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Relative Entropy, Compression Algorithms, and Applications

Abdou Majeed ALIDOU

May 12, 2022

This work is concerned with the important problem of extracting relevant information from sequences of data. It
explains key concepts and results from information theory such as entropy, conditional entropy, mutual information,
relative entropy, and Gibbs’ inequality. We present some lossless compression algorithms including Symbol Codes
(Huffman coding), Arithmetic Codes, and the popular Lempel-Ziv algorithm, as well as some important results
such as the Asymptotic Equipartition Principle and Shannon Source Coding Theorem.

The powerful concept of relative entropy is then interpreted in terms of compression algorithms. Indeed, the relative
entropy between two distributions X and Y can be estimated by comparing the performance of some compression
algorithms on a sequence A+b, with their performance on a sequence B+b, where A and B are long texts taken
respectively from the distributions X and Y, and b is a small text taken from the distribution Y. That technique
can be used to distinguish two sequences of data from different sources.

Finally, we discuss some of the key applications of such algorithms to the problem of language recognition and
authorship attribution.
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Computational Hardness of Sparse Linear
Regression

When it comes to statistical inference in high-dimensions, the sparsity assumption has
become the scientist’s saving grace. It formalizes the a priori belief that only a few
parameters among many are significant for the inference task at hand. This
assumption has become ubiquitous in modern technological developments, from
robot localization to MRI brain scanning, and has provided a solution to the otherwise
uncompromising problem of inferring more parameters than we have data points.
There is growing evidence, however, that such gains in information imply hardness of
computation. Consider the problem of recovering a hidden binary k-sparse p-
dimensional vector x from n noisy linear observations y = λAx+z where A_i,j ∼ N(0,1),
z_i ∼ N(0,1), λ > 0, which we call Sparse High-Dimensional Linear Regression
(SHLR). A detection variant of the problem consists of distinguishing the pair (A,y)
generated from the SHLR model from a null model where (A, y) are drawn
independently from Gaussian distributions, which we call Sparse High-Dimensional
Linear Detection (SHLD). Indeed, in the contexts of SHLR and SHLD, we bring novel
rigorous evidence towards the existence of a statistical price to pay for computational
efficiency through the study of low-degree polynomials. Our results indicate the
presence of an algorithmic obstruction to solving SHLD and SHLR efficiently within a
certain achievable regime.
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Compressed sensing with l0-norm: statistical
mechanics analysis and recovering

algorithm

Compressed (or compressive) sensing (CS) is a framework detailing the
reconstruction of a sparse N-dimensional vector encoding a signal from a lower-
dimensional feature vector, whose components represent a set of measurements on
the signal. With this work we propose to focus on CS with l0-norm minimization,
meaning that we will study the solutions for the measurement protocol (i.e. N-
dimensional vectors giving back the correct feature vector) with maximum sparsity. In
particular we frame this set-up as statistical mechanics problem, defining a cost
function with tuning parameters which take into account both the measurement
process and the l0-norm minimization. We numerically show that the solutions to this
problem form clusters with a 1-step replica symmetry breaking structure and highlight
the presence of two regimes depending on the signal sparsity and the compression
rate. We also propose an algorithm based on survey propagation that achieve signal
recovery for sufficiently low compression rate. Numerical analyzes show that this
algorithm offers better performance than the well-known l1-norm message passing
algorithm.

P03



Model, sample, and epoch-wise descents:
exact solution of gradient flow in the random

feature model

Recent evidence has shown the existence of a so-called double-descent and even
triple-descent behavior for the generalization error of deep-learning models. This
important phenomenon commonly appears in implemented neural network
architectures, and also seems to emerge in epoch-wise curves during the training
process. A recent line of research has highlighted that random matrix tools can be
used to obtain precise analytical asymptotics of the generalization (and training)
errors of the random feature model. In this contribution, we analyze the whole
temporal behavior of the generalization and training errors under gradient flow for the
random feature model. We show that in the asymptotic limit of large system size the
full time-evolution path of both errors can be calculated analytically. This allows us to
observe how the double and triple descents develop over time, if and when early
stopping is an option, and also observe time-wise descent structures. Our techniques
are based on Cauchy complex integral representations of the errors together with
recent random matrix methods based on linear pencils.
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Abstract

Convolutional neural networks perform a local and translationally-invariant treat-
ment of the data: quantifying which of these two aspects is central to their success
remains a challenge. We study this problem within a teacher-student framework
for kernel regression, using ‘convolutional’ kernels inspired by the neural tangent
kernel of simple convolutional architectures of given filter size. Using heuristic
methods from physics, we find in the ridgeless case that locality is key in determin-
ing the learning curve exponent β (that relates the test error εt ∼ P−β to the size
of the training set P ), whereas translational invariance is not. In particular, if the
filter size of the teacher t is smaller than that of the student s, β is a function of s
only and does not depend on the input dimension. We confirm our predictions on
β empirically. We conclude by proving, under a natural universality assumption,
that performing kernel regression with a ridge that decreases with the size of the
training set leads to similar learning curve exponents to those we obtain in the
ridgeless case.

1 Introduction

Deep Convolutional Neural Networks (CNNs) are widely recognised as the engine of the latest
successes of deep learning methods, yet such a success is surprising. Indeed, any supervised learning
model suffers in principle from the curse of dimensionality: under minimal assumptions on the
function to be learnt, achieving a fixed target generalisation error ε requires a number of training
samples P which grows exponentially with the dimensionality d of input data [1], i.e. ε(P ) ∼ P−1/d.
Nonetheless, empirical evidence shows that the curse of dimensionality is beaten in practice [2, 3, 4],
with

ε(P ) ∼ P−β , β� 1/d. (1)
CNNs, in particular, achieve excellent performances on high-dimensional tasks such as image
classification on ImageNet with state-of-the-art architectures, for which β ≈ [0.3, 0.5] [2]. Natural
data must then possess additional structures that make them learnable. A classical idea [5] ascribes
the success of recognition systems to the compositionality of data, i.e. the fact that objects are made
of features, themselves made of sub-features [6, 7, 8]. In this view, the locality of CNNs plays a
key role for their performance, as supported by empirical observations [9]. Yet, there is no clear

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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analytical understanding of the relationship between the compositionality of the data and learning
curves.

In order to study this relationship quantitively, we introduce a teacher-student framework for kernel
regression, where the function to be learnt takes one of the following two forms:

fLC(x) =
∑
i∈P

gi(xi), fCN (x) =
∑
i∈P

g(xi). (2)

Here, x is a d-dimensional input and xi denotes the i-th t-dimensional patch of x,
xi = (xi, . . . , xi+t−1). i ranges in a subset P of {1, . . . , d}. The gi’s and g are random functions of t
variables whose smoothness is controlled by some exponent αt. Such functions model the local nature
of certain datasets and can be generated, for example, by randomly-initialised one-hidden-layer neural
networks: fLC corresponds to a locally connected network (LCN) [10, 11], in which the input is
split into lower-dimensional patches before being processed, whereas a network enforcing invariance
with respect to shifts of the input patches via weight sharing can be described by fCN . In such cases
t would be the filter size of the network. Our goal is to compute the asymptotic decay of the error
of a student kernel performing regression on such data, and to relate the corresponding exponent β
to the locality of the target function. The student kernel corresponds to a prior on the true function
of the form described by Eq. (2), except that the filter size s and its prior αs on the smoothness of
the g functions can differ from those of the target function. Such students include overparametrised
one-hidden-layer neural networks operating in the lazy training regime [12, 13, 14, 15, 16].

1.1 Our contributions

We consider a teacher-student framework for kernel regression, where the target function has one
of the forms in Eq. (2), where the gi’s and g are Gaussian random fields of given covariance.
Target functions are characterised by the dimensionality t of the g functions—the filter size—and a
smoothness exponent αt, such that αt > 2n implies that typical target functions are at least n times
differentiable. Kernel regression is performed by local or convolutional student kernels, having filter
size s and a prior on the target smoothness characterised by another exponent αs> 0. Our main
contributions follow:

◦ We use recent results based on the replica method of statistical physics on the generalisation
error of kernel methods [17, 18, 19] to estimate the exponent β. We find that β = αt/s
if t ≤ s and αt ≤ 2(αs + s). This approach is non-rigorous, but it can be proven if data
are sampled on a lattice [4] and corresponds to a provable lower bound on the error when
teacher and student are equal [20].

◦ In particular, we find the same exponent for students with a prior on the shift invariance of
the target function and students without this prior, implying that the curse of dimensionality
is beaten due to locality and not shift invariance.

◦ We confirm systematically our predictions by performing kernel ridgeless regression numer-
ically for various t, s and embedding dimension d.

◦ We use the recent framework of [21] and a natural Gaussian universality assumption to
prove a rigorous estimate of β in the case where the ridge decreases with the size of the
training set. The estimate of β depends again on s and not on d, demonstrating that the curse
of dimensionality can indeed be beaten by using local filters on such compositional data.

1.2 Related work

Several recent works study the role of the compositional structure of data [6, 22, 23]. When such
structure is hierarchical, deep convolutional networks can be much more expressive than shallow ones
[6, 24, 7]. Concerning training, [25] shows that both convolutional and locally-connected networks
can achieve a target generalisation error in polynomial time, whereas fully-connected networks
cannot, for a class of functions which depend only on s consecutive bits of the d-dimensional input,
with s=O(log d). In [8] the effects of the architecture’s locality are studied from a kernel perspective,
using a class of deep convolutional kernels introduced in [26, 27] and characterising their Reproducing
Kernel Hilbert Space (RKHS). In general, belonging to the RKHS ensures favourable bounds on
performance and, for isotropic kernels, is a constraint on the function smoothness that becomes
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stringent in large d. For local functions, the corresponding constraint on smoothness is governed by
the filter size s and not d [8]. Lastly, a recent work shows that weight sharing, in the absence of
locality, leads to a mild improvement of the generalisation error of shift-invariant kernels [28].

By contrast, our work focuses on computing non-trivial training curve exponents in a setup where the
locality and shift-invariance priors of the kernel can differ from those of the class of functions being
learnt. In our setup, the latter are in general not in the RKHS of the kernel2. Technically, our result
that the size of the student filter s controls the learning curve (and not that of the teacher t) relates to
the fact that kernels are not able to detect data anisotropy (the fact that the function depends only on a
subset of the coordinates) in worst-case settings [30] nor in the typical case for Gaussian fields [31].

2 Setup

Kernel ridge regression Kernel ridge regression is a method to learn a target function f∗ : Rd → R
from P observations {(xµ, f∗(xµ))}Pµ=1, where the inputs xµ are i.i.d. random variables distributed
according to a certain measure p

(
ddx
)

on Rd. Let K be a positive-definite kernel and H the
corresponding Reproducing Kernel Hilbert Space (RKHS). The kernel ridge regression estimator f
of the target function f∗ is defined as

f = argmin
f∈H

{
1

P

P∑
µ=1

(f(xµ)− f∗(xµ))
2

+ λ ‖f‖2H

}
, (3)

where ‖ · ‖H denotes the RKHS norm and λ is the ridge parameter. The limit λ→ 0+ is known as
the ridgeless case and corresponds to the solution with minimum RKHS norm that interpolates the P
observations. Eq. (3) is a convex optimisation problem, having the unique solution

f(x) =
1

P

P∑
µ,ν=1

K(x,xµ)

((
1

P
KP + λIP

)−1
)
µ,ν

f∗(xν), (4)

where KP is the Gram matrix defined as (KP )µν = K(xµ,xν), and IP denotes the P -dimensional
identity matrix. Our goal is to compute the generalisation error, which we define as the expectation
of the mean squared error over the data distribution p

(
ddx
)
, averaged over an ensemble of target

functions f∗, i.e
ε(P ) = Ex,f∗

[
(f(x)− f∗(x))

2
]
. (5)

The error ε depends on the number of samples P through the predictor of Eq. (4) and we refer to the
graph of ε(P ) as learning curve.

Statistical mechanics of generalisation in kernel regression The theoretical understanding of
generalisation is still an open problem. A few recent works [17, 21, 18] relate the generalisation error
ε to the decomposition of the target function in the eigenbasis of the kernel. A positive-definite kernel
K can indeed be written, by Mercer’s theorem, in terms of its eigenvalues {λρ} and eigenfunctions
{φρ}:

K(x,y) =

∞∑
ρ=1

λρφρ(x)φρ(y),

∫
p
(
ddy
)
K(x,y)φρ(y) = λρφρ(x). (6)

In [17, 21, 18] it is shown that, when the target function can be written in terms of the kernel
eigenbasis,

f∗(x) =
∑
ρ

cρφρ(x), (7)

the error ε can also be cast as a sum of modal contributions, ε =
∑
ρ ερ. The details of the general

formulation are summarised in Appendix A. Here we present an intuitive limiting case, obtained in
the ridgeless limit λ→ 0+, when λρ ∼ ρ−a for large ρ, and E[|cρ|2] ∼ ρ−b with 2a> b− 1, that is

ε(P ) ∼
∑
ρ>P

E[|cρ|2] ≡ B(P ), (8)

2A Gaussian field of covariance K is never in the RKHS of the kernel K, see e.g. [29].

3



with ∼ denoting asymptotic equivalence for large P . Eq. (8) indicates that, given P examples, the
generalisation error can be estimated as the tail sum of the power in the target function past the first
P modes of the kernel, which we denote as B(P ). Although the general modal decomposition cannot
be proven rigorously in the ridgeless limit [21, 19], additional results are available when the target
functions are Gaussian random fields with covariance specified by a teacher kernel:

◦ Eq. (8) can be proven rigorously [4] if teacher and student are isotropic kernels and the input
points xµ are sampled on the lattice Zd, i.e. all the elements of each input sequence are
integer multiples of an arbitrary unit;

◦ If teacher and student coincide then E[|cρ|2] equals the ρ-th eigenvalue λρ and (see e.g. [20])
ε(P ) ≥ B(P ), i.e. the estimate of Eq. (8) is a lower bound.

3 Kernels for local and convolutional teacher-student scenarios

In this section we introduce convolutional and local kernels that will be used as teachers, i.e. to
generate different ensembles of target functions f∗ with controlled smoothness and degree of locality,
and as student kernels. We motivate our choice by considering one-hidden-layer neural networks
with simple local and convolutional architectures. Because of the relationship between our kernels
and the Neural Tangent Kernel [12] of the aforementioned architectures, our framework encompasses
regression with simple overparametrised networks trained in the lazy regime [16]. For the sake of
clarity we limit the discussion to inputs which are sequences in Rd, i.e. x= (x1, . . . , xd). Extension
to higher-order tensorial inputs such as imagesX ∈ Rd×d is straightforward. To avoid dealing with
the boundaries of the sequence we identify xi+d with xi for all i= 1, . . . , d.
Definition 3.1 (one-hidden-layer CNN). A one-hidden-layer convolutional network with H hidden
neurons and average pooling is defined as follows,

fCNN (x) =
1√
H

H∑
h=1

ah
1

|P|
∑
i∈P

σ(wh · xi), (9)

where x ∈ Rd is the input, H is the width, σ a nonlinear activation function, P ⊆ {1, . . . , d} is a
set of patch indices and |P| its cardinality. For all i ∈ P , xi is an s-dimensional patch of x. For all
h= 1, . . . ,H ,wh ∈ Rs is a filter with filter size s, ah ∈ R is a scalar weight. The dot · denotes the
standard Euclidean scalar product.

In the network defined above, a d-dimensional input sequence x is first mapped to s-dimensional
patches xi, which are ordered subsequences of the input. Comparing each patch to a filter wh
and applying the activation function σ leads to a |P|-dimensional hidden representation which is
equivariant for shifts of the input. The summation over the patch index i promotes this equivariance to
full invariance, leading to a model which is both local and shift-invariant as fCN in Eq. (2). A model
which is only local, as fLC in Eq. (2), can be obtained by lifting the constraint of weight-sharing,
which forces, for each h= 1, . . . ,H , the same filter wh to apply to all patches xi.
Definition 3.2 (one-hidden-layer LCN). In the notation of Definition 3.1, a one-hidden-layer locally-
connected network with H hidden neurons is defined as follows,

fLCN (x) =
1√
H

H∑
h=1

1√
|P|

∑
i∈P

ah,iσ(wh,i · xi), (10)

For all i ∈ P and h= 1, . . . ,H: xi is an s-dimensional patch of x, wh,i ∈ Rs is a filter with filter
size s, ah,i ∈ R is a scalar weight.

Notice that the definition above reduces to that of a fully-connected network when the filter size is set
to the input dimension, s= d, and P = {1}. With the target functions taking one of the two forms
in Eq. (2), our framework contains the case where the observations are generated by neural networks
such as (3.1) and (3.2). Let us now introduce the neural tangent kernels of such architectures.
Definition 3.3 (Neural Tangent Kernel). Given a neural network function f(x;θ), where
θ= (θ1, . . . , θN ) denotes the complete set of parameters and N the total number of parameters, the
Neural Tangent Kernel (NTK) is defined as [12]

ΘN (x,y;θ) =

N∑
n=1

∂θnf(x,θ)∂θnf(y,θ), (11)
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where ∂θn denotes partial derivation w.r.t. the n-th parameter θn.

For one-hidden-layer networks with random, O(1)-variance Gaussian initialisation of all the weights,
and normalisation by

√
H as in (3.1) and (3.2), the NTK converges to a deterministic limit Θ(x,y)

as N ∝ H → ∞ [12]. Furthermore, training f(x,θ) − f(x,θ0), with θ0 denoting the network
parameters at initialisation, under gradient descent on the mean squared error is equivalent to
performing ridgeless regression with kernel Θ(x,y) [12]. The following lemmas relate the NTK
of convolutional and local architectures acting on d-dimensional inputs to that of a fully-connected
architecture acting on s-dimensional inputs. Both lemmas are proved in Appendix B.
Lemma 3.1. Call ΘFC the NTK of a fully-connected network function acting on s-dimensional
inputs and ΘCN the NTK of a convolutional network function (3.1) with filter size s acting on
d-dimensional inputs. Then

ΘCN (x,y) =
1

|P|2
∑
i,j∈P

ΘFC(xi,yj) (12)

As the functions in Eq. (2), ΘCN is written as a combination of lower-dimensional constituent kernels
ΘFC acting on patches, and the dimensionality of the constituent kernel coincides with the filter size
of the corresponding network. This observation extends to local kernels, via
Lemma 3.2. Call ΘLC the NTK of a locally-connected network function (3.2) with filter size s acting
on d-dimensional inputs. Then

ΘLC(x,y) =
1

|P|
∑
i∈P

ΘFC(xi,yi) (13)

Following the general structure of Eq. (12) and Eq. (13), we introduce convolutional (KCN ) and
local (KLC) student and teacher kernels, defined as sums of lower-dimensional constituent kernels
C,

KCN (x,y) = |P|−2
∑
i,j∈P

C(xi,yj), (14a)

KLC(x,y) = |P|−1
∑
i∈P

C(xi,yi). (14b)

The kernels in Eq. (14) are characterised by the dimensionality of the constituent kernel C, or
filter size s (for the student, or t for the teacher) and the nonanalytic behaviour of C when the two
arguments approach, i.e. C(xi,yj) ∼ ‖xi − yj‖αs (for the student, or ‖xi − yj‖αt for the teacher)
plus analytic contributions, with αs/t 6= 2m for m ∈ N. Using the kernels in Eq. (14) as covariances
allows us to generate random target functions with the desired degree of locality t (as in Eq. (2)),
which can also be invariant for shifts of the patches. Having a student kernel as in Eq. (14) results in
an estimator f also having the form displayed in Eq. (2), with a different filter size with respect to
the target function. The α’s control the smoothness of these functions as, if α> 2n ∈ N, then the
functions are at least n times differentiable in the mean-square sense.

A notable example of such constituent kernels is the NTK of ReLU networks ΘFC , which presents
a cusp at the origin corresponding to αs = 1 [32]. In addition, in the H → ∞ limit, a network
initialised with random weights converges to a Gaussian process [33, 34, 35]. For networks with
ReLU activations, the covariance kernel of such process has nonanalytic behaviour with αt = 3 [36].

3.1 Mercer’s decomposition of local and convolutional kernels

We now turn to describing how the eigendecomposition of the constituent kernel C induces an
eigendecomposition of convolutional and local kernels. We work under the following assumptions,

i) The constituent kernel C(x,y) on Rs × Rs admits the following Mercer’s decomposition,

C(x,y) =

∞∑
ρ=1

λρφρ(x)φρ(y), (15)

with (ordered) eigenvalues λρ and eigenfunctions φρ such that, with p(s)(dsx) denoting the
s-dimensional patch measure, φ1(x) = 1 ∀x and

∫
p(s)(dsx)φρ(x) = 0 for all ρ>1;
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ii) Convolutional and local kernels from Eq. (14) have nonoverlapping patches, i.e. d is an
integer multiple of s and P = {1 + n× s |n = 1, . . . , d/s} with |P|=d/s;

iii) The s-dimensional marginals on patches of the d-dimensional input measure p(d)(ddx) are
all identical and equal to p(s)(dsx).

We stress here that the request of nonoverlapping patches in assumption ii) can be relaxed at the
price of further assumptions, i.e. C(x,y) = C(x− y) and data distributed uniformly on the torus, so
that C is diagonalised in Fourier space. The resulting eigendecompositions are qualitatively similar
to those described in this section (details in Appendix C). Let us also remark that assumptions i)
and iii)—together with all the assumptions on the data distribution that might follow—are technical
in nature and required only to carry out the Mercer’s decomposition analytically. We believe that
the main results of this paper hold under much more general conditions, namely the support of
the distribution being truly d-dimensional—such that the distance between neighbouring points in
a collection of P data points scales as P−1/d—and the distribution itself decaying rapidly away
from the mean or having compact support. Our experiments, discussed in Section 5, support this
hypothesis.
Lemma 3.3 (Spectra of convolutional kernels). Let KCN be a convolutional kernel defined as
in Eq. (14a), with a constituent kernel C satisfying assumptions i), ii) and iii) above. Then KCN

admits the following Mercer’s decomposition,

KCN (x,y) =

∞∑
ρ=1

ΛρΦρ(x)Φρ(y), (16)

with eigenvalues and eigenfunctions

Λ1 = λ1, Φ1(x) = 1; Λρ =
s

d
λρ, Φρ(x) =

√
s

d

∑
i∈P

φρ(xi) for ρ > 1. (17)

Lemma 3.4 (Spectra of local kernels). Let KLC be a local kernel defined as in Eq. (14b), with a
constituent kernel C satisfying assumptions i), ii) and iii) above. Then KLC admits the following
Mercer’s decomposition,

KLC(x,y) = Λ1Φ1(x) +

∞∑
ρ>1

∑
i∈P

Λρ,iΦρ,i(x)Φρ,i(y), (18)

with eigenvalues and eigenfunctions (∀i ∈ P)

Λ1 = λ1, Φ1(x) = 1; Λρ,i =
s

d
λρ, Φρ,i(x) = φρ(xi) for ρ > 1. (19)

Under assumptions i), ii) and iii) above, lemmas 3.3 and 3.4 follow from the definitions of convo-
lutional and local kernels and the eigendecompositions of the constituents (see Appendix C for a
proof of the lemmas and generalisation to kernels with overlapping patches). In the next section, we
explore the consequences of these results for the asymptotics of learning curves.

4 Asymptotic learning curves for ridgeless regression

In what follows, we consider explicitly translationally-invariant constituent kernels
C(xi,xj) = C(xi − xj) and a d-dimensional data distribution p(ddx) which is uniform on
the torus, so that all lower-dimensional marginals are also uniform on lower-dimensional tori.
Under these conditions, all results of Section 3 can be extended to kernels with overlapping
patches (P = {1, . . . , d}), so that the main results of this paper apply to nonoverlapping as well
as overlapping-patches kernels. Furthermore, Mercer’s decomposition Eq. (15) can be written
in Fourier space [37], with s-dimensional plane waves φ(s)

k (x) = eik·x as eigenfunctions and the
eigenvalues coinciding with the Fourier transform of C. Furthermore, for kernels with filter size s (or
t) and positive smoothness exponent αs (or αt), the eigenvalues decay with a power −(s+αs) (or
−(t+αt)) of the modulus of the wavevector k=

√
k · k [38]. In this setting, we obtain our main

result:

6



Theorem 4.1. Let KT be a d-dimensional convolutional kernel with a translationally-invariant
t-dimensional constituent and leading nonanalyticity at the origin controlled by the exponent αt> 0.
Let KS be a d-dimensional convolutional or local student kernel with a translationally-invariant
s-dimensional constituent, and with a nonanalyticity at the origin controlled by the exponent αs> 0.
Assume, in addition, that if the kernels have overlapping patches then s ≥ t, whereas if the kernels
have nonoverlapping patches s is an integer multiple of t; and that data are uniformly distributed on
a d-dimensional torus. Then, the following asymptotic equivalence holds in the limit P →∞,

B(P ) ∼ P−β , β = αt/s.

Theorem 4.1, together with Eq. (8) and the additional assumption αt≤ 2(αs+s), yields the following
expression for the learning curves asymptotics,

ε(P ) ∼ P−β , β = αt/s. (20)
As β is independent of the embedding dimension d, we conclude that the curse of dimensionality is
beaten when a convolutional target is learnt with a convolutional or local kernel. In fact, Eq. (20)
indicates that there is no asymptotic advantage in using a convolutional rather than local student
when learning a convolutional task, confirming the picture that locality, not weight sharing, is the
main source of the convolutional architecture’s performances [6]. In Appendix D we show that the
generalization error of a local student learning convolutional teacher decays as

ε(P ) ∼
(
P

|P|

)−β
, β = αt/s. (21)

Eq. (21) implies that including weight sharing only amounts to a rescaling of P by a factor |P|—the
size of the translation group over patches—recovering the result obtained in [28]. Intuitively, a
local student will need |P| times more points than a convolutional student to learn the target with
comparable accuracy, since it has to learn the same local function in all the possible |P| locations.
The predictions in Eq. (20) and Eq. (21) are confirmed empirically, as discussed in Section 5 and
Appendix G. Let us mention in particular that, although our predictions are valid only asymptotically,
they hold already in the range P ∼ 102 − 103, consistently with the number of training points
typically used in applications.

Theorem 4.1 is proven in Appendix D and extended to the case of a local teacher and local student
in Appendix E. Here we sketch the proof for the nonoverlapping case, which begins with the
calculation of the variance of the coefficients of the target function in the student basis. By indexing
the coefficients with the s-dimensional wavevectors k,

E[|ck|2] =

∫
[0,1]d

ddxΦk(x)

∫
[0,1]d

ddyΦk(y)E[f∗(x)f∗(y)]

=

∫
[0,1]d

ddxΦk(x)

∫
[0,1]d

ddyΦk(y)KT (x,y).

(22)

If the size of teacher and student coincide, s= t, teacher and student have the same eigenfunctions.
Thus, using the eigenvalue equation Eq. (6) of the teacher yields E[|ck|2] ∼ k−(αt+t) = k−(αt+s).
After ranking eigenvalues by k, with multiplicity ks−1 from all the wavevectors having the same
modulus k, one has

B(P ) =
∑

{k|k>P 1/s}
k−(αt+s) ∼

∫ ∞
P 1/s

dkks−1k−(αt+s) ∼ P−
αt
s . (23)

When the filter size of the teacher t is lowered, some of the coefficients E[|ck|2] vanish. As the target
function becomes a composition of t-dimensional constituents, the only non-zero coefficients are
found for k’s which lie in some t-dimensional subspaces of the s-dimensional Fourier space. These
subspaces correspond to the k having at most a patch of t consecutive non-vanishing components. In
other words, E[|ck|2] is finite only if k is effectively t-dimensional and the integral on the right-hand
side of Eq. (23) becomes t-dimensional, thus

B(P ) ∼
∫ ∞
P 1/s

dkkt−1k−(αt+t) ∼ P−
αt
s . (24)

If the teacher patches are not contained in the student ones, the target cannot be represented with a
combination of student eigenfunctions, hence the error asymptotes to a finite value when P →∞.
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5 Empirical learning curves for ridgeless regression

This section investigates numerically the asymptotic behaviour of the learning curves for our teacher-
student framework. We consider different combinations of convolutional and local teachers and
students with overlapping patches and Laplacian constituent kernels, i.e. C(xi − xj) = e−‖xi−xj‖.
In order to test the robustness of our results to the data distribution, data are uniformly generated
in the hypercube [0, 1]d (results in Fig. 1) or on a d-hypersphere (results in Appendix G). Fig. 1
shows learning curves for both convolutional (left panels) and local (right panels) students learning a
convolutional target function. The results in the case of a local teacher are presented in Appendix G,
and display no qualitative differences.

In the following, we always refer to Fig. 1. Panels A and B show that, with αt =αs = 1, our prediction
β= 1/s holds independently of the embedding dimension d. Furthermore, notice that fixing the
dimension d and the teacher filter size t, the generalisation errors of a convolutional and a local
student with the same filter size differ only by a multiplicative constant independent of P . Indeed, the
shift-invariant nature of the convolutional student only results in a pre-asymptotic correction to our
estimate of the generalisation error B(P ). In Appendix G, we check that this multiplicative constant
corresponds to rescaling P by the number of patches, as predicted in Section 4. Panels C and D show
learning curves for several values of s and fixed t. The curse of dimensionality is recovered when
the size of the student filters coincides with the input dimension, both for local and convolutional
students. Finally, panels E and F show learning curves for fixed t and s being smaller than, equal to
or larger than t. We stress that, when s< t the student kernel cannot reproduce the target function,
hence the error does not decrease by increasing P . Further details on the experiments are provided
in Appendix G, together with learning curves for data distributed uniformly on the unit sphere Sd−1

and for regression with the actual analytical and empirical NTKs of one-hidden-layer convolutional
networks. It is worthwhile to notice that experiments are always in excellent agreement with our
predictions, despite using data distributions that are out of the hypotheses of Theorem 4.1. Indeed,
for regression with the actual NTK even the assumption of translationally-invariant constituents is
violated. Moreover, we report the learning curves of local kernels on the CIFAR-10 dataset showing
that smaller filter sizes correspond to faster decays even for real and anisotropic data distributions, in
agreement with the picture emerging from our synthetic model.

6 Asymptotics of learning curves with decreasing ridge

We now prove an upper bound for the exponent β implying that the curse of dimensionality is beaten
by a local or convolutional kernel learning a convolutional target (as in Eq. (2)), using the framework
developed in [21] and a natural universality assumption on the kernel eigenfunctions. It is worth
noticing that this framework does not require the target function to be generated by a teacher kernel.
Proofs are presented in Appendix F. Let D(Λ) denote the density of eigenvalues of the student kernel,
D(Λ) =

∑
ρ δ(Λ− Λρ), with δ(x) denoting Dirac delta function. Having a random target function

with coefficients cρ in the kernel eigenbasis having variance E[|cρ|2], one can define the following
reduced density (with respect to the teacher):

DT (Λ) =
∑

{ρ|E[|cρ|2]>0}

δ(Λ− Λρ) (25)

DT (Λ) counts eigenvalues for which the target has a non-zero variance, such that:∑
ρ

E[|cρ|2] =

∫
dΛDT (Λ)c2(Λ), (26)

where the function c(Λ) is defined by c2(Λρ) =E[|cρ|2] for all ρ such that E[|cρ|2]> 0. The following
theorem then follows from the results of [21].

Theorem 6.1. Let us consider a positive-definite kernel K with eigenvalues Λρ,
∑
ρ Λρ <∞, and

eigenfunctions Φρ learning a (random) target function f∗ in kernel ridge regression (Eq. (3)) with
ridge λ from P observations f∗(xµ), with xµ ∈ Rd drawn from a certain probability distribution.
Let us denote with DT (Λ) the reduced density of kernel eigenvalues with respect to the target and
ε(λ, P ) the generalisation error and also assume that
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Figure 1: Learning curves for different combinations of convolutional teachers with convolutional
(left panels) and local (right panels) students. The teacher and student filter sizes are denoted with t
and s respectively. Data are sampled uniformly in the hypercube [0, 1]d, with d = 9 if not specified
otherwise. Solid lines are the results of numerical experiments averaged over 128 realisations and the
shaded areas represent the empirical standard deviations. The predicted scalings are shown by dashed
lines. All the panels are discussed in Section 5, while additional details on experiments are reported
in Appendix G, together with additional experiments.

i) For any P -tuple of indices ρ1, . . . , ρP , the vector (Φρ1(x1), . . . ,ΦρP (xP )) is a Gaussian
random vector;

ii) The target function can be written in the kernel eigenbasis with coefficients cρ and
c2(Λρ) =E[|cρ|2], with DT (Λ) ∼ Λ−(1+r), c2(Λ) ∼ Λq asymptotically for small Λ and
r > 0, r < q < r + 2;

Then the following equivalence holds in the joint P →∞ and λ→ 0 limit with 1/(λ
√
P )→ 0:

ε(λ, P ) ∼
∑

{ρ|Λρ<λ}

E[|cρ|2] =

∫ λ

0

dΛDT (Λ)c2(Λ). (27)

Note that the assumption i) of the theorem on the Gaussianity of the eigenbasis does not hold in our
setup where the Φρ’s are plane waves. However, the random variables Φρ(x

µ) have a probability
density with compact support. It is thus natural to assume that a Gaussian universality assumption
holds, i.e. that Theorem 6.1 applies to our problem. With this assumption, we obtain the following
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Corollary 6.1.1. Performing kernel ridge regression in a teacher-student scenario with smoothness
exponents αt (teacher) and αs (student), with ridge λ ∼ P−γ and 0<γ < 1/2, under the joint
hypotheses of Theorem 4.1 and Theorem 6.1, the exponent governing the asymptotic scaling of the
generalisation error with P is given by:

β = γ
αt

αs + s
, (28)

which does not vanish in the limit d→∞. Furthermore, Eq. (28) depends on s and not on t as the
prediction of Eq. (20).

7 Conclusions and future work

Our work shows that, even in large dimension d, a function can be learnt efficiently if it can be
expressed as a sum of constituent functions each depending on a smaller number of variables t, by
performing regression with a kernel that entails such a compositional structure with s-dimensional
constituents. The learning curve exponent is then independent of d and governed by s if s ≥ t,
optimal for s= t and null if s< t.

In the context of image classification, this result relates to the “Bag of Words” viewpoint. Consider
for example two-dimensional images consisting of M features of t adjacent pixels, and that different
classes correspond to distinct subsets of (possibly shared) features. If features can be located
anywhere, then data lie on a 2M -dimensional manifold. On the one hand, we expect a one-hidden-
layer convolutional network with filter size s≥ t to learn well with a learning curve exponent governed
by s and independent of M . On the other hand, a fully-connected network would suffer from the
curse of dimensionality for large M .

Our work does not consider that the compositional structure of real data is hierarchical, with large
features that consist of smaller sub-features. It is intuitively clear that depth and locality taken together
are well-suited for such data structure [8, 6]. Extending the present teacher-student framework to this
case would offer valuable quantitative insights into the question of how many data are required to
learn such tasks.
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Bayesian inference in a mismatched setting:
a spin-glass model with Mattis interaction

The poster will focus on the rank-one matrix estimation problem under Gaussian
additive noise when the statistician assumes a prior on the ground truth signal,
Rademacher for simplicity, that does not match the real one. As a consequence, the
setting is not Bayes-optimal and the Nishimori identities break down. The statistician’s
posterior is a Boltzmann-Gibbs measure whose Hamiltonian is that of a Sherrington-
Kirkpatrick (SK) model with an added Mattis interaction. Thanks to the Parisi solution
of the SK model the cross entropy of the true and the statistician’s evidences, closely
related to the free energy, is rigorously expressed in terms of a variational principle
over two order parameters: the Parisi overlap distribution and the Mattis
magnetization. The phase diagram of the specific mismatch between Rademacher
and Gaussian priors is analyzed in detail and shown to contain a glassy region.
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Resilience of Bayesian Layer-Wise
Explanations under Adversarial Attacks

We consider the problem of the stability of saliency-based explanations of Neural
Network predictions under adversarial attacks in a classification task. Saliency
interpretations of deterministic Neural Networks are remarkably brittle even when the
attacks fail, i.e. for attacks that do not change the classification label. We empirically
show that interpretations provided by Bayesian Neural Networks are considerably
more stable under adversarial perturbations of the inputs and even under direct
attacks to the explanations. By leveraging recent results, we also provide a theoretical
explanation of this result in terms of the geometry of the data manifold. Additionally,
we discuss the stability of the interpretations of high level representations of the
inputs in the internal layers of a Network. Our results demonstrate that Bayesian
methods, in addition to being more robust to adversarial attacks, have the potential to
provide more stable and interpretable assessments of Neural Network predictions.
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Localisation of Mitosis Transition

A recent study by Doimo, Glielmo, Goldt, Laio, 2021 has shown that in the last layer
of a sufficiently wide neural network duplication of information happens, possibly
related to benign overfitting. To do so, they showed that, after the network is properly
trained, the error committed by using only "chunks" (that are, a certain number of
random neurons) in the last layer follows two different regimes, separated by a phase
transition. In the first regime, the error (or better, the difference between the error and
the least possible error committed by the full network) decreases steeply as the chunk
size increases, while in the second regime it decreases as N^(-1/2), with N the size of
the chunks. The goal of my project is to understand better the dependence of the
transition point of the input complexity and the architecture of the network, testing the
results they obtained with artificial data and smaller networks to understand what are
the requirements for the phenomenon to happen.
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Title: Comparison between NN and RF techniques for hybrid en-
ergy γ-ray reconstruction in simulation data of the 55 Imaging Air-
Cherenkov Telescopes HAWC’s Eye at High Altitude

Abstract

We present the result of the application of supervised regression ML algo-
rithms such as Neuronal Network (NN) and the Random Forest regressor (RF),
in the energy reconstruction of simulated Monte Carlo data of compact light-
weight Imaging-Air-Cherenkov Telescope (IACT) (HAWC’s Eye) and High-
Altitude-Water-Cherenkov (HAWC) observatory of γ-showers in CORSIKA-
9600 and MARS, using an array of 55 telescopes, in which a set of features
showed a better hybrid reconstruction of the energy (3 ∼ 5 TeV ).

In the processing, the dimensionality is reduced using feature selection, in
which are reduced from 48 to 9 features. Some cuts were applied to the data,
evaluating and choosing the distribution of data and the features that improve
better the performance of the training in the energy reconstruction. The per-
formance of the total energy reconstruction is measured using the coefficient of
determination (r2). Besides, the correlation and bias plots are compared with
the σ and the Root Mean Square (RMS).

After several experiments, we reduced the optimal amount of shower entries
(0.08-1.5)% of the total data to the training and testing. The parameters were
optimized and adjusted as appropriate. For the case of NN, it was searched
different net topologies and parameters, selecting the Relu activation function,
the Adam optimizer lr=0.001 and 800 epochs for the training. In the case of
RF, it was adjusted the max depth in each leaf using 1000 trees (comparing
with previous tests). Also, the K-fold method was applied with ten splits with
low σ (NN 0.0024 and RF 0.0043). Finally, RF showed better generalization
than NN at distribution testing changes.

1
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Determining the impact of remote homology
detection on protein structure predictions by

Deep Learning models

Deep Learning models unveil unprecedented ability of predicting protein contacts and
structures only relying on homologous sequences information in Multiple Sequence
Alignments (MSA). In particular, self-supervised models exploit the attention
mechanism to capture long-range correlations between positions in alignments,
encoding both co-evolutionary and phylogenetic signals in high-dimensional
embedding spaces. The influence of remote homology detection strategies on the
accuracy of MSA-Transformer and AlphaFold2 predictions is estimated by comparing
inference results on sequences classified with different methods. Both models are
trained on alignments built via iterative pairwise comparison of profile Hidden Markov
Models (HMM) of a query sequence against large databases of primary sequences.
In a similar fashion, for Pfam-A alignments the query HMM profile is built on manually
curated seed alignments. Differently, the unsupervised DPCfam algorithm identifies
protein domains classifying pairwise aligned sequences through Density Peak
Clustering technique. MSA-transformer contact prediction accuracy is similar on
DPCfam and Pfam-A alignments but outperforms the two methods on the HMM-
based alignments, suggesting a dependency of the model on the training MSA
format. This is confirmed by the boost in performances if aligning DPCfam domains
sequences with the training hhblits procedure and if fine-tuning the model parameters
on such alignments. On the other hand, AlphaFold2 lDDT scores indicate that custom
MSAs are better suited for domains structure prediction with respect to HMM-based
alignments. Inferences on DPCfam domains return the most reliable structures,
showing that such unsupervised method captures evolutionary relationships among
protein domains with accuracy comparable to that of the manually curated Pfam-A.
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A random matrix perspective on the spiked
rank-one tensor model

The task of recovering a low-rank tensor from noisy observations is at the heart of
various methods used for information extraction in signal processing, data analysis
and machine learning. While it is generally quite hard to analyze the performance of
such methods, substantial progress has been recently achieved in the large-
dimensional setting, thanks in large part to fairly advanced results and tools borrowed
from statistical physics. In particular, sharp results were derived in the case of a
deterministic rank-one symmetric tensor corrupted by symmetric Gaussian noise,
unveiling an abrupt, discontinuous phase transition in the performance of maximum
likelihood estimation as the signal-to-noise ratio grows. The random landscape of this
maximum likelihood problem has also been thoroughly studied, shedding light on
geometric phase transitions that take place and explain the aforementioned
discontinuity. In this work, we connect these results to the notion of tensor eigenpairs,
which are by definition critical points of the maximum likelihood problem. A simple but
crucial observation is that each eigenpair of a tensor is also an eigenpair of a matrix
obtained from that tensor by a contraction with the concerned eigenvector. As we
argue, this link opens the door to the use of standard tools from random matrix
theory, leading to an alternative and more elementary way of reaching some of the
same predictions that had been obtained with the statistical physics machinery, while
also providing interesting additional insights.
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Fast rates for noisy interpolation require
rethinking the effects of inductive bias

Good generalization performance on high-dimensional data crucially hinges on a
simple structure of the ground truth and a corresponding strong inductive bias of the
estimator. Even though this intuition is valid for regularized models, in this paper we
caution against a strong inductive bias for interpolation in the presence of noise: Our
results suggest that, while a stronger inductive bias encourages a simpler structure
that is more aligned with the ground truth, it also increases the detrimental effect of
noise. Specifically, for both linear regression and classification with a sparse ground
truth, we prove that minimum lp-norm and maximum lp-margin interpolators achieve
fast polynomial rates up to order 1/n for p > 1 compared to a logarithmic rate for p =
1. Finally, we provide experimental evidence that this trade-off may also play a crucial
role in understanding non-linear interpolating models used in practice.
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Optimal denoising of rotationally invariant
rectangular matrices

In this work we consider denoising of large rectangular matrices: given a noisy
observation of a signal matrix, what is the best way of recovering the signal matrix
itself? For Gaussian noise and rotationally-invariant signal priors, we completely
characterize the optimal denoiser and its performance in the high-dimensional limit, in
which the size of the signal matrix goes to infinity with fixed aspects ratio, and under
the Bayes optimal setting, that is when the statistician knows how the signal and the
observations were generated. Our results generalise previous works that considered
only symmetric matrices to the more general case of non-symmetric and rectangular
ones. We explore analytically and numerically a particular choice of factorized signal
prior that models cross-covariance matrices and the matrix factorization problem. As
a byproduct of our analysis, we provide an explicit asymptotic evaluation of the
rectangular Harish-Chandra-Itzykson-Zuber integral in a special case. See
https://arxiv.org/abs/2203.07752
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Gaussian Universality of Linear Classi ers
with Random Labels in High-Dimension

While classical in many theoretical seings, the assumption of Gaussian i.i.d. inputs is
oen perceived as a strong limitation in the analysis of high-dimensional learning. In
this study, we redeem this line of work in the case of generalized linear classication
with random labels. Our main contribution is a rigorous proof that data coming from a
range of generative models in high-dimensions have the same minimum training loss
as Gaussian data with corresponding data covariance. In particular, our theorem
covers data created by an arbitrary mixture of homogeneous Gaussian clouds, as
well as multi-modal generative neural networks. In the limit of vanishing
regularization, we further demonstrate that the training loss is independent of the data
covariance. Finally, we show that this universality property is observed in practice with
real datasets and random labels.
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A knowledge-based machine learning
approach to gene prioritisation in

amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is a neurodegenerative disease of the upper and lower
motor neurons resulting in death from neuromuscular respiratory failure, typically
within two to five years of first symptoms. Several rare disruptive gene variants have
been associated with ALS and are responsible for about 15% of all cases. Although
our knowledge of the genetic landscape of this disease is improving, it remains
limited. Machine learning models trained on the available protein–protein interaction
and phenotype-genotype association data can use our current knowledge of the
disease genetics for the prediction of novel candidate genes. Here, we describe a
knowledge-based machine learning method for this purpose. We trained our model
on protein–protein interaction data from IntAct, gene function annotation from Gene
Ontology, and known disease-gene associations from DisGeNet. Using several sets
of known ALS genes from public databases and a manual review as input, we
generated a list of new candidate genes for each input set. We investigated the
relevance of the predicted genes in ALS by using the available summary statistics
from the largest ALS genome-wide association study and by performing functional
and phenotype enrichment analysis. The predicted sets were enriched for genes
associated with other neurodegenerative diseases known to overlap with ALS
genetically and phenotypically, as well as for biological processes associated with the
disease. Moreover, using ALS genes from ClinVar and our manual review as input,
the predicted sets were enriched for ALS-associated genes (ClinVar p = 0.038 and
manual review p = 0.060) when used for gene prioritisation
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Data-driven emergence of convolutional
structure in neural networks

Exploiting invariances in the inputs is crucial for constructing efficient representations
and accurate predictions in neural circuits. In neuroscience, translation invariance is
at the heart of models of the visual system, while convolutional neural networks
designed to exploit translation invariance triggered the first wave of deep learning
successes. While the hallmark of convolutions, namely localised receptive fields that
tile the input space, can be implemented with fully-connected neural networks,
learning convolutions directly from inputs in a fully-connected network has so far
proven elusive. Here, we show how initially fully-connected neural networks solving a
discrimination task can learn a convolutional structure directly from their inputs,
resulting in localised, space-tiling receptive fields. We find that both translation
invariance and non-trivial higher-order statistics are needed to learn convolutions
from scratch. We provide an analytical and numerical characterisation of the pattern-
formation mechanism responsible for this phenomenon in a simple model, which
results in an unexpected link between receptive field formation and the tensor
decomposition of higher-order input correlations.
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Setup: Fix Ÿ, – > 0, set M = Ân–Ê œ N. Generate i.i.d. Xi
d= N (0, In), 1 Æ i Æ M . Define

S–(Ÿ) =
\

1ÆiÆM

n
‡ œ Bn : |È‡, XiÍ| Æ Ÿ

Ô
n
o

=
n

‡ œ Bn :
��M‡

��
Œ Æ Ÿ

Ô
n
o

,

where Bn = {≠1, 1}n and M œ RM◊n is the matrix of disorderwith rows X1, . . . , XM œ Rn.

Algorithmic Goal: Find a ‡ œ S–(Ÿ) in polynomial-time whenever S–(Ÿ) ”= ? (whp).

2SXMZEXMSR

Neural Networks: Toy one-layer neural network (Wendel’62, Cover’65).

Patterns Xi œ Rn to be stored.
Storage: Find ‡ œ Bn “consistent” with Xi’s: È‡, XiÍ Ø 0.

Constraint Satisfaction Problems: Xi rules out certain ‡ œ Bn. Constraint Density: – = M/n.

Discrepancy Theory: Given M œ RM◊n, explore its discrepancy min‡œBn ÎM‡ÎŒ.

*\MWXIRXMEP ERH &PKSVMXLQMG ,YEVERXIIW

Sharp Phase Transition. Let –c(Ÿ) = ≠1/ log2 P
⇥
|N (0, 1)| Æ Ÿ

⇤
. Perkins-Xu’21, Abbe-Li-Sly’21:

S–(Ÿ) ”= ? (whp) if – < –c(Ÿ). S–(Ÿ) = ? (whp) if – > –c(Ÿ).

Algorithmic (Polynomial-Time). Bansal-Spencer’20: for– = O(Ÿ2), outputs a ‡ALG œ S–(Ÿ) (whp).

& �ƒ±ƒĞžƒĞÏ±ĮĝƒŇĝ�ŇķŤƣƒ±ƒĞŇĻ±Į :±Ť

Gap between existential guarantee and the best polynomial-time algorithmic guarantee.

Most pronounced for Ÿ æ 0:
S–(Ÿ) ”= ? (whp) iff – < ≠1/ log2 Ÿ. Algorithms exist for – = O(Ÿ2).
A striking gap: ≠1/ log2 Ÿ vs Ÿ2.

Source of this gap/hardness?

*\XVIQI (PYWXIVMRK ERH +VII^MRK

Also known as Frozen 1-RSB in physics. For any 0 < – < –c(Ÿ):
Typical solutions of a"S are isolated (whp). Distance to nearest solution is �(n).
Suggests algorithmic hardness (Achlioptas & Coja-Oghlan’08).

A Conundrum: Extreme clustering/freezing coexist with polynomial-time algorithms.
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Common feature in many algorithmic problems in high-dimensional statistics & random combina-
torial structures: Random k-SAT, optimization over random graphs, p-spin model, number partitioning...

Average-Case Problems: No analogue of worst-case theory (such as P ”= NP ).

Rigorous Evidences of Hardness: low-degree methods, reductions from the planted clique, failure of
MCMC, failure of BP/AMP, SoS/SQ lower bounds,...

4ZIVPET ,ET 5VSTIVX] 4,5�

Another approach from spin glass theory: Overlap Gap Property (OGP).

Generic optimization problem with random instance ›: min‡œ� L(‡, ›).
(Informally) OGP for energy E if ÷0 < ‹1 < ‹2 s.t. w.h.p. over ›, ’‡1, ‡2 œ �,

L(‡j, ›) Æ E =∆ distance(‡1, ‡2) < ‹1 or distance(‡1, ‡2) > ‹2.

Any two near optimal ‡1, ‡2 are either too similar or too dissimilar.

First algorithmic implication: Finding maximum independent set in Gd(n). (Gamarnik-Sudan’13).

Problems with OGP:Many, random k-SAT, p≠spin model, number partitioning...
OGP as a Provable Barrier to Algorithms: WALKSAT, local algorithms, stable algorithms, low-degree
polynomials, approximate message passing (AMP), MCMC, low-depth circuits, QAOA...

1ERHWGETI 7IWYPXW� 5VIWIRGI SJ 4,5

Consider i.i.d. Mi œ RM◊n, 0 Æ i Æ m, each with i.i.d. N (0, 1) entries. Interpolate:
Mi(· ) = cos(· )M0 + sin(· )Mi, œ RM◊n, · œ [0, fi/2], 1 Æ i Æ m.

Fix Ÿ > 0. a"S exhibits Ensemblem≠OGPwith (m, —, ÷, I), if for any ‡1, . . . , ‡m œ Bn with
��Mi(·i)‡i

��
Œ Æ Ÿ

Ô
n, ·i œ I, 1 Æ i Æ m,

there exists 1 Æ i < j Æ m such that n≠1È‡i, ‡jÍ /œ (— ≠ ÷, —).
m≠tuples: Hardness for broader range of parameters (i.e. lower threshold for –).

Ensemble: Correlated instances. Rule out any sufficiently stable algorithm.

Small Ÿ regime, Ÿ æ 0: Statistical-to-Computational Gap is most pronounced.
Theorem. ’Ÿ > 0 small and I µ [0, fi/2] with |I| Æ exp(O(n)), there exists m œ N and 1 > — >
÷ > 0 such that the a"S exhibits (whp) the Ensemble m≠OGPwith (m, —, ÷, I) for – = �(Ÿ2 log 1

Ÿ).

Nearly tight: Matches algorithmic Ÿ2 threshold up to log 1
Ÿ factor.

— ∫ ÷: no equidistant m≠tuples each satisfying constraint Mi(·i), 1 Æ i Æ m.

Large Ÿ regime: Set Ÿ = 1, –c(Ÿ) ¥ 1.8158. Thus S–(Ÿ) ”= ? (whp) iff – < 1.8158.
Theorem. Let Ÿ = 1. ÷0 < —2, —3, ÷2, ÷3 < 1 (where —i > ÷i) such that the following holds whp:

a"S exhibits Ensemble 2≠OGP with (2, —2, ÷2, I) for – Ø 1.71.
a"S exhibits Ensemble 3≠OGP with (3, —3, ÷3, I) for – Ø 1.67.

&PKSVMXLQMG -EVHRIWW 7IWYPXW

Algorithm A : RM◊n æ Bn, potentially randomized.
Stable Algorithms. Informally, A is stable if small change in X yields small change in A(X).
Success:

P
h��MA(M)

��
Œ Æ Ÿ

Ô
n
i

Ø 1 ≠ pf .

Stability: ÷fl œ (0, 1] such that for i.i.d. M, M œ RM◊n with Cov(Mij, Mij) = fl

P
h
dH

⇣
A(M), A(M)

⌘
Æ f + LÎM ≠ MÎF

i
Ø 1 ≠ pst.

AMP and low-degree polynomials are stable (Gamarnik-Jagannath-Wein’20).

Question: “Are known efficient algorithms for perceptron models stable?”

Theorem. Kim-Roche algorithm (Kim-Roche’98) for the asymmetric perceptron is stable.

m≠OGP =∆ Failure of Stable Algorithms.

Theorem. Stable algorithms fail to find a solution for the a"S for – = �(Ÿ2 log 1
Ÿ).

Rule out pf , pst = O(1). No need for high-probability guarantee.

Proof Idea. By contradiction. Suppose ÷A.

m-OGP: a structure occurs with vanishing probability.
Run A on correlated instances. Show that w.p.> 0, forbidden structure occurs.
Uses Ramsey Theory (Gamarnik-Kızıldağ’21).

Failure of Online Algorithms for High Densities:

Columns of M: C1, . . . , Cn œ RM . A is online if ÷ft s.t. ‡t = ft(Ci : 1 Æ i Æ t) for 1 Æ t Æ n.

Theorem. ÷‘ > 0 such that for – Ø –c(Ÿ) ≠ ‘, there is no online A for a"S.

+YXYVI )MVIGXMSRW

Algorithmic Threshold: Let –m(Ÿ) be the smallest density such that for some 0 < ÷ < — < 1, a"S
exhibits (whp) Ensemble m≠OGP with (m, —, ÷, {0}) for – Ø –m(Ÿ). Define

–ú
Œ(Ÿ) , lim

mæŒ
–m(Ÿ).

Conjecture. –ú
Œ(Ÿ) marks the true algorithmic threshold of a"S.

Bansal-Spencer algorithm is likely optimal (up to logaritmic factors).
log 1

Ÿ factor? More delicate structure (Wein’20, Bresler-Huang’21, Huang-Sellke’21).

Stability of Other Algorithms: “Is Bansal-Spencer algorithm stable? Other discrepancy algorithms?”
Asymmetric Perceptron: Many open problems.

Existence/Location of sharp phase transition point. Krauth-Mézard (89) prediction.
Rigorously verifying Frozen 1-RSB picture.
OGP and failure of stable algorithms.

More Enthusiastic Questions on OGP.

Largest class of algorithms ruled out by OGP: Includes stable algorithms, MCMC, etc.
Counterexample to OGP: Is there a model where efficient algorithms coexist with OGP?

7IJIVIRGIW�`sBp,kkyjXR8eed OM^MPHEK%QMX�IHY
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Industrial Problems

Some industrial practical problems can be discussed in details
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Universality of the least singular value and
singular vector delocalization for levy non-

symmetric matrices

In this paper we consider N×N matrices D_{n} with i.i.d. entries all following an
a−stable law divided by N^{1/a}. We prove that the least singular value of D_{N},
multiplied by N, tends to the same law as in the Gaussian case, for almost all a∈(0,2).
This is proven by considering the symmetrization of the matrix D_{N} and using a
version of the three step strategy, a well known strategy in the random matrix theory
literature. In order to apply the three step strategy, we also prove an isotropic local
law for the symmetrization of matrices after slightly perturbing them by a Gaussian
matrix with a similar structure. The isotropic local law is proven for a general class of
matrices that satisfy some regularity assumption. We also prove the complete
delocalization for the left and right singular vectors of DN at small energy, i.e., for
energies at a small interval around 0.
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Deep Learning via Message Passing

Message-passing algorithms based on the Belief Propagation (BP) equations
constitute a well-known distributed computational scheme. It is exact on tree-like
graphical models and has also proven to be effective in many problems defined on
graphs with loops (from inference to optimization, from signal processing to
clustering). The BP-based scheme is fundamentally different from stochastic gradient
descent (SGD), on which the current success of deep networks is based. In this
paper, we present and adapt to mini-batch training on GPUs a family of BP-based
message-passing algorithms with a reinforcement field that biases distributions
towards locally entropic solutions. These algorithms are capable of training multi-layer
neural networks with discrete weights and activations with performance comparable
to SGD-inspired heuristics (BinaryNet) and are naturally well-adapted to continual
learning. Furthermore, using these algorithms to estimate the marginals of the
weights allows us to make approximate Bayesian predictions that have higher
accuracy than point-wise solutions.
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Problem:discrete features lead to two main issues

questionnaries

Construction of the Intrinsic Dimension for

        Discrete Dataset (I3D) estimator 

Distances degeneracy

No Scaling 

Behaviour on controlled-ID spin dataset

Performance on toy models against continuous ID estimator [3]
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Topological analysis of genomics sequences shows that
evolutive pressure acts on a low-dimensional manifold

Embedding dimension = 3

Intrinsic dimension = 1

Archaea and Bacteria

Illumina dye

sequencingPCR

ID of single cluster Average ID over clusters

16S gene

I3D

In order to better grasp the meaning of PCA on genomics data, we performed the same
procedure on arti�cial, controlled-ID spin ensembles

I3D

I3D

If enough spin states are provided, PCA eigenvectors
reproduce the "direction" of the generating process

UMAP projection [4]

Real-world data are often de�ned by a very large number of 
features, but are e�ectively contained in a manifold which can 
be described, at least locally, by a relatively small number of 
coordinates. Such number is called Intrinsic Dimension (ID).

All present estimators have been formulated in spaces where 
distances can vary continuously. However, many systems are 
characterised by discrete features and discrete distances. 

Such a low value for the ID suggests that, despite the high 
dimensionality of sequences' space, evolution e�ectively operates 
in a low-dimensional space. Qualitatively, an ID of ~2 on a scale 
of ~20 means that if one considers all the sequences di�ering by 
approximately 20 mutations from a given sequence, these 
mutations cannot be considered independent one from each 
other, but are correlated in such a way that approximately 18 
degrees of freedom are e�ectively forbidden.

The lattice structure, together with the high density and the consequent possible overlap 
of some points, prevents other estimators from providing a precise estimate, which is 
obtained only under aggressive decimation of the dataset. The I3D estimator, instead, 
returns accurate values for the ID at all scales.

The "direction" of these correlated mutation can be, at least approximately, measured by 
performing PCA. The eigenvectors do not change signi�cantly on di�erent distance range, 
indicating that, consistently with the low value of the ID, the data manifold on this scale can 
be approximately described by a two-dimensional plane. The components of eigenvectors can be 
qualitatively interpreted as proportional to the mutation probabilities of the associated 
nucleotides for a collective mutation process.

The evolutionary relationships among biological species, based upon similarities and di�erences 
in their genetic characteristics, are often represented and studied through phylogenetic trees.
However, such trees are not necessarily correct and relative inferred relationship are not 
unquestionably true. Here we propose a complementary method that provides e�ective 
information about evolution and selection based directly on the sequences, without the need of 
constructing phylogenetic trees

Prokaryotic 16S rRNA sequences are widely used in environmental microbiology and 

molecular evolution as reliable markers for the taxonomic classification and phylogenetic 

analysis of microbes, due to its slow rates of evolution
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Perturbative construction of mean-field
equations in extensive-rank matrix

factorization and denoising

Factorization of matrices where the rank of the two factors diverges linearly with their
sizes has many applications in diverse areas such as unsupervised representation
learning, dictionary learning or sparse coding. We consider a setting where the two
factors are generated from known component-wise independent prior distributions,
and the statistician observes a (possibly noisy) component-wise function of their
matrix product. In the limit where the dimensions of the matrices tend to infinity, but
their ratios remain fixed, we expect to be able to derive closed form expressions for
the optimal mean squared error on the estimation of the two factors. However, this
remains a very involved mathematical and algorithmic problem. A related, but simpler,
problem is extensive-rank matrix denoising, where one aims to reconstruct a matrix
with extensive but usually small rank from noisy measurements. In this paper, we
approach both these problems using high-temperature expansions at fixed order
parameters. This allows to clarify how previous attempts at solving these problems
failed at finding an asymptotically exact solution. We provide a systematic way to
derive the corrections to these existing approximations, taking into account the
structure of correlations particular to the problem. Finally, we illustrate our approach
in detail on the case of extensive-rank matrix denoising. We compare our results with
known optimal rotationally-invariant estimators, and show how exact asymptotic
calculations of the minimal error can be performed using extensive-rank matrix
integrals.
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Neural Receptive field as Gaussian Process

Neural receptive field such as place fields exhibit interesting transition when
representing small to large space. I develop a framework of understanding neural
activity as a function of it’s input as a Gaussian Process and use related notions to
characterise the distribution of receptive fields and show that it is in good agreement
with empirical observations.
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The merged-staircase property: a necessary
and nearly sufficient condition for SGD

learning of sparse functions on two-layer
neural networks

It is currently known how to characterize functions that neural networks can learn with
SGD for two extremal parametrizations: neural networks in the linear regime, and
neural networks with no structural constraints. However, for the main parametrization
of interest —non-linear but regular networks— no tight characterization has yet been
achieved, despite significant developments. We take a step in this direction by
considering depth-2 neural networks trained by SGD in the mean-field regime. We
consider functions on binary inputs that depend on a latent low-dimensional subspace
(i.e., small number of coordinates). This regime is of interest since it is poorly
understood how neural networks routinely tackle high-dimensional datasets and
adapt to latent low-dimensional structure without suffering from the curse of
dimensionality. Accordingly, we study SGD-learnability with O(d) sample complexity in
a large ambient dimension d. Our main results characterize a hierarchical property —
the merged-staircase property— that is both necessary and nearly sufficient for
learning in this setting. We further show that non-linear training is necessary: for this
class of functions, linear methods on any feature map (e.g., the NTK) are not capable
of learning efficiently. The key tools are a new “dimension-free” dynamics
approximation result that applies to functions defined on a latent space of low-
dimension, a proof of global convergence based on polynomial identity testing, and
an improvement of lower bounds against linear methods for non-almost orthogonal
functions.
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Consensus from group interactions: An
adaptive voter model on hypergraphs

We study the effect of group interactions on the emergence of consensus in a spin
system. Agents with discrete opinions {0,1} form groups. They can change their
opinion based on their group's influence (voter dynamics), but groups can also split
and merge (adaptation). In a hypergraph, these groups are represented by
hyperedges of different sizes. The heterogeneity of group sizes is controlled by a
parameter β. To study the impact of β on reaching consensus, we provide extensive
computer simulations and compare them with an analytic approach for the dynamics
of the average magnetization. We find that group interactions amplify small initial
opinion biases, accelerate the formation of consensus and lead to a drift of the
average magnetization. The conservation of the initial magnetization, known for basic
voter models, is no longer obtained.
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How learning features can lead to over-
fitting in neural nets

Understanding why neural networks can learn data in high dimensions remains a
challenge. It has been proposed that they do so by adapting to features in the data
that are relevant for the task, effectively reducing the input dimension and making the
problem tractable. Indeed, in fully-connected networks, learning features is beneficial
when the task is insensitive to linear directions in input space and this setting is
theoretically well understood. However, when looking at real data (image
classification), it is empirically found that learning features is beneficial for modern
convolutional architectures, but not for simple fully-connected ones. How to rationalize
the drawbacks of feature learning? In our work, we argue that the lazy regime (in
which features are not learned) can be advantageous if the target function is smooth
enough along certain input-space directions. We prove it on a class of target functions
where we show that the asymptotic decay of the generalization error with the number
of training points is faster in the lazy regime, when compared to feature-learning. We
give empirical evidence that this same phenomenon takes place in the context of
image classification by studying the deformation stability of the predictor in both lazy
and feature regimes. We conclude by arguing that the benefits of adaptivity in the
feature regime may be counterbalanced by the drawbacks of over-fitting, depending
on the data symmetries and architecture choice.
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The dynamics of representation learning in
shallow, non-linear autoencoders

Autoencoders are the simplest neural network for unsupervised learning, and thus an
ideal framework for studying feature learning. While a detailed understanding of the
dynamics of linear autoencoders has recently been obtained, the study of non-linear
autoencoders has been hindered by the technical diculty of handling training data with
non-trivial correlations – a fundamental prerequisite for feature extraction. Here, we
study the dynamics of feature learning in non-linear, shallow autoencoders. We derive
a set of asymptotically exact equations that describe the generalisation dynamics of
autoencoders trained with stochastic gradient descent (SGD) in the limit of high-
dimensional inputs. These equations reveal that autoencoders learn the leading
principal components of their inputs sequentially. An analysis of the long-time
dynamics explains the failure of sigmoidal autoencoders to learn with tied weights,
and highlights the importance of training the bias in ReLU autoencoders. Building on
previous results for linear networks, we analyse a modification of the vanilla SGD
algorithm which allows learning of the exact principal components. Finally, we show
that our equations accurately describe the generalisation dynamics of non-linear
autoencoders on realistic datasets such as CIFAR10.
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On the Role of Channel Capacity in Learning Gaussian
Mixture Models
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Abstract

This paper studies the sample complexity of learning the k unknown centers of a bal-
anced Gaussian mixture model (GMM) in Rd with spherical covariance matrix σ2I. In
particular, we are interested in the following question: what is the maximal noise level σ2,
for which the sample complexity is essentially the same as when estimating the centers from
labeled measurements? To that end, we restrict attention to a Bayesian formulation of the
problem, where the centers are uniformly distributed on the sphere

√
dSd−1. Our main

results characterize the exact noise threshold σ2 below which the GMM learning problem,
in the large system limit d, k → ∞, is as easy as learning from labeled observations, and
above which it is substantially harder. The threshold occurs at log k

d = 1
2 log

(
1 + 1

σ2

)
, which

is the capacity of the additive white Gaussian noise (AWGN) channel. Thinking of the set
of k centers as a code, this noise threshold can be interpreted as the largest noise level for
which the error probability of the code over the AWGN channel is small. Previous works on
the GMM learning problem have identified the minimum distance between the centers as a
key parameter in determining the statistical difficulty of learning the corresponding GMM.
While our results are only proved for GMMs whose centers are uniformly distributed over
the sphere, they hint that perhaps it is the decoding error probability associated with the
center constellation as a channel code that determines the statistical difficulty of learning
the corresponding GMM, rather than just the minimum distance.

∗elad.romanov@gmail.com
†bendory@tauex.tau.ac.il
‡or.ordentlich@mail.huji.ac.il
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Inducing bias is simpler than you think

Machine learning systems are nowadays involved in almost every aspect of our life,
given their flexibility and the abundance of available training data. However,
increasing evidence shows that blind applications of these tools might incur in
negative societal impact. Cultural biases against marginalised communities are often
reflected in the very data used at training, and may be perpetuated or even enlarged
by the learned models. The harmful effect is often disproportional and impacts some
communities more severely compared to the rest. This paper proposes a high-
dimensional theoretical model of imbalance, amenable of analytic treatment through
the tools of statistical physics. The parametric control over the structural properties of
the data allow an in depth study of the multiple bias-inducing factors at play. By
extensively exploring different learning settings and parameters regions, we identify
the regimes in which the data imbalances may severely impact the under-represented
communities. On the other hand, we also trace a positive transfer effect between
different communities, especially in the low sampling regime. This suggests that
mixing data with different statistical properties is not necessarily harmful if the model
is made aware of them. Finally, we discuss the issue of defining appropriate bias
mitigation techniques, showing how the standard fairness assessment metrics often
make incompatible requirements on the learned models. We also propose an
interpretable and robust mitigation strategy, based on the introduction of coupled
learning models that specialise on the different communities represented in the data.
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Figure: Partition observed by Zachary (U, upper left) and the three most (and equally) probable states (S1, S2 and S3), after

fixing node A and H to be in different groups. Nodes 3 and 10 (with filled color in S1, S2 and S3) may be associated with A or

H depending on the state S.
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Maslow's Hammer for Catastrophic
Forgetting: Node Re-Use vs Node Activation

Continual learning - learning new tasks in sequence while maintaining performance
on old tasks - remains particularly challenging for artificial neural networks.
Surprisingly, the amount of forgetting does not increase with the dissimilarity between
the learned tasks, but appears to be worst in an intermediate similarity regime. In this
paper we theoretically analyse both a synthetic teacher-student framework and a real
data setup to provide an explanation of this phenomenon that we name Maslow's
hammer hypothesis. Our analysis reveals the presence of a trade-off between node
activation and node re-use that results in worst forgetting in the intermediate regime.
Using this understanding we reinterpret popular algorithmic interventions for
catastrophic interference in terms of this trade-off, and identify the regimes in which
they are most effective.
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May subjective sensory experiences be the
result of a neural reservoir?

Subjective sensory experience, such as the tactile or auditory perception of a
presented stimulus, is known to be history dependent. In particular contraction bias,
i.e. the attraction of the perception towards the center of the distribution of the stimuli
observed in the past, discovered over a century ago through behavioral experiments,
is currently being studied also from a neurophysiological point of view. Reservoir
neural networks, as LSM/ESN, which one can think as the recurrent neural circuits
from which experimenters record from, offer a putative computational mechanisms
which could underlay the shading memory phenomena observed in the experiments.
In this poster we present a working hypothesis over the possibility of using reservoir
neural networks to model sensory perception.
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High-dimensional optimization under
nonconvex excluded volume constraints

We consider high-dimensional random optimization problems where the dynamical
variables are subjected to nonconvex excluded volume constraints. We focus on the
case in which the cost function is a simple quadratic cost and the excluded volume
constraints are modeled by a perceptron constraint satisfaction problem. We show
that depending on the density of constraints, one can have different situations. If the
number of constraints is small, one typically has a phase where the ground state of
the cost function is unique and sits on the boundary of the island of configurations
allowed by the constraints. In this case, there is a hypostatic number of marginally
satisfied constraints. If the number of constraints is increased one enters a glassy
phase where the cost function has many local minima sitting again on the boundary of
the regions of allowed configurations. At the phase transition point, the total number
of marginally satisfied constraints becomes equal to the number of degrees of
freedom in the problem and therefore we say that these minima are isostatic. We
conjecture that by increasing further the constraints the system stays isostatic up to
the point where the volume of available phase space shrinks to zero. We derive our
results using the replica method and we also analyze a dynamical algorithm, the
Karush-Kuhn-Tucker algorithm, through dynamical mean-field theory and we show
how to recover the results of the replica approach in the replica symmetric phase (see
Sclocchi and Urbani 2022).
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Phase diagram of Stochastic Gradient
Descent in high-dimensional two-layer

neural networks

Despite the non-convex optimization landscape, over-parametrized shallow networks
are able to achieve global convergence under gradient descent. The picture can be
radically different for narrow networks, which tend to get stuck in badly-generalizing
local minima. Here we investigate the cross-over between these two regimes in the
high-dimensional setting, and in particular investigate the connection between the so-
called mean-field/hydrodynamic regime and the seminal approach of Saad & Solla.
Focusing on the case of Gaussian data, we study the interplay between the learning
rate, the time scale, and the number of hidden units in the high-dimensional dynamics
of stochastic gradient descent (SGD). Our work builds on a deterministic description
of SGD in high-dimensions from statistical physics, which we extend and for which we
provide rigorous convergence rates.
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Data-driven separation of two-layer neural
networks and random features

We compare shallow (two-layer) neural networks and random features
approximations of kernel-ridge regression on tasks that rely on the information
contained in the higher-order statistics of the inputs. We design synthetic models of
data where we control the relative importance of higher-order cumulants and study in
which settings end-to-end trained networks achieve better performance than random
features. We further study the features of data that neural networks and kernels fit.
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Sharp Asymptotics of Self-training with
Linear Classifier

Self-training (ST) is a straightforward and standard approach in semi-supervised
learning, successfully applied to many machine learning problems. ST uses the model
itself to give predictions on unlabeled data and then refines the model by fitting to
these labels using supervised learning methods. This refinement step is iterated
several times. The performance of ST strongly depends on the supervised learning
method used in the refinement step and the nature of the given data; hence a general
performance guarantee from a concise theory may become loose in a concrete
setup. However, the theoretical methods that sharply predict how the performance of
ST depends on various details for each learning scenario are scarce. This paper
develops a novel theoretical framework for sharply characterizing the generalization
abilities of the models trained by ST using the non-rigorous replica method of
statistical physics. In particular, we consider the ST of the linear model that minimizes
the ridge-regularized cross-entropy loss when the data is generated from a two-
component Gaussian mixture. Consequently, we show that the generalization
performance of ST in each iteration is sharply characterized by a small finite number
of variables, which satisfy a set of deterministic self-consistent equations. Numerically
solving these self-consistent equations, we find that ST's generalization performance
approaches the supervised learning method with a simple regularization schedule
when the label bias is small, and a moderately large number of iterations are used.
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Image-Based Algorithm for Vehicle Class
Prediction in the University Of Ibadan,

Nigeria

This study employed image based features to study the patterns in the vehicles that
access the premises of the University of Ibadan, as well as to recognize them. Image
processing techniques, such as the Red-Green-Blue scale to grayscale conversion
and the Histogram Equalization were used to remove color differences and to
improve the quality of the images respectively. The two-dimensional discrete wavelet
decomposition technique was used to extract features (sub-bands) up to the third
level of decomposition. The Multivariate Adaptive Regression Splines (MARS) was
used for the predictive recognition. The algorithm recognized two optimal clusters in
the vehicles. The algorithm was also able to recognize about 85 percent and 94
percent of cars in entry and exit. It also did fairly well in recognizing SUVs and Space-
Buses, but very poorly on other classes of vehicles. However, being more specific
about the identity of the vehicles, increasing the features and increasing the sample
size will increase the recognizing ability of the algorithm.
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High-dimensional Asymptotics of Feature Learning:
How One Gradient Step Improves the Representation
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We consider the following fully-connected two-layer neural network (NN) with N neurons,

fNN(x) =
1p
N

NX

i=1

ai�(hx,wii) =
1p
N

a>�(W>x),

where x 2 Rd,W 2 Rd⇥N ,a 2 RN , � is a nonlinearity applied entry-wise, and the training objective is to
minimize the empirical risk computed on n training points. Our analysis will be made in the proportional
asymptotic limit, i.e., the number of training data n, the input dimensionality d, and the number of features
(neurons)N jointly tend to infinity. In this regime, the performance of random features (RF) kernel regression
(where W is randomly initialized and only a is learned) has been precisely characterized [LLC18, MM19].

While these asymptotic analyses reveal interesting phenomena also present in practical deep learning,
RF and kernel models do not fully explain the empirical success of neural networks: one crucial advantage of
deep learning is the ability to learn useful features that “adapt” to the learning problem [Suz18, GMMM19].
In our setting this adaptivity arises from the learning of first-layer weights W , which can make a di↵erence
even in the “early phase” of gradient descent training. Our goal is to rigorously characterize the presence of
feature learning in the proportional limit, and demonstrate its improvement over the initial (fixed) kernel.

Our Results. We investigate arguably the most simplified scenario of feature learning: how the first
gradient step on the first-layer parameters W impacts the representation of the two-layer NN. Specifically,
we consider the regression setting with the MSE loss, and a student-teacher model in the proportional
asymptotic limit; we precisely characterize the prediction risk of the kernel ridge regression estimator on top
of the first-layer CK feature x ! �(W>x), before and after the gradient step with learning rate ⌘.

Figure 1: Prediction risk of ridge regres-
sion on trained features (erf) after one gra-
dient step. Dots represent empirical simu-
lations and solid lines are predicted asymp-
totic values; red line indicates ⇥(d/n) rate.

When the target function (teacher) f⇤ is a single-index model,
it is known that the prediction risk of a large class of RF/kernel
ridge regression estimators is lower-bounded by the L2-norm of
the “nonlinear” component the teacher kP>1f⇤k2L2 , i.e., they can
only learn linear functions on the input [BMR21]. After taking
one gradient step on W , we compute the CK ridge estimator using
separate training data, and compare its prediction risk against this
linear lower bound. Our analysis will be made under the following
two choices of learning rate scaling (see Figure 1):

• Small lr: ⌘ = ⇥(1). We extend the Gaussian Equivalence The-
orem (GET) in [HL20] to the feature map trained via multiple
gradient descent steps on W ; this allows us to precisely charac-
terize the prediction risk using random matrix theoretical tools.
We prove that after one gradient step, the ridge regression es-
timator on the learned CK features already exhibits nontrivial
improvement over the initial RF ridge model, but it remains in
the “linear regime” and cannot outperform the best linear estimator on the input.

• Large lr: ⌘ = ⇥(
p
N). As for larger learning rate that coincides with the maximal update parameteriza-

tion in [YH20], we prove that for certain target functions f⇤, the kernel ridge regression estimator after one
feature learning step can achieve lower risk than the linear lower bound kP>1f⇤k2L2 , and thus outperform
a wide range of RF and kernel models.
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A random energy approach to deep learning

We study a generic ensemble of Deep Belief Networks which is parametrized by the
distribution of energy levels of the hidden states of each layer. We show that, within a
random energy approach, statistical dependence can propagate from the visible to
deep layers only if each layer is tuned close to the critical point during learning. As a
consequence, efficiently trained learning machines are characterised by a broad
distribution of energy levels. The analysis of Deep Belief Networks and Restricted
Boltzmann Machines on different datasets confirms these conclusions.
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Non-backtracking spectral clustering in
sparse hypergraphs

The stochastic block model has been one of the most fruitful research topics in
community detection and clustering. Recently, community detection on hypergraphs
has become an important topic in higher-order network analysis. We consider the
detection problem in a sparse random tensor model called the hypergraph stochastic
block model (HSBM). We prove that a spectral method based on the non-
backtracking operator for hypergraphs works with high probability down to the
generalized Kesten-Stigum detection threshold conjectured by Angelini et al (2015).
We characterize the spectrum of the non-backtracking operator for the sparse
random hypergraph and provide an efficient dimension reduction procedure using the
Ihara-Bass formula for hypergraphs. As a result, the community detection problem
can be reduced to an eigenvector problem of a non-normal matrix constructed from
the adjacency matrix and the degree matrix of the hypergraph. Based on joint work
with Ludovic Stephan (EPFL).
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