sea ice. Further, tropical Pacific 

variability, e.g. in the form of the El Niño–Southern 
Oscillation or the Madden–Julian Oscillation

(ENSO/MJO), can affect the SPV via altered sea
level pressure anomalies over the Aleutian Low 

region (AL). As the AL can also affect BK via Rossby
wave propagation, it confounds the analysis of the

BK to SPV pathway.



36Kretschmer et al. WCD (2020), Kretschmer et al. BAMS (2021)

BK
Ural

SPV

ENSO

AL

MJO

Open Paths from BK to SPV:

x

x x

(x)

BK --> Ural --> SPV

BK <-- Ural --> SPV

BK <-- AL --> SPV 

SPVJFM =   a BKOND  + confounders

SPVJFM =   a BKOND  + b ALOND

SPVJFM =   a BKOND  + b ALOND + c URALOND + ɛ

URALOND

URAL (after OND)
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Large spread of standardized regression coefficients

Effect stronger 
in obs. but 

within spread

SPVJFM = a BKOND + Confounders + ɛ

Mean 
causal 

effect only
≈ 0.05

We estimate a in moving windows for different CMIP5 models in the historical runs (from 1900-2005) 

Kretschmer et al. WCD (2020)
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SPV = a BK + Confounders + ɛ

H0: No influence of BK on SPV, i.e. a = 0
H1: Influence of BK on SPV, i.e. a ≠ 0

a ≈ 0.05 (not statistically significant) 

... but this does not prove H0!
we cannot reject H0...  
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H0: ΔSPV = b0 ΔT + ɛ0

H1: (ΔSPV - a ΔBK) =  b1 ΔT + ɛ1                  with a in [0.025, 0.1] H1:
BF =

P data H0)
P data H1)

Quintana & Williams (2018) based on Lee & Wagenmaker (2013)

Bayes Factor
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H0: ΔSPV = b0 ΔT + ɛ0

H1: (ΔSPV - a ΔBK) =  b1 ΔT + ɛ1  

with a in [0.025, 0.1] H1:

Kretschmer et al. WCD (2020)

The data is slightly more likely under H1 

BF =
P data H0)
P data H1)
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BF is close to unity   --- > no proof of H1 
but neither proof against it!

Kretschmer et al. WCD (2020)
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“There are cases where there is no positive 
evidence for a new parameter, but important 
consequences might follow if it was not zero, 
and we must remember that [a Bayes factor] > 1 
does not prove that it is zero, but merely that it 
is more likely to be zero than not. Then it is 
worth while to examine the alternative 
[hypothesis] further and see what limits can be 
set to the new parameter, and thence to the 
consequences of introducing it.” (Jeffreys 1961)



§ Causal knowledge/hypotheses about the data-generating mechanisms are needed to 
interpret correlations and to extract causal effects from data

§ Causal inference gives the formal rules for how to achieve this

§ Causal networks make scientific assumptions transparent and help to identify where 
information is propagating

§ To extract causal effects from data, one needs to control for all confounding factors

§ Bayes Factors can be computed to quantify under which hypothesis the data is more 
likely  
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Scientific data analysis requires causal reasoning
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Conditioning on a common effect Causal inference and teleconnections  (+ jupyter notebooks)

Quantifying the causal effect of sea ice loss Use of causal networks for regional storylines
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To block the path X <-- Z  --> Y To block the path X <-- Z  <-- U --> Y

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/

Good examples of conditioning



48Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/

To block the path X <-- Z --> M --> Y To block the path X <-- U --> Z --> M --> Y

Good examples of conditioning
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Because this opens the path 
X <-- U1 --> Z <-- U2 --> Y

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/

A bad example of conditioning
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Because this blocks the path X --> Z --> Y Because this (partially) blocks the path 
X --> M --> Y (as Z is evidence for M)

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/

Bad examples of conditioning


