INFLATION & REHEATING

-> INFLATION

(MOTIVATIONS, SIMPLEST REALIZATION, PRIMORDIAL PERTURBATIONS)

-> PRODUCTION DURING REHEATING

(WHILE THE INFLATON IS DECAYING)

—> PRODUCTION DURING INFLATION

(SIGNATURES IN CMB & IN GRAVITATIONAL

WAVES)

· EXPANSION IN STANDARD COSMOLOGY

DISTANCES ~ a(t) SCALE FACTOR

H= \(\frac{\alpha}{a}\) HUBBLE RATE

UNIVERSE DOMWATED BY

E

RADIATION

$$a = \frac{1}{2k}$$

MATTER
$$\alpha \propto t^{2/3}$$
, $H = \frac{2}{3t}$

· HORIZION PROBLEM

REGION IN CAUSAL CONNECTION

$$d_{H} \sim ct \sim \frac{1}{H}$$
 (C=1)

HORIZON GROWS FASTER

THAN SCALE FACTOR

SIZE HORIZON IN THE PAST UNIVERSE WE SEE TODAY = HORIZON TODAY THE SKY WE SEE TODAY IS COMPOSED OF MANY RECIONS
THAT WERE CAUSALLY DISCONNECTED IN THE PAST

EXAMPLE: CMB EMITTED WHEN a ~ 10-3 a.

SUFFIX O MEANS TODAY

PROBLEM BECAUSE du INCREASES

$$\frac{d_H}{a} \sim \frac{t}{a} \sim \frac{1}{aH} = \frac{1}{a} = \frac{1}{a} \sim DECREASES$$

PROBLEM BECAUSE 0<0 IN A MATTER + RADIATION UNIVERSE

· FLATNESS PROBLEM

EVOLUTION OF SCALE FACTOR GOVERNED BY

$$\frac{\dot{\alpha}^2}{\alpha^2} = -\frac{k}{\alpha^2} + \frac{1}{3H_{\rho}^2} \left(\frac{e_M^{(0)}}{\alpha^3} + \frac{e_R^{(0)}}{\alpha^4} \right)$$

AS UNIVERSE EXPANDS, CURVATURE TERM BECOMES DOMINANT.

THIS TERM IS < 0.5% TODAY > MUST HAVE BEEN < 10 18

WHEN UNIVERSE ~ 15 DLD

PROBLEM BECAUSE CSTANDARD - QP WITH P>2

$$\Rightarrow a^2 = a^2 \left(\frac{a^2}{a^2}\right) \prec a^{2-p} DECREASES = DECELERATION$$

ACAIN, PROBLEM BECAUSE MATTER & RADIATION LEAD TO DECELERATED EXPANSION

· INFLATION

PROBLEMS SOLVED IF UNIVERSE UNDERWENT A PHASE OF ACCELERATED EXPANSION, & >0. THIS MUST HAVE HAPPENED BEFORE BIG-BANG-NUCLEOSYNTHESIS (BBN), t < 15.

GUTH, 1981

* DURING INFLATION, A SINGLE CAUSALLY CONNECTED

REGION GROWS SO MUCH AS TO COVER ALL THE SHY WE

SEE TODAY. THE SOURCE OF WELATION DOMINATES OVER

CURVATURE TERM (P<-2) AND THEN DECAYS INTO →MATTER

& PADIATION

WE CALL THIS SOURCE "INFLATON FIELD"

SIMPLEST ACCELERATION FROM VACUUM ENERGY

$$H^2 = \frac{\dot{\alpha}^2}{\Omega^2} - \ell$$
 AND $\ell = \cos t$. $\rightarrow \alpha = e^{Ht}$

PBM: IF CICVACUUM, INFLATION WILL NOT END

· SLOW ROLL INFLATION

LINDE 1982 ALBRECHT, STEINHARDT 1982

- PORTION ON A FLAT
 PORTION OF V => BEHAVES =>
 VACUUM ENERGY
- NFLATION ENDS WHEN

 \$\phi REACHES NON-FLAT PART

 THEN, OSCILLATIONS ABOUT

 MINIMUM AND DECAY

SLOW ROLL PARAMETERS

$$\mathcal{E} = \frac{M_{\rho}^2}{2} \left(\frac{V^{\dagger}}{V} \right)^2 << 1$$
 THE POTENTIAL NEEDS TO BE FLAT

$$\eta = \frac{M_{\rm p}^2}{2} \frac{V''}{V} << 1$$
 FLAT FOR LARGE SPAN OF ϕ

BYPRODUCT: MECHANISM FOR PRIMORDIAL PERTURBATIONS

$$\frac{\delta \ell}{e} \cong S$$
 (scalar) DENSITY PERTURBATIONS h_+, h_X (TENSOR) GRAVITATIONAL WAVES

CONSIDER A PERTURBATION ON OUR SHY AND TRACE
IT BACK DURING INFLATION

"HUBBLE HORIZON dH = H - const. WAVELENGTH XX a = eHt

SUB W

QUANTEM EVOLUTION AS IN

TINKOWSHI. NEGLIGIBLE EFFECT

FROM GEOMETRY

2 HORIZON CROSSING

THIS IS WHEN THE MODE IS
IMPRINTED. PERTURBATION PROBES
CONDITION OF THE UNIVERSE AT
THIS MOMENT

SUPER-HORIZON

MODE SEEN AS CONSTANT IN

EACH HORIZON PATCH. FROZEN

(NO EVOLUTION IN TIME) DUE TO CAUSALITY

MODES OF GREATER WAVELENGTH (1271) CROSS
THE HORIZON EARLIER. THEY PROBE EARLIER TIMES OF
INFLATION.

DEPARTURE FROM SS (CONSTANT V)

FROM E =
$$\frac{M\rho^2}{2} \left(\frac{V^1}{V} \right)^2$$
, $\eta = M\rho^2 \frac{V''}{V}$

· 3 IMPORTANT PROPERTIES OF PRIMORDIAL PERTURBATIONS

1) NEAR SCALE INVARIANCE

MODES OF # SIZE HAVE NEARLY THE SAME POWER

$$P_s \sim \lambda^{1-n_s}$$
 $1-n_s \simeq 6\varepsilon - 2\eta$

MODES OF \$ 512E LEAVE THE
HORIZON AT \$ TIMES, WHEN \$
HAS MOVED DO A \$ LOCATION IN V

BUT, FOR SLOW ROLL, V(\$) HAS CHANGED VERY LITTLE, SO NEARLY SAME POWER AT ALL SCALES

2) GW ZZ DENSITY PERTURBATIONS

$$r = \frac{P_{GW}}{P_{g}} = 16 \varepsilon << 1$$

INFLATON IS A CLOCK,

MEASURING THE TIME TO

THE END OF INFLATION

SMALLER / GREATER

ENERGY DENSITY

E

EARLY / LATE CLOCK

SCALAR PERTURBATIONS = SY = PERTURBATIONS OF THE CLOCK

$$S \sim \frac{\delta \rho}{e} \propto \frac{\delta \phi}{\dot{\phi}}$$

BACKGROUND

CLOCK

THE SLOWER THE

BACKGROUND CLOCK

(= SMALL $\dot{\varphi}$ = SMALL ε)

THE GREATER THE EFFECT

OF $\delta \varphi$ ON Δ

$$\Rightarrow P_g \times \frac{1}{\varepsilon} \Rightarrow r = \frac{P_{GW}}{P_g} \times \varepsilon$$

SLIDE 1

SMALL DEVIATIONS FROM GAUSSIANITY, PARAMETRIZED

AS $S = S_g + f_{NL} * S_g^2$ AS TCONVOLUTION IN MOMENTUM SPACE

CAUSSIAN \neq FUNCTIONAL DEPENDENCES GIVE

 $|f_{NL}, e_{OCAL}| \lesssim 10$ (RECALL $|f_{NL}, e_{QUILATERAL}| \lesssim 100$

+ SHAPES

FREE FIELDS ARE GAUSSIAN

=) NON-GAUSSIANITY IS A MEASURE OF & INTERACTIONS

- · GRAVITATIONAL INTERACTIONS ARE WEAH
- SELF INTERACTIONS PROPORTIONAL TO DERIVATIVES
 OF THE POTENTIAL

$$V = V_0 + \frac{V^{11}}{2} \delta \varphi^2 + \frac{V^{111}}{6} \delta \varphi^3 + \frac{V^{(iv)}}{24} \delta \varphi^4 + \dots$$
SMALL DUE TO SLOW ROLL

LARGE NON-GAUSSIANITY POSSIBLE FROM INTERACTIONS
WITH OTHER FIELDS, AS WE WILL SEE LATER
IN THESE LECTURES.