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We need a causal understanding of the world, both for decision-making
and for many forms of theory and research.

What is the effect on global mean temperature if GHG emissions are increasing?
Will climate change lead to more intense extreme rainfall events in the UK?
Is El Nifio increasing the chance of drought in South Africa?

What is the effect of melting Arctic sea ice on European climate?
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Quantifying the causal
contribution of teleconnections
is key to improve our
understanding of regional
weather and climate variability
(including attribution tasks!)

Extracting this information from
data is usually difficult!




American Meteorological Society: “Teleconnection”

A significant [...] correlation in [...] widely separated points.

[...] such correlations suggest that information is propagating [...].

https://glossary.ametsoc.org/wiki/Teleconnection



Physics-based methods

As real-world experiments are usually not
possible, numerical climate models are used to
infer causal relationships of the climate system

Inferences about the real world depend on the
realism of the climate model

In fact, we need causality to understand how
deficiencies in the model affect the outcomes




Data-driven methods
Statistics/data science are needed to study
observational data

However, we are usually limited to detect statistical

associations (e.g. correlations) but correlation does
not imply causation

Hidden
Layers

How can we infer causal relationships from data? Outputs
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X causes Y?
Y causes X?
A common driver Z affects X and Y?

Data Doesn’t Speak for Itself!




Example

X: Pressure Y: Barometer

Intervening in Y will not change X
Intervening in X will change Y
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Regression involves a causal
assumption, and breaks the
mathematical symmetry in the data

The regression line of Y against X is
shallower than the line of best fit

The regression line of X against Y is also
shallower, when the axes are flipped

The two regression slopes are not
reciprocals of each other
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To make sense of the data, we

need causal knowledge about

the data-generating

mechanisms
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A causal network consists of nodes
(representing variables, e.g. ENSO) and
links (indicating the direction of causality)

causal network = directed acyclic graph
(DAG)

a sequence of links “connecting” two
nodes in the network is called a path
(regardless of the direction of the arrows!)
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Paths from X to V:
X-->U-->Y
X<-2Z-->Y
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To quantify the causal effect of X on Y, one needs to

control for all confounding factors

To quantify the causal effect of Xon Y,
all open paths between them (other than the one

of interest) have to be blocked
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Z is a common driver of X and Y

Xand are

@‘—@—’® The path from X to Y is open dependent

- The path from Xto Y is

. : Xand Y are
Z is a mediator of X and Y blocked by conditioning on Z :
independent
W conditional on Z
Xand Y are
= The path from X to Y is independent
Z is a common effect of X and Y blocked by Z
Xand Y are

@@,_@ - The path from X to Y is dependent

opened by conditioning on Z conditional on Z
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Common driver

Summer precipitation in Denmark and the
Mediterranean is significantly correlated

Corr(DK, MED) = -

But independent conditional on NAO
—> Corr(DK, MED | NAO) = 0.001

DK =-0.55 NAO +¢
MED = 0.42 NAO + ¢

The causal effects explain the correlation

(JJA mean, NCEP) -z -0.55*0.42

Kretschmer et al., BAMS (2021) 16



Mediator

What is the effect of ENSO on California
winter precipitation?

CA = 0.05 ENSO + 0.79 Jet +¢

Correct way:

CA = 0.34 ENSO + ¢

Or via product along pathway:
Jet=0.37 ENSO + ¢ CA=0.81Jet +¢

0.37 * 0.81 = 0130

(DJF mean, NCEP)

Kretschmer et al., BAMS (2021)
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Statistically, example 1 and 2 are indistinguishable

X and Y are correlated
example 1: X=DKand Y= MED example 1
example 2: X=ENSO and Y = CA @ J

X and Y are independent conditional on Z
example 1: Z = NAO

example 2: Z = Jet example 2

The causal interpretation enters through our physical knowledge!
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SPV

Common effect

Data from the seasonal forecasting model SEAS5
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Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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SPV

SSWs := Days when the winds turn negative

SPV
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Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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Effect of SSWs on surface temperature
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Monnin, Kretschmer, Polichtchouk, Int. J. Clim. (2021)
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SPV

SSWs := Days when the stratospheric polar
vortex (SPV) winds turn negative
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SSWs := Days when the stratospheric polar This explains the stronger impacts
vortex (SPV) winds turn negative

SPV
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P

There is an open path DK <-- NAO --> MED
Conditioning on NAO blocks this path

There is an open path ENSO --> Jet --> CA
Conditioning on Jet blocks this path

The path SPV --> SSW <-- month is blocked
Conditioning on SSW opens this path

25



Task: What is the (average) causal effect of X on Y?

1. Use expert knowledge 2. Collect data 3. Control for
to set a (plausible) causal confounders to isolate
model the causal effect

A UeArehged) e

mitpgligagt P(Y [do(X)) = P(Y | X, 2)

OO

g A A P Confounding is anything that
leads to P(Y|X) being different
AUA i A 'Wv,_ V’W”Y"’“’n’ W_WP\‘W-WMVJ_AVAN}\U th an P (Y | d o) ( X) )
‘LVL g cll' ‘A|"'ulfﬁl ), Y'Vl' 4 .,qL,'AAVq ™M N‘”"*"J“"r Loy | Inear case.
Y=aX+bZ
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Direct and indirect pathways

(OND mean, NCEP)

Total effect of ENSO on Jet:

Jet=0.14 ENSO +¢

Direct (tropospheric) pathway:
Jet =0.04 ENSO + 0.39 SPV + ¢

Indirect (stratospheric) pathway:

SPV =0.26 ENSO + €
Jet =0.39 SPV + 0.04 ENSO +¢

0.26 *0.39=0.10

tropo + strato = 0.04 + 0.10

Total = -

Kretschmer et al. (2021, BAMS)
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Nonlinear case

(SON mean, NCEP)

Precipitation in Australia (AU) is
affected by ENSO and by the Indian
Ocean Dipole (IOD)

The relationships likely involve non-
linearities

Kretschmer et al., BAMS (2021)
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We stratify the data into different
categories

AU: below/above average

|OD: negative/neutral/positive phase

ENSO: La Nifia/neutral/El Nifio

Kretschmer et al., BAMS (2021)
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|IOD )«

ENSO

Conditional probabilities for above average AU

La Nifia Neutral El Niho | Marginal
10D - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50

We stratify the data into different
categories

AU: below/above average

|OD: negative/neutral/positive phase

ENSO: La Nifia/neutral/El Nifio

Kretschmer et al., BAMS (2021)
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Conditional probabilities for above average AU

La Nifa Neutral El Niho | Marginal
10D - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52 |
10D + 1.0 0.25 0.24 030 |
Marginal | 0.83 0.43 0.22 0.50

Above average precipitation is
unlikely during El Nifio

P(AU+ | El Nifio ) = (0I22

Above average precipitation is
unlikely during |IOD+

P(AU+ | 10D+) = 0130

Kretschmer et al., BAMS (2021)
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Conditional probabilities for above average AU

La Nifa Neutral El Niho | Marginal
10D - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
IOD + 1.0 0.25 0.30
Marginal 0.83 0.43 0.50

What is the added information
provided by 10D, given ENSO?

P(AU+ | El Nifio, IOD+) = 0.24
P(AU+ | EI Nifio) = 0.22
0.24/0.22 = 1.09

Kretschmer et al., BAMS (2021)
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But what if we believed that 10D

affected ENSO, rather than the other

way around?

The conditional proabability tables

would be unchanged, but their

interpretation would be completely

different.
Conditional probabilities for above average AU
La Nifia Neutral El Niho | Marginal
10D - 0.83 0.50 - 0.67
Neutral 0.80 0.43 0.17 0.52
10D + 1.0 0.25 0.24 0.30
Marginal 0.83 0.43 0.22 0.50

What is the added information
provided by ENSO, given |OD?

P(AU+ | EI Nifio, IOD+) = 0.24
P(AU+ | 10D+) = 0.30

0.24/0.30 = 0.80

Interpretation of data depends on

causal assumptions!

Kretschmer et al., BAMS (2021)
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A more complex example

Stratospheric polar vortex
(SPV)

Barents and Kara sea ice
(BK)

How strong is the causal effect of
Barents Kara sea ice (BK) in autumn
on the winter stratospheric polar
vortex (SPV)?

Kretschmer et al., WCD (2020)
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A reduction in Barents and Kara sea ice
concentrations (BK) is assumed to enhance sea
level pressure over the Ural Mountain
region (Ural). This causes a weakening of the
vortex (SPV). However, Ural sea level pressure also
affects BK sea ice. Further, tropical Pacific
variability, e.qg. in the form of the El Nifio—Southern
Oscillation or the Madden—Julian Oscillation
(ENSO/MJO), can affect the SPV via altered sea
level pressure anomalies over the Aleutian Low
region (AL). As the AL can also affect BK via Rossby
wave propagation, it confounds the analysis of the
BK to SPV pathway.

Kretschmer et al. WCD (2020), Kretschmer et al. BAMS (2021) 35



Open Paths from BK to SPV:

BK --> Ural --> SPV URAL (after OND)

“~
‘;( BK <-- AL --> SPV
e

BK <-- Ural --> SPV URALoyg

SPVir = @ BKgyp + confounders

SPVjryy= @ BKoyp + b Algyp

@@ SPViemi = B BKonp + b Algyp + € URALGyp t+ €

Kretschmer et al. WCD (2020), Kretschmer et al. BAMS (2021)
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SPV,em = @ BKoynp + Confounders + €

We estimate a in moving windows for different CMIP5 models in the historical runs (from 1900-2005)

Effect stronger

in obs. but
within spread

Large spread of standardized regression coefficients

>
|n5
n
g 223
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> 390
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Means
Frequency

Frequency
X: Obs

35 NorESM1-ME

34 NorESM1-M

33 MRI-CGCM3

32 MPI-ESM-MR

31 MPI-ESM-LR (3)
30 MIROCS (3)

29 MIROC-ESM-CHEM
28 MIROC-ESM

27 IPSL-CM5B-LR
26 IPSL-CM5A-MR
25 IPSL-CM5A-LR (4)
24 inmcm4

23 HadGEM2-ES (4)
22 HadGEM2-CC

21 GISS-E2-R

20 GISS-E2-H

19 GFDL-ESM2M

18 GFDL-ESM2G

17 GFDL-CM3

16 FGOALS-g2

15 EC-EARTH (3)
14 CSIRO-Mk3-6-0 (10)
13 CNRM-CM5 (5)
12 CMCC-CMS

11 CMCC-CM

10 CMCC-CESM

9 CESM1-CAM5 (3)
8 CESM1-BGC

7 CCSM4 (6)

6 CanESM2 (5)

5 BNU-ESM

4 bce-csm1-1-m

3 bee-csm1-1

2 ACCESS1-3

1 ACCESS1-0
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SPV = a BK + Confounders + €

HO: No influence of BK on SPV, i.e.a=0
H1: Influence of BK on SPV, i.e.a#0

a = 0.05 (not statistically significant)

we cannot reject HO... _
... but this does not prove HO!
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HO: ASPV = bo AT + €p P(data |HO)
BF

H1: (ASPV -a ABK) = b; AT + g4 with a in [0.025, 0.1] ~ P(data |[H1)

Moderate Anecdotal Anecdotal Moderate Strong

0.01 0.03 0.1 0.33 1 3 10 30 100

Bayes Factor

Quintana & Williams (2018) based on Lee & Wagenmaker (2013)
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__ P(data [HO)

~ P(data [H1)
10 Model 28
- & if 2055 § HO: ASPV = b, AT + g,
=
> 0 / H1: (ASPV'aABK)z bl AT"'E]_
o
2 ™ e HO with a in [0.025, 0.1]
-10
BF =0.3 o Hl
1 2 3 4 5 The data is slightly more likely under H1

AT I[K]

Kretschmer et al. WCD (2020) 41
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Oxford Classic Texts
IN THE PHYSICAL SCIENCES

Theory of Probability

THIRD EDITION

lfl:Harold Jeffreys

“There are cases where there is no positive
evidence for a new parameter, but important
consequences might follow if it was not zero,
and we must remember that [a Bayes factor] > 1
does not prove that it is zero, but merely that it
is more likely to be zero than not. Then it is
worth while to examine the alternative
[hypothesis] further and see what limits can be
set to the new parameter, and thence to the
consequences of introducing it.” (Jeffreys 1961)
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Causal knowledge/hypotheses about the data-generating mechanisms are needed to
interpret correlations and to extract causal effects from data

Causal inference gives the formal rules for how to achieve this

Causal networks make scientific assumptions transparent and help to identify where
information is propagating

To extract causal effects from data, one needs to control for all confounding factors

Bayes Factors can be computed to quantify under which hypothesis the data is more
likely

Scientific data analysis requires causal reasoning




Causal inference and teleconnections (+ jupyter notebooks)

Conditioning on a common effect
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Good examples of conditioning

£ U
/
X Y X Y
To block the path X<--Z -->Y To block the path X<--Z <--U-->Y

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/ 47



Good examples of conditioning

U Z
>® ] >®
Y X M Y

To block the path X <--Z-->M -->Y To block the path X <—-U -->Z --> M --> Y

X M

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/ 48



A bad example of conditioning

U,

=
N

Because this opens the path
X<-Ul->/7<-U2-->Y

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/
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Bad examples of conditioning

X M Y
X VA Y
® »@ >0 ® >I >0
O
VA
Because this blocks the path X -->Z -->Y Because this (partially) blocks the path

X -->M -->Y (as Z is evidence for M)

Source: http://causality.cs.ucla.edu/blog/index.php/category/back-door-criterion/
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