

Large-Scale Structure 1. Expanding Universe and Standard Model of Cosmology

Dark Matter 23%

Aseem Paranjape

ICTP Summer School on Cosmology, July 2022

- J. V. Narlikar, Introduction to Cosmology
- J. A. Peacock, *Cosmological Physics*
- S. Weinberg, *Cosmology*
- P. J. E. Peebles, *Principles of Physical Cosmology*
- P. J. E. Peebles, Large Scale Structure of the Universe
- T. Padmanabhan, Structure Formation in the Universe
- E. Kolb & M. Turner, Early Universe
- **S. Dodelson,** *Modern Cosmology*
- A. Liddle & D. Lyth, Cosmological Inflation & Large Scale Structure
- R. Durrer, Cosmic Microwave Background
- J. Lesgourgues, Neutrino Cosmology
- H. Mo, F. van den Bosch & S. White, Galaxy Formation & Evolution

Literature

A.U. -----

Light year Parsec (pc)

 $1 \text{ AU} = 1.5 \text{ x} 10^8 \text{ km}$

1 ly $\approx 10^{13}$ km 1 pc \approx 3.25 ly

(Images: Wikimedia Commons / NASA)

Distances in the Universe

 $1 \text{ kpc} = 10^{3} \text{ pc}$

 $1 \text{ Mpc} = 10^{3} \text{ kpc}$

10 Мрс

The low-redshift (``nearby") Universe

(Image: Colless+01)

Cosmic Microwave Background

Uniform-temperature radiation bath...

$T = 2.725 \,\mathrm{K}$

Cosmic Microwave Background

... with imprints of local motion...

Cosmic Microwave Background

... and tiny primordial anisotropies

$\Delta T/T \approx 10^{-5}$

How did this come to be?...

Hot Big-Bang Cosmology

Relativistic Cosmology

Isotropy + homogeneity \Rightarrow

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2} \right) \right]$$

Fundamental observers see homogeneous and isotropic ("maximally symmetric") 3-d spatial slices.

 $(r,\theta,\phi) \rightarrow$ coordinates 'comoving' with fundamental observers $k \rightarrow$ constant curvature of maximally symmetric slice

Corresponding matter/energy content must have "perfect fluid" form: $T_{\mu\nu} \rightarrow \text{diag}(-\rho, p, p, p)$ where $\rho = \rho(t) = \text{energy density and } p = p(t) = \text{pressure}$

Finally, apply $G_{\mu\nu} = 8\pi G T_{\mu\nu}$.

 $t \rightarrow$ time measured on synchronised clocks carried by fundamental observers

 $a(t) \rightarrow$ scale factor connecting lengths on different slices (i.e. at different times)

Distance, time and shift of wavelength

Distance

Cosmological distance

Expansion increases observed wavelength λ : **Redshift** "z"

 $z \equiv \Delta \lambda / \lambda = 1/a - 1$ ($\approx v/c$ at low z)

Smooth Expanding Universe

$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}\left(\bar{\rho} + 3\bar{p}\right)$$

$$ar{p}_{\mathrm{DE}}$$
; $ar{p} \equiv \sum_{i} ar{p}_{i}$
 $\frac{1}{H^{2}}$ $\sum_{i} \Omega_{i} = 1$

Edwin Hubble

Alexander Friedmann

Georges Lemaître

Foundations of modern cosmology laid *during* ~ 1919 - 1930

Smooth Expanding Universe

Evolution of ``energy densities":

- $\bar{\rho}_{matter} \propto a^{-3}$ (think mass conservation) [matter dominated $a(t) \propto t^{2/3}$]
- $\bar{\rho}_{radiation} \propto a^{-4}$ (think number conservation + momentum redshift) [radiation dominated $a(t) \propto t^{1/2}$]
- curvature $\propto a^{-2}$ [curvature dominated $a(t) \propto t$ (for k < 0)]
- $\bar{\rho}_{\text{DE}} = \text{constant} (\alpha \Lambda)$ in standard model, evolving in alternate cosmologies [Λ dominated $a(t) \propto e^{Ht}$]

<u>Closed/open/flat models:</u>

Assume $\Omega_{R} = 0 = \Omega_{DE} \implies \Omega_{m} + \Omega_{k} = 1$

- $\Omega_{\rm m} > 1$, $\Omega_{\rm k} < 0$: universe expands, turns around, collapses (closed)
- $\Omega_{\rm m} < 1, \, \Omega_{\rm k} > 0$: universe always expands (open)
- $\Omega_{\rm m} = 1$, $\Omega_{\rm k} = 0$: turn-around after infinite time (flat)

Distances in Cosmology

- Expansion means Euclidean notions need to be revised.
- Simplest way is to use Euclidean-like definitions and work through the maths that follows from $ds^2 = 0$ and photon-counting.

Define
$$\chi_{
m src}(z) \equiv \int_{t_{
m src}(z)}^{t_0} \frac{c \, \mathrm{d}t}{a(t)} = \int_0^z \frac{c \, \mathrm{d}z'}{H(z')}$$

Then "comoving distance to source" is $r_{
m src}(z) = \frac{1}{\sqrt{|k|}} s_k(\sqrt{|k|} \, \chi_{
m src}(z))$
where $k = -\Omega_{k0} H_0^2/c^2$ and $s_k(x) = \begin{cases} \sin(x), & k > 0 \\ x, & k = 0 \\ \sinh(x), & k < 0 \end{cases}$

and we have

Luminosity distance

$$d_{\rm L}(z) \equiv \sqrt{\frac{\mathcal{L}}{4\pi \mathcal{F}}} \quad \text{intrinsic luminosity}} \\ = (1+z) r_{\rm src}(z)$$

Angular diameter distance

intrinsic physical size $d_{\rm A}(z) \equiv \frac{1}{\Delta \theta} \longrightarrow \text{observed angular size}$ $= (1+z)^{-1} r_{\rm src}(z)$

Distances in Cosmology

• Hubble's law:

At $z \ll 1$, all distances reduce to Hubble's law

where $H_0 \equiv H(t = t_0)$.

• Cosmography:

Beyond linear order in *z*, we have

$$\chi_{\rm src} = \frac{c}{H_0} \left[z - \frac{z^2}{2} \left(1 + q_0 \right) + \mathcal{O}(z^3) \right]$$

where $q(t) \equiv -a \ddot{a}/\dot{a}^2$ and $q_0 \equiv q(t = t_0)$ (deceleration parameter).

 $\chi_{\rm src} = c \, z / H_0$

Standard Model of Cosmology

Matter (cold, dark) Ω_c

Garnish with radiation Ω_r

Energy (dark, constant) Ω_{Λ}

Neutrinos to taste Ω_{V}

Standard Model of Cosmology

- Radiation
- Baryons
- Cold Dark Matter
- Cosmological constant
- Spatial Curvature ≈ 0

 $E(z)^{2} \equiv H(z)^{2}/H_{0}^{2} = \Omega_{\rm R0}(1 + t)^{2}$

 $H_0 = 100h \,\mathrm{km} \,\mathrm{s}^{-1} \mathrm{Mpc}^{-1} \text{ [recall } H \equiv \mathrm{d} \ln a / \mathrm{dt} \text{ and } H_0 = H(t = t_0)\text{]}$ $h \approx 0.7 \text{ [depending on probe]}$

$$(z)^{4} + \Omega_{m0}(1+z)^{3} + \Omega_{\Lambda 0} + \Omega_{k0}(1+z)^{2}$$
$$[\Omega_{m0} = \Omega_{b0} + \Omega_{cdm0}]$$

Thermal history & Photon-baryon plasma

Adapted from Dodelson, Modern Cosmology.

- Expanding universe cools. [photon distribution: black body with $T \propto a^{-1} \sim always$]
- Interactions between species remain in equilibrium until $\Gamma \gtrsim H$ after which reaction decouples.
- Species in equilibrium can also ``disappear" due to annihilations upon becoming non-relativistic. [can make photon T depart from a⁻¹ due to entropy transfer]
- Photon-baryon fluid supports sound waves.
- These propagate until $t \sim 400,000$ yrs.
- Then, neutral hydrogen forms ($\Gamma \sim n_e \sigma_T v < H$), freeing photons (*recombination / photon decoupling*).
- Baryons captured by local potential wells.
- Freed photons free-stream to us [maintaining black-body spectrum with $T \propto a^{-1}$] forming the Cosmic Microwave Background.
- Baryons eventually form galaxies, with remnants of acoustic correlations imprinted in number density (Baryon Acoustic Oscillations).

$\rho_{\gamma} = (4\sigma/c)T^4$ where σ = Stefan-Boltzmann constant CMB temperature today measured to be [Fixsen 2009] $T_0 = 2.72548 \pm 0.00057 \text{ K}$

Radiation

So
$$\rho_{\gamma 0} = (4\sigma/c)T_0^4$$

= (4.175 ± 0.004) × 10⁻¹³ erg cm⁻³

and $\rho_{\rm crit0} = 1.688 \times 10^{-8} h^2 {\rm erg \ cm^{-3}}$ $\therefore \Omega_{\gamma 0} h^2 = (2.473 \pm 0.002) \times 10^{-5}$

Including 3 relativistic neutrinos gives $\Omega_{\rm R0} h^2 = (4.158 \pm 0.003) \times 10^{-5}$

[Plot by Wayne Hu]

Burles, Nollett, Turner (1999)

Baryons

Constraint from BBN (95% C.L.) $\rho_{\rm b0} = (3.76 \pm 0.38) \times 10^{-31} \text{ g cm}^{-31}$

 $\Omega_{\rm b0} h^2 = 0.020 \pm 0.002$

Constraint from CMB anisotropies (Planck-2018, 95% C.L.)

 $\Omega_{\rm b0}h^2 = 0.0223 \pm 0.0003$

Cold Dark Matter

Non-baryonic component. Non-relativistic for most of cosmic history. Dominant interaction with ordinary matter and radiation is through gravity (else CMB anisotropies couldn't produce today's LSS).

Virial theorem [Zwicky 1933;1937]

Spitzer

 $\langle V^2 \rangle = GM/R_{\rm vir}$ $\langle V^2 \rangle \rightarrow$ redshifts; $R_{vir} \rightarrow$ size $M_{\rm vir} \sim 10 M_{\rm gas} \sim 50 M_{\rm stars}$ \rightarrow Missing mass

Galaxy rotation curves [Rubin+ 1978;1980]

[Begeman+ 1989] Expect $V \alpha R^{-1/2}$ far from disk. Need extra $\rho \alpha R^{-2}$ to fit data.

Consistent with latest CMB determination $\Omega_{\rm m0} = 0.316 \pm 0.009$

Cosmological Constant Λ

First introduced (and discarded) by Einstein, followed by a tortured history of epicycles.

Spatial Curvature

Presence of curvature changes distances (recall expressions for $d_A(z)$ and $d_L(z)$ in terms of $S_k[\chi(z)]$).

Longest lever arm provided by angular diameter distance to last scattering surface, best accessible via 1st peak of CMB power spectrum.

Expansion History

Some human history...

Models for the evolving Universe

The cosmological constant A

1917

Matter without motion

Albert Einstein

Motion without matter

Willem deSitter

Models for the evolving Universe

Dynamical universes with matter

1924

Alexander Friedmann

- 1922 Published ``closed universe" model, with and without Λ . Einstein claimed Friedmann's algebra was wrong, but later retracted (1923).
 - Published ``open universe" model. Same year as Hubble's observations of Cepheids. Died 1925, aged 37.

Models for the evolving Universe

Dynamical universes with matter

1924 - 1936

Lemaître's theoretical contributions

- In 1927 paper, constructed a solution of Friedmann's equation with nonzero Λ . Derived the linear distance-redshift relation. Explained observed redshifts in terms of an expanding Universe rather than as Doppler shifts.
- 1931: Constructed yet another solution, the coasting universe, with Λ tuned to give a long, nearly static phase, hence solving the age problem.
- Extrapolated this solution to early times, suggested notion of a beginning: seed of Big Bang cosmology. His views remained unfashionable well into the 1950's.
- 1934: Suggested notion of Λ as arising from vacuum fluctuations. Later rigorously calculated by Zel'dovich (1968) in QFT framework (but very sensitive to high-energy cutoff).

Georges Lemaître