
7/5/2022 ICTP

Detection of Pairwise Hotspots on the 
CMB through Deep Neural Network
Tae Kim  
tkim12@nd.edu 

Collaborators : Jeonghan Kim, Soubhik Kumar, Adam Martin,  
     Moritz Münchmeyer, Yuhsin Tsai 

Department of Physics, University of Notre Dame, USA

arXiv:2107.09061 and in prep

1

mailto:tkim12@nd.edu


• Cosmic inflation: seeds fluctuations in CMB and LSS


• Inflation being (almost) scale invariant


• Possible signals of non-Gaussianity (  3-pt functions)


• Probe heavy particle production during inflation (  )


•  Localized signals appear in position space


• Signature detection can be done in both position space and power 
spectrum 


• Machine learning can be used as a tool to capture the signal on CMB

≥

m ≫ Hinf

Introduction
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Schematics
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• Ultra-heavy particle (  ) is directly coupled to inflaton field (  )


• Effective mass, , is minimized as  during slow roll


• Kinetic energy of inflaton can be used to produce particles


• How to produce  ?

σ ϕ

Meff gϕ ≈ M

σ

Direct coupling to Inflaton
Toy Model
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V(ϕ, σ) = Vinf (ϕ) +
1
2 (M2

0 + (gϕ − M)2) σ2 with M ≫ M0

M2
eff



EOM of σ
Particle Production
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σ′￼′￼−
2
η

σ′￼ + (k2 +
M2

eff(η)
H2

*η2 ) σ = 0

u′￼′￼ + (k2 +
M2

eff(η)/H2
* − 2

η2 ) u ≡ u′￼′￼ + ω2(η) u = 0

u = σ/η

• Simple harmonic oscillator with time dependent frequency


• Compute violation of adiabaticity (  )


• Maximum at 

ω′￼/ω2

η ≈ η* (Meff ≈ M0)



Bogoliubov Transformation
Particle Production
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• Changes of potential  Old ground state  New ground state


• Detailed particle production can be expressed using Bogoliubov 
Transformation

→ ≠

η = − ∞ η = η*. 
. 
.



Profile of produced heavy particles
Primordial Curvature Perturbation
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• Produced heavy particles backreacts on spacetime


• Give rise to non-trivial one-point function


• Resulting curvature profile from the spot center

Sσ = ∫ dt −g00 Meff ⊃ ∫ dη ∂ηζ
Meff

H

Maldacena (1508.01082) 

Fialkov et. al. (0911.2100)

⟨ζk⟩ = − i∫
0

η*

dη ⟨0 |ζk(η0) ∂ηζk(η) |0⟩
Meff

H
+ c . c .

⟨ζ⟩ = [ g
2

log ( |η* |
r )] H

2π 2ϵMpl

Size of typical inflationary fluctuation 

~ 10−5

controls

visibility over the primordial fluctuation



Profile of produced heavy particles
Primordial Curvature Perturbation
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• Heavy particles come in pair


• Initial exponential profile gets modified from SW and ISW effects



Profile of produced heavy particles
Primordial Curvature Perturbation
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• Heavy particles come in pair


• Initial exponential profile gets modified from SW and ISW effects
Position Space search


Momentum Space search (P(k))



Detection Method
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• Human recognition based on features


• Need to adjust to be programmable


• Use  matrix “filter”n × n

Image recognition
Convolutional Neural Network (CNN)
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CNN utilizes “filters”

Convolution

• Classification problem


• Given the small patch of CMB background with/without Pairwise Hot spot


• The network is trained with simulated CMB maps using Healpix and CLASS



• the T enhancement depends linearly on  coupling, 


• Signal start to hide well enough

ϕ − σ g

Benchmark , g = 4η* = 160 Mpc

Sample Data
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bkgsig



• Network training was done one time at large coupling


• Use if trained network is useful for lower g values

Benchmark η* = 160 Mpc

Training Result
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• Production of heavy particles with inflaton-dependent mass generate 
pairwise spots on the CMB map 


• Can use “position space” studies to dig out the signal


• More to explore: 


• pairwise imprints in Large Scale Structure?


• CMB lensing, cosmic shear, etc? 

Conclusion
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Thank you
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Backup slides
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Number density estimate
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4th Convolutions (final conv)
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True Location

Background Signal



Other hot spot examples 
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• Projected on Last Scattering Surface


•  : Maximum angular span of a profile


•  : Maximum separation


•  : Maximum angular separation 


• Expected to have PHS with large overlap

θ* = 4π η*/η0

η* = 160 Mpc

θseparation = η*/η0 θseparation < θ*

New PHS profile (Need to discuss)

20

160 Mpc

LSS
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Radial Profile



• Depending on distance from LSS, profile changes


• Smaller radius + no apparent central peak

New PHS profile

22
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P L A N E T S

Observed Large Scale Magnetization
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C O S M I C  V O I D S

B>10 G−15

Images’ credits: NASA, SOFIA, Bonafede et al. 2018,  
Andrew Pontzen and Fabio Governato

[Taylor et al. 2011]

Magnetic Fields in Voids?
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EW 
QCD

PMFs: generation scenarios
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EW 
QCD

PMFs: generation scenarios

λ unbound

[Turner & Widrow 1988]

Inflationary

λ < Hubbleλ
Phase-transitional

[Hogan 1983]
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EW 
QCD

How do we study PMFs?

Resolution:  133 ckpc/h 
Box size:      67.7 cMpc/h 
No cooling and feedback 

Cosmological MHD
CDM cosmologyΛ

z =50in

ENZO Bryan et al 2014

Cosmological M
HD

z=50

λ unbound

[Turner & Widrow 1988]

Inflationary

λ < Hubbleλ
Phase-transitional

[Hogan 1983]
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Cosmological MHD: initial conditions

Phase-transitional:Inflationary:

i):
B = const
EB(k) = δ (k=0)

ii):
k−1

k−5/3

E (k)B

k

E (k)B

k

k4

k−5/3

iii):

iv):

H  0≠

H = 0
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Cosmological MHD: initial conditions

Phase-transitional:Inflationary:

i):
B = const
EB(k) = δ (k=0)

ii):
k−1

k−5/3

E (k)B

k

E (k)B

k

k4

k−5/3

iii):

iv):

H  0≠

H = 0

λB = 25.9 λB = 2.24  cMpc/hλB = 1.05>
The same total magnetic energy 
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Final picture

The magnetised cosmic web shows dependence on the initial topology of PMF

[Mtchedlidze et al. 2022]
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Final picture

[Mtchedlidze et al. 2022]
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Final picture

[Mtchedlidze et al. 2022]

Amplification in filamentary structures is more efficient for an initially large-scale fields
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Final picture

λB =
∫ ∞

0
dk k−1EB(k, t)

∫ ∞
0

dk EB(k, t)

Correlation length:
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Final picture

λB =
∫ ∞

0
dk k−1EB(k, t)

∫ ∞
0

dk EB(k, t)

Correlation length:

Smallest final correlation 
lengths from phase-
transitional models

3-4 cMpc/h

0.8-1 cMpc/h



IGM
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Faraday Rotation Measure (RM)

ϕ0
ϕλ

source

Galaxy

∝ ∫
L

0
neBldlRM

RM traces the LOS magnetic field strength

Δϕ = ϕλ − ϕ0 = RM λ2

Observed 
polarisation Initial 

polarisation
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Simulated RM

Due to RM being integrated quantity small-scale stochastic fields give rise to 
more incoherent structures in RM distribution
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Simulated RM



Largest and correlated signal from inflation-generated seed fields
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Simulated RM
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Wrapping up and conclusions

We studied the evolution of inflation- and 
phase-transition generated PMFs Topology dependent

Realistic initial conditions

• Large scale fields lead to larger 
magnetisation level in filamentary 
structures (inflation-generated PMFs)

• Small scale, stochastic fields can heat 
IGM more effectively  (phase-transition 
generated PMFs)

• RM analysis favours inflationary seeds 
also phase-transition seed fields cannot 
be excluded

Can future observations with SKA 
detect the signatures of PMFs on 
filamentary scales?
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Thanks for listening,  questions?

The projects are funded in part by Shota Rustaveli National Science 
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FR-18-1462), DAAD and Volkswagen foundation.
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Observations of magnetic fields in the universe

Max Planck Institute for Radio Astronomy

Micro-Gauss strength magnetic field over 10kpc coherence length scale is present in galaxies.

Origin of cosmological magnetic fields is still an unresolved problem.
2 / 10



Matter-Antimatter asymmetry

Particle Data Group (2019)

ηB ≡
nB − nB̄

nγ
' 6.1× 10−10

J. Cline (2006)

10,000,000,001

10,000,000,000
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Sakharov’s conditions Sakharov (1967)

Sakharov proposed three necessary conditions for creating the baryon asymmetry

Baryon number violation

Charge (C) and charge parity (CP) violation

Departure from thermal equilibrium

4 / 10



Broken symmetries in the presence of magnetic field Davidson, PLB (1996)

Davidson pointed out an interesting relation between the primordial magnetic field and
Sakharov’s conditions

There should be some out of thermal equilibrium dynamics because in equilibrium, the
photon distribution is thermal, and there are no particle currents to sustain a
”long-range” field

Since
−→
B is odd under C and CP, the presence of magnetic field will lead to CP violation.

Since the magnetic field is a vector quantity, it chooses a particular direction hence breaks
the isotropy (rotational invariance).

Presence of magnetic fields satisfy only two of Sakharov’s conditions

Davidson’s conditions are necessary but not sufficient. There is a key missing ingredient.

5 / 10



Missing ingredient: Helical magnetic fields

For helical magnetic fields both polarization modes propagate differently and leading to
non-zero Chern-Simons number density.

Baryon number density nB = nb − nb̄ = a(η)〈0|J0
A|0〉 = e2

4π2 a(η)nCS , where Chern Simon
number density is

nCS =
1

a4

∫ Λ

µ

dk

k

k4

2π2

(
|A+|2 − |A−|2

)
(1)

For non-helical fields |A+| = |A−| which implies nCS = 0.

For helical fields, nCS 6= 0 implies an imbalance between baryons and anti-baryons
−→ Baryon number violation

Hence the requirement of helical magnetic fields

to have non-zero nCS is missing in Davidson’s conditions.

6 / 10



The model

Non-minimal coupling to the Riemann tensor generates sufficient primordial helical
magnetic fields at all observable scales.

Necessary condition : Conformal invariance breaking + parity violation

S =

Einstein-Hilbert term︷ ︸︸ ︷
−
M2

P

2

∫
d4x
√
−g R +

Scalar field︷ ︸︸ ︷∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)

]
− 1

4

∫
d4x
√
−g FµνF

µν − 1

M2

∫
d4x
√
−g Rµν

αβFαβ F̃
µν︸ ︷︷ ︸

Conformal breaking

(2)

where M is the energy scale, which sets the scale for the breaking of conformal invariance.

Strength of the helical magnetic fields at two different scales:

B|50 MPc ∼ 10−18 G (z ∼ 20) ; B|1 MPc ∼ 10−14 G (z ∼ 1000)
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Baryon asymmetry parameter

Baryon asymmetry parameter

ηB =
nB
s
≈ 10−2

(
M

MP

)3( Λ

TRH

)3

(3)

Using the parametrization :
M = m × 1014GeV , TRH =
γ × 1012GeV . 0 200 400 600 800 1000

m

0

100

200

300

400

= 1014GeV 
n=1
n=5
n=10
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Conclusion

Since the curvature is large in the early Universe, the coupling term will introduce
non-trivial corrections to the electromagnetic action.

We have explicitly shown that Davidson’s conditions are necessary but not sufficient. The
key missing ingredient is the requirement of helical magnetic fields.

The BAU parameter predicted by our model is independent of any specific inflation model
and reheating dynamics; however, it depends on the scale at which inflation ends and
reheating temperature.
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Thank you
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Overview

Task: If Ultra-light Dark Matter (ULDM) has spin-2, it interacts with
Gravitational Waves Interferometers (GWIs) in a way that, owing to its
quasi-monochromaticity and persistence, closely resembles Continuous
GWs (CWs).



The Spin-2 model

In a FLRW background

M̈ij + 3HṀij − △Mij + m2Mij = 0

On the astrophysical scales (m ≫ H), the solution is

Mij =
√

2ρDM
m cos (mt + Υ)εij

where ρDM is the observed local DM energy density (ρDM = 0.3 GeV/cm3),
Υ is a random phase and the five polarisations of the spin-2 field are
encoded in the εij tensor, which has unit norm, zero trace and is symmetric.



The Spin-2 model

Mij =
√

2ρDM
m cos (mt + Υ)εij

▶ The solution assumes a single frequency 2πf = m and a coherent
polarisation structure ( λDM

dB ∼ 4kpc
(

10−3

V

) (
10−24eV

m

)
≫ L, where

L : physical size of the GWIs).
▶ The coherence of the oscillation frequency, guaranteed up to a

coherence time given by tcoh := 4π/mv2 ∼ 106yr
(

10−3

V

)2 (
10−24eV

m

)



GWIs

▶ GWs detections −→ product of cataclysmic transient events (e.g.
BBH merger), i.e. strong events (h ∼ 10−21).



GWIs

▶ GWs detections −→ product of cataclysmic transient events (e.g.
BBH merger), i.e. strong events (h ∼ 10−21).

▶ There are other events (e.g. rapidly spinning NS, ultra-compact
Galactic binaries, superradiance) −→ weak signal (h ∼ 10−25) but
coherent over a longer time =⇒ continuous GWs (CWs).



The signal

Spin-2 ULDM couples to standard matter as

Sint[g , Mij , Ψ] := − α

2MP

∫
d4x

√
−gMijT ij

Ψ

α: strength of the interaction.



The signal

Spin-2 ULDM couples to standard matter as

Sint[g , Mij , Ψ] := − α

2MP

∫
d4x

√
−gMijT ij

Ψ

α: strength of the interaction. The interaction can be absorbed into a
redefinition of the metric

g̃ij → gij + αMij
MP

=⇒ the effect of spin-2 ULDM on the detector can be equivalently
described by the gravitational effect of an oscillating metric
perturbation hij given by

hij(t) = α

MP
Mij(t) = α

√
2ρDM

mMP
cos (mt + Υ)εij



The signal

The signal is the combination of the variation of the metric perturbation
and the response function (the differential change in the length of the
detector arms) of the detector

Dij = (ninj − mimj)
2

n and m arms of the detector.

h(t) := Dijhij(t) := hs sin (mt) + hc cos (mt)

hs and hc sine and cosine amplitudes.
We define the effective theoretical strain amplitude h for the spin-2
ULDM-CW signal as

h := ⟨h2
s + h2

c⟩1/2 =
α

√
ρDM√

5mMP

where ⟨·⟩ taken over polarisation angles and random phase Υ.



The signal

The signal is the combination of the variation of the metric perturbation
and the response function (the differential change in the length of the
detector arms) of the detector

Dij = (ninj − mimj)
2

n and m arms of the detector.

h(t) := Dijhij(t) := hs sin (mt) + hc cos (mt)

hs and hc sine and cosine amplitudes.
We define the effective theoretical strain amplitude h for the spin-2
ULDM-CW signal as

h := ⟨h2
s + h2

c⟩1/2 =
α

√
ρDM√

5mMP

where ⟨·⟩ taken over polarisation angles and random phase Υ.
−→ we compare the expected theoretical signal h with the design
sensitivities of a number of current and planned GWIs.



Results
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Thank you!



Extra

A massive spin-2 field Mµν described by the Fierz-Pauli lagrangian density

L := 1
2MµνEµνρσMρσ − 1

4m2 (
MµνMµν − M2)

Lichnerowicz operator

Eµν
ρσ := δµ

ρ δν
σ□− gµνgρσ□+ gµν∇ρ∇σ + gρσ∇µ∇ν − δµ

σ∇ν∇ρ − δµ
ρ ∇ν∇σ



Extra

Searches for CWs with Earth-bound GWIs resort to semi-coherent
methods −→ not computationally feasible to analyse the data from the
entire observation campaign in a fully coherent way.
The whole data set is broken into shorter time chunks such that
Tobs = NTchunk (Tchunk < tcoh).



Based on : M.Biagetti, L.C, J.Noreña, E. Sefusatti (2021) arXiv:2111.05887

https://arxiv.org/abs/2111.05887


Primordial non-Gaussianity

The hot cosmological stage was preceded by the epoch of exponential expansion: Inflation

I nflation provides a mechanism to generate primordial perturbations which are the seed to
structure formation.

Single field inflation?

Initial conditions: Gaussian, adiabatic and
almost scale invariant.〈

ζ(k)ζ(k′)
〉

= (2π)3δD(k + k′)Pζ(k)

Multi-field inflation? Exotic Mechanism?

Predict large non-Gaussianity.

〈
ζ(k)ζ(k

′
)
〉

= (2π)
3
δD(k + k

′
)Pζ(k)



The Bispectrum is a good observable to detect primordial non-Gaussianity

〈δg(k1)δg(k2)δg(k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3)

We are interested in f locNL

f locNL = −0.9± 5.1 at 68% CL k1 � k2 ∼ k3

Planck Collaboration, Planck 2018 results.



Bispectrum covariance

CXij ≡
〈(
X̂i −

〈
X̂i

〉)(
X̂j −

〈
X̂j

〉)〉
To measure the covariance in simulations it is necessary to use a large number of realizations.

We need an accurate model for the theoretical covariance of the galaxy bispectrum.

C =

(
CP CPB

CBP CB

) kf = 2π
L
→ Fundamental mode

k → Center of the shell
∆k →Width of the bin

Power spectrum estimator

P̂ (k) =
k3f

Nk

∑
q∈k

δ(q)δ(−q)

Bispectrum estimator

B̂ (k1, k2, k3) =
k3f

Nt (k1, k2, k3)

∑
q1∈k1

∑
q2∈k2

∑
q3∈k3

δk (q123) δ(q1)δ(q2)δ(q3)

R.Scoccimarro, M.Zaldarriaga, and L.Hui (1999) E.Sefusatti, M.Crocce, Martin, S.Pueblas, R.Scoccimarro



Bispectrum covariance

CXij ≡
〈(
X̂i −

〈
X̂i

〉)(
X̂j −

〈
X̂j

〉)〉
To measure the covariance in simulations it is necessary to use a large number of realizations.

We need an accurate model for the theoretical covariance of the galaxy bispectrum.

C =

(
CP CPB

CBP CB

) Power spectrum covariance

CPij ' 2
δKij
Nki

P (ki)
2

Cross-covariance P-B

CPBij ' 2
Nki

P (ki)Bj

(
δK
ki,k

j
1

+ 2cyc
)

Model for the bispectrum covariance

C
B
ij '

δijs

k3
f
Nitr

P (k
i
1)P (k

i
2)P (k

i
3) +

2B(ki1, k
i
2, k

i
3)B(k

j
1, k

j
2, k

j
3)

NitrN
j
tr

∑
q’s∈{k}’s

δ
qi1+qi2+qi3

δ
q
j
1+q

j
2+q

j
3

δ
qi1+q

j
1

R.Scoccimarro, M.Zaldarriaga, and L.Hui (1999) E.Sefusatti, M.Crocce, Martin, S.Pueblas, R.Scoccimarro



Orders of magnitude for CB

Scales are comparable

CB,(BB)

CB,(PPP )
∼
(

∆k

k

)2

∆2
h(k)

Squeezed configuration

CB,(BB)

CB,(PPP )
∼
(

∆k

kL

)2

∆2
h(kL)

(
k2s
k2L

+ 4

)

10−1

k (h/Mpc)

10−1

100

101

∆
2 h
(k

)

with shot noise

without shot noise

∆2
h(k) = 4πk3P (k) ∆k = 0.009h/Mpc



https://quijote-simulations.readthedocs.io/en/latest/



Bispectrum variance

0 500 1000 1500 2000 2500
triangles

-100

-60

-20

20

60

100

%
E
rr
or

σ2 percentage error only PPP

Non-squeezed triangles

Squeezed triangles

0 500 1000 1500 2000 2500
triangles

-100

-60

-20

20

60

100

%
E
rr
or

σ2 percentage error Model

Non-squeezed triangles

Squeezed triangles

105

106

107

108

109

1010

σ
2

k1 = 3kf k2 = k3
N-body

PPP

2BB

Model

0.2 0.4

k(h/Mpc)

-100

-20

20

100

%
E
rr
or

102

103

104

σ
2

k1 = 36kf k2 = k3
N-body

PPP

2BB

Model

0.3 0.4 0.5

k(h/Mpc)

-100

-20

20

100

%
E
rr
or
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Correlation Matrix rij =
Cij√
CiiCjj
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Exploring the origin of structures EOS https://mbiagetti.gitlab.io/cosmos/nbody/



Fisher analysis for PNG

FfNL =
∂D

∂fNL
·C−1 · ∂DT

∂fNL

∂D

∂fNL
=

D(NG250L) −D(NGm250L)

2f̄NL

∆f locNL =
1√
Ffloc

NL

Power Spectrum Bispectrum Power Spectrum + Bispectrum

Statistics
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https://mbiagetti.gitlab.io/cosmos/nbody/eos M.Biagetti, L.C, J.Noreña, E. Sefusatti (2021)





Primordial black holes and gravitational waves 
from dissipative effects during inflation

Alejandro Pérez Rodríguez
Universidad Autónoma de Madrid, IFT UAM-CSIC

-ICTP summer school on Cosmology, july 2022-

Based on work in progress with G. Ballesteros, M.A.G. García, M. Pierre, J. Rey



BASIC CONCEPTS. Primordial black holes and GWs

• peaked at scale enhances

• Assuming gaussianity, certain value for     , radiation domination… → Peak ~ 10−2 →

• Corresponding GW background potentially detectable by LISA

2

Green, Kavanagh (2020, modified)

(Press-Schechter)

(Second-order scalar perturbations)



BASIC CONCEPTS. Dissipative effects during inflation

• Coupling between inflaton and radiation

• Background: extra friction

• Perturbations: 

• Introduce radiation perturbations

• Fluctuation – dissipation → stochastic terms

• C.f. warm inflation. Arya (2019); Bastero-Gil, Subías Díaz-Blanco (2021), …

3



SOLVING SDEs. Numerical approaches

Fokker-Planck 

• SDEs → ODEs for the correlations

• Solve for

• Recast into

Montecarlo

• Randomize source for each time

• Compute particular realization of

• Iterate and take average

4

Main idea: solve for the thermally averaged power spectrum 



A SPECIFIC MODEL. Background and power spectrum

5

Match to CMB Peak ~10-2  at customizable scale 



A SPECIFIC MODEL. Perturbation dynamics

6C.f. Hall et al. (2003), López Nacir et al. (2012) 

Analytical approximation



CONCLUSIONS AND PROSPECTS

• Dissipative effects in inflation→ interesting perturbation physics:

• Stochastic dynamics of the perturbations

• Thermal enhancement

• Enhancement of certain modes → peak in the power spectrum

• This could explain PBHs dark matter and SGW LISA signals

7
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Introduction



Dark matter

Introduction Self-similar solutions Conclusion

Raquel Galazo García (IPhT) 1

𝞚Cold Dark Matter Model(𝞚CDM) to describe the Universe. Core-cusp problem

• DM particles not detected.
• CDM has tensions at small scales. 

ICTP Summer School on Cosmology

Alternative scenarios à Scalar field dark matter (SFDM).
• Solitons (eq. configuration) à Solve CDM tensions.

Hydrostatic equilibrium

Density profiles observations and simulations

Fuzzy Dark Matter  (FDM)
𝑚 ≈ 10!""𝑒𝑉

Elisa G. M. Ferreira (2020)

Antonino Popolo, Morgan Le Delliou (2017)



Dynamics of FDM: Fluid picture

Raquel Galazo García (IPhT) 2

Quantum pressure

Continuity, Euler and Poisson

𝜆#$~0.5 𝑘𝑝𝑐

Introduction Self-similar solutions Conclusion

𝜖 =
𝑇
𝑚𝐿!

~
𝜆"#
𝐿

Action:

ICTP Summer School on Cosmology



FDM large scale distribution

Raquel Galazo García (IPhT) 3

Schive, Chiueh, and Broadhurst (2014)

Fuzzy Dark Matter (FDM) Cold Dark Matter (CDM)

Introduction Self-similar solutions Conclusion

Recover the success of CDM large scale distribution of filaments and voids.

ICTP Summer School on Cosmology



Motivation of this work

Raquel Galazo García (IPhT) 4

Fuzzy Dark Matter  (FDM)
𝑚 ≈ 10!""𝑒𝑉

1. Go beyond the static solitons by investigating dynamical self-similar solutions. 

2. Understand physical processes: gravitational cooling.

3. Understand comparison with self similar solutions for  CDM.

Introduction Self-similar solutions Conclusion

ICTP Summer School on Cosmology

Gravitational
Cooling

E.Seidel, W.M.Suen(1994)
F.S Guzmán, L.A. Ureña-López (2004)

𝒕𝟎
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𝒕𝟔

𝒕𝟕

𝒕𝟖

𝒕𝟗

𝒕𝟏𝟎

Husimi Phase-space distribution

Axis:
r

v r

Dynamics: 3D Numerical simulations
FDM out of equilibrium, 𝜀=1

RGG



Self-similar solutions for FDM



Raquel Galazo García (IPhT) 5

FLUID PICTURE

Cosmological Self-similar solutions

Continuity, 
Euler and Poisson

PERTURBATIONS AROUND THE EXPANDING COSMOLOGICAL BACKGROUND

SCALING VARIABLE

𝑥⃗ = 𝑟/𝑎• Comoving spatial coordinates                  .
• Spherical symmetry.

Einstein de-Sitter 
Universe: matter 
era & the scale 
factor : 
Self-similar form

Introduction      Self-similar solutions Conclusion

ICTP Summer School on Cosmology



!

Kinetic vs. ɸQ

Non-linear regime: Overdensity, 𝜹 𝟎 = 𝟏𝟎𝟎

𝜂

DENSITY PERTURBATION

𝜂

VELOCITY PERTURBATION

𝛿

Linear

Non linear

Linear

Non linear

𝑢
Introduction      Self-similar solutions Conclusion

t

x(
t) Hubble flowCentral peak

Velocity spikes

TRAJECTORY

𝜂 𝜂Raquel Galazo García (IPhT)

Gravitational cooling effect!

𝜂

Gravity vs. ɸQ

6

BERNOULLI

ICTP Summer School on Cosmology



Comparison with CDM 
self-similar solutions & 
Conclusions



Comparison: CDM vs FDM

• Transition from the linear regime to the non-linear regime.
• Gravitational collapseà Virial equilibrium in the inner 

nonlinear core.
• The size grows with time, in physical and comoving 

coordinates.

𝜆

𝜏

CDM

• No transition from the linear to the non-linear regime.
• Gravitational cooling.
• The size grows in physical coordinates but shrinks in comoving coordinates.

𝜂

𝜈 ! x(
t)

t

Bertschinger, E.(1985) Fillmore, J. A. and Goldreich, P. (1983)

FDM

Introduction      Self-similar solutions Conclusion



Upcoming work

• New numerical studies at galactic scales to compare different scalar field dark 
matter models (SFDM). 

• Extend self-similar solutions.

• SFDM cosmological simulations to study how the formation of large scale 
structure is modified compared to the CDM scenario.
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ICTP Summer School on Cosmology,  July 5, 2022



Back up: Introduction



Dynamics of Fuzzy Dark Matter: Hydrodynamical picture

Introduction Self-similar solutions Linear regime      Non-linear regime      High-density asymptotic limit      Conclusion

Raquel Galazo García (IPhT) 3/30

𝑚~10!"" 𝑒𝑉 De Broglie wavelength ~ 0.5𝑘𝑝𝑐 Non-Relativistic regime:

HYDRODYNAMICAL PICTURE

SP system scaling law Quantum pressure

𝜓̈ ≪ 𝑚 𝜓̇ Factor-out the fast time oscillation of 𝝓

Action:

SCHRÖDINGER-POISSON SYSTEM (SP)

𝜖 =
𝑇
𝑚𝐿!

~
𝜆"#
𝐿

Oxford Cosmology Seminar



FDM Motivation 1) Explanation to CDM small-scales tensions

Introduction Self-similar solutions Linear regime      Non-linear regime      High-density asymptotic limit      Conclusion

Raquel Galazo García (IPhT) 6/30

Density profiles observations and simulations

Missing satellite problem

Core/cusp problem

Antonino Popolo, Morgan Le Delliou (2017)

Predicted ΛCDM substructure Known Milky Way satellites

Simulation by V. Robles and T. Kelley
and collaborators.

James S. Bullock, M. Boylan-Kolchin, 
M. Pawlowski

Oxford Cosmology Seminar



FDM Motivation 2) Alternative to CDM N-Body simulations

Introduction Self-similar solutions Linear regime      Non-linear regime      High-density asymptotic limit      Conclusion

Raquel Galazo García (IPhT) 7/30

CDM:  A classical collisionless fluid is governed by the Vlasov-Poisson equations.

• Wigner quasi-probability distribution: link the Schrödinger wave function ψ to a function f in phase space.

• Husimi representation: smoothing of the Wigner distribution by a Gaussian filter of width σx and σp 
in x and p space.

• Husimi is a positive-semidefinite function à No fast oscillations of Wigner

FDM comoving Vlasov equation
Kaiser (1993)

C. Uhlemann, 
M. Kopp, & T. Haugg (2014)

Oxford Cosmology Seminar



FDM Motivation 2) Alternative to CDM N-Body simulations

Raquel Galazo García (IPhT) 7

FDM comoving Vlasov equation

Kaiser (1993)

Philip Mocz and Lachlan Lancaste,Anastasia Fialkov and Fernando Becerra,
Pierre-Henri Chavanis (2018).

Cosmological simulation at z=3, evolved either as CDM (VP eq) or as FDM (SP)

EDPIF PhD Scientific Day

Link the Schrödinger wave function ψ to a function f in phase space.

CDM comoving Vlasov equation

Introduction Self-similar solutions Conclusion



Back up: Self-similar solutions for FDM
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FLUID PICTURE

Cosmological Self-similar solutions

Continuity, 
Euler and Poisson

COSMOLOGICAL BACKGROUND

PERTURBATIONS AROUND THE EXPANDING BACKGROUND

Einstein de-Sitter Universe: matter era & the scale factor : 

Self-similar form

𝑥⃗ = 𝑟/𝑎Comoving spatial coordinates

Oxford Cosmology Seminar
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Fuzzy Dark Matter  (FDM)
𝑚 ≈ 10!""𝑒𝑉

Comoving Self-similar solutions: Scaling variable

COMOVING FLUID EQUATIONS

à Substituting into the Euler, Poisson and continuity eq.

Quantum Pressure

Self-similar
ansatz

Where the mass perturbation inside the radius r :

SCALING VARIABLE

Oxford Cosmology Seminar

Spherical self-similar solutions will be of the form:
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Scaling variable

• The size grows as ~√𝒕 in physical units but more slowly than the scale factor, 
à shrink as 𝒕!𝟏/𝟔 in comoving units.

• The associated mass decreases as 𝑴~𝟏/√𝒕. (≠CDM: grow both in comoving 
size and in mass.)

SCALING VARIABLE

Oxford Cosmology Seminar

Spherical self-similar solutions:



Back up: Linear regime
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Linear regime: Fourier space

FOURIER SPACE
FDM Growing and decaying modes: 𝑫±(𝒌, 𝒕)

• Semi-classical limit, 𝜖 → 0, or on large scales 𝑘 → 0

CDM Growing and decaying modes: 𝑫±(𝒌, 𝒕)

𝐷1(𝑘, 𝑡) ∝ 𝑡"/3 ∝ 𝑎

𝐷!(𝑘, 𝑡) ∝ 𝑡!4

• For 𝜖 ≠ 0 ,               à Acoustic waves: 

To recover the BKGD density on large scales, we keep the decaying mode:

• At late times à CDM behaviour à damping of            term 𝑡'(/*

Oxford Cosmology Seminar
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Linear regime: Real space

REAL SPACE FDM 4 independent linear modes

• Smooth solution at 𝜂 = 0
• Satisfy the boundary conditions at infinity with 𝛿 0 = 1

Recover 
Fourier 
solution

Oxford Cosmology Seminar
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Linear regime self-similar solution
𝛿 &

DENSITY PERTURBATION

𝜂

• Central peak much higher than the next peaks.

• Amplitude of 𝜹𝑳 does not grow with time and remains constant. (≠ CDM )
• It is stable and does not reach the nonlinear regime at late times.
• To reach the nonlinear regime à start with a large nonlinear perturbation.

SCALING VARIABLE

• As time grows, self-similar solution grows in physical coordinates but shrinks in comoving coordinates. 

Oxford Cosmology Seminar
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I) Small perturbations: Linear regime, 𝜹 𝟎 = 𝟏
𝛿 &

DENSITY PERTURBATION

𝑢 &

𝜂

𝜂

VELOCITY PERTURBATION

Introduction      Self-similar solutions Conclusion

EDPIF PhD Scientific Day

• FDM: 𝜹𝑳 constant amplitude. (≠ CDM )

• FDM: 𝜹𝑳 grows in physical coordinates but
shrinks in comoving coordinates.  (≠ CDM )

• FDM : Fields with oscillations ,        . (≠ CDM)



Back up: Non-linear regime
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Closed equation over 𝜹M 

The fields in terms of 𝜂 :Euler equation in terms of 𝜂 ∶

Poisson equation in terms of 𝜂 ∶

Integrating the continuity equation:

CLOSED NON LINEAR EQUATION OVER 𝜹M 

Oxford Cosmology Seminar
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Self-similar Husimi phase-space distribution %𝑓: (𝜂; 𝑣;; 𝑣< = 0)

𝜂 𝜂

𝜂 𝜂

𝜈 ' 𝜈 '

𝜈 ' 𝜈 '

𝛿 0 = 10, 𝜎 = 1 𝛿 0 = 100, 𝜎 = 1

𝛿 0 = 100, 𝜎 = 0.3𝛿 0 = 10, 𝜎 = 0.3SELF-SIMILAR HUSIMI DISTRIBUTION

SELF-SIMILAR WIGNER DISTRIBUTION

Choosing the smoothing:

Raquel Galazo García (IPhT) 23/30Oxford Cosmology Seminar
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Radial Husimi phase-space distribution %𝑓: 𝜂; 𝑣;; 𝑣< = 0 , 𝜎 = 1

𝜂 𝜂

𝜈 ' 𝜈 '

𝛿 0 = 10, 𝜎 = 1 𝛿 0 = 100, 𝜎 = 1

• As the spatial coarsening 𝜎, ∝ 𝜎 increases à the velocity coarsening, 𝜎- ∝ 1/𝜎 decreases : 
Heisenberg uncertainty principle.

• Velocity asymmetries but spatial profile is smoothed out.
• At large distance, the profile à cosmological BKGD.

• The coarsening 𝝈 = 𝟏 is no longer sufficient to separate the first few peaks.
• Artificial interferences between these peaks and to a Husimi distribution that is difficult to interpret 

and far from the semiclassical expectations

Raquel Galazo García (IPhT) 24/30Oxford Cosmology Seminar
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Radial Husimi phase-space distribution %𝑓: 𝜂; 𝑣;; 𝑣< = 0 , 𝜎 = 0.3

𝜂 𝜂

𝜈 ' 𝜈 '

𝛿 0 = 100, 𝜎 = 0.3𝛿 0 = 10, 𝜎 = 0.3

• Well-defined peaks increasing with δ(0) and preserves signs of the density fluctuations.
• At large distanceà the cosmological BKGD.

• More faithful representation: Sequence of scalar-field clumps
• COST: This erases most of the information about the velocity field.
• Different choices of σà different pictures àDifficult to relate to the underlying dynamics

• The hydrodynamical mapping clearer picture of the dynamics.

Raquel Galazo García (IPhT) 25/30Oxford Cosmology Seminar



Back up: High-density asymptotic limit
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High-density asymptotic limit

• The BKGD density becomes
negligible as compared with the
central density.

• The inner profile converge to a
limiting shape that obeys the
scaling law:

• The central peak of the self-similar solution is narrower than the soliton peak.

• The shape of the central peak of the self-similar profile does not converge to the soliton 
equilibrium. à kinetic effects (dominate near the boundary of the central peak ).

𝜂

𝜌

Raquel Galazo García (IPhT) 26/30Oxford Cosmology Seminar



Soliton
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Hydrostatic equilibrium Soliton profile

A slice of density field of ψDM simulation on various scales at z=0.1
Radial density profiles of haloes formed in the ψDM model

Schive, Chiueh, and Broadhurst (2014)

ICTP Summer School on Cosmology



FDM at small scales
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Radial density profiles of haloes formed in the ψDM model

Introduction Self-similar solutions Conclusion

Hydrostatic equilibrium

SOLITON:  Static equilibrium configuration.

Gravitational
Cooling

E.Seidel, W.M.Suen(1994)
F.S Guzmán, L.A. Ureña-López (2004)Schive, Chiueh, and Broadhurst (2014)

Husimi Phase-space distribution
Axis:

r
v r

ICTP Summer School on Cosmology

Dynamics: 3D Numerical simulations
FDM out of equilibrium, 𝜀=1

𝒕𝟎

𝒕𝒇

𝒕𝟒

𝒕𝟏

𝒕𝟐

𝒕𝟑

𝒕𝟓

𝒕𝟔

𝒕𝟕

𝒕𝟖

𝒕𝟗

𝒕𝟏𝟎



Rare Events are Non-Perturbative
Sina Hooshangi

IPM, Tehran

Based on: 
arxiv: 2112.04520
(with M.H. Namjoo, M. Noorbala)



● Large rare fluctuations that can be bigger than a threshold, 
Collapse to form a BH.  

● We need Non-perturbative methods to explore the tail.
● I will focus on Probability Distribution Function(PDF) for curvature 

perturbation. To calculate correctly the mass fraction you need the 
PDF for compaction function.
(De Luca and Riotto, arxiv:2201.09008 
Biagetti, De Luca, Franciolini, Kehagias, Riotto,  arxiv: 2105.07810
Musco, De Luca, Franciolini, Riotto, arxiv:2011.03014
Escriva arxiv:2111.12693)

Rare Events



Non-Perturbative Formalisms

● Wave-Function of Universe ( Exp(- \zeta ^ 3/2) )
(Celoria, Creminelli, Tambalo, Yingcharoenrat, 2021, arxiv:2103.09244)

● Stochastic Inflation (Exponential Tail) 
(Ezquiaga, Garcia-Bellido, Vennin, 2020, arxiv:1912.05399)

● delta-N Formalism 



Heavy-Tailed Distribution

Mathematical definition:

Practical definition:



Some Examples of Heavy-tailed PDFs



Power Law

Gaussian

Exponential

Our Model (Power Law Tail)



The PDF



The Behavior of the Tail





Thanks!



Md Riajul Haque

Department of Physics,

IIT Guwahati, Assam, India

ICTP Summer School on Cosmology 2022
04 -15 July 

Gravitational Reheating

based on Ref. arxiv: 2201.02348
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❑ How the present state of our universe has been created?

❑ Is it possible to explain our current universe from purely gravitational 
production during reheating?
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Our knowledge about the cosmic history of the Universe

Cosmic microwave background
(CMB)

Provides evidence for an early 
inflationary phase with
❖ Energy scale           GeV
❖ Duration                    Sec 

Big-Bang Nucleosynthesis
(BBN)

Predicts quantities such as 
light-element abundances
❖ Energy scale                 MeV
❖ Time scale                 Sec

❖ There is a massive gap in terms of energy (and time) scale between the 
periods of inflation and BBN, which is poorly understood from both theory 
and observation

Difficulty in probing the early Universe
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Why do we need reheating phase?

❑ The end point of inflation

❖ The universe is cold, dark, 
and dominated by the 
homogeneous inflaton field.

❑ How does the Universe 
transition to a the hot, 
thermalized, radiation-
dominated state after 
inflation, which is required 
for nucleosynthesis.

❑ Reheating!
❑ Natural consequence after inflation: filled 

the empty space with matters (generate 
entropy)
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Schematic diagram of the evolution of the Comoving 
Hubble radius

❖We need to understand how the modified expansion history influences 
the prediction for cosmological observables.
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Inflationary parameters: Initial conditions for 
reheating 

❑ Slow roll parameters:

❑ e-folding number & inflationary energy scale :

❑ CMB observable :

❑ End of inflation : Initial condition for reheating
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Reheating phenomenology

❑ Usual approach: Through 
parametric resonance  
(Preheating)/   Perturbative 
decay

❑ Gravitational decay ∼
1

𝑀𝑃
ℎμν𝑇𝑖

μν
, 𝑖 = 𝑆, 𝑓, 𝑋, ϕ

The gravitational decay channel was always ignored due to this Planck mass 
suppression. It was always thought that only gravitational production could not 
be sufficient to reheat the universe successfully.
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Gravitational reheating set up

❑ Inflaton gravitationally decaying into

Radiation (massless) + Dark matter (massive)

Parameters: Γ𝑅𝑎𝑑 = Γ𝑆 + Γ𝑓 + Γ𝑋

M. R. Haque and D. Maity [arXiv:2201.02348
Y. Mambrini and K. A. Olive [Phys.Rev.D 103 (2021) 11, 115009]
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Initial conditions and constraints

❑ Initial conditions :

❑ Constraint conditions:

ρϕ
𝑖𝑛 = 3𝑀𝑝

2𝐻𝑒𝑛𝑑
2 , ρ𝑅 = ρ𝐷𝑀 = 0

Present state of our universe

1. Entropy conservation    

with , 

2. Present DM abundance Ω𝑋ℎ
2 = 0.12

3.  Universe must be radiation dominated before 𝑇𝑟𝑒 > 𝑇𝐵𝐵𝑁 ∼ 10𝑀𝑒𝑉

4. Upper limit on Inflationary energy scale 𝐻𝑒𝑛𝑑
𝑚𝑎𝑥 > π𝑀𝑝 𝑟 Τ𝐴𝑠 2 ∼ 5 × 1013𝐺𝑒𝑉

Present state of the universe is completely fixed by

L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014)
J. L. Cook, etal JCAP 1504 (2015) 047
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Model independent predictions

❑ Assuming Slow-roll inflation (with out taking any particular model)

Gravitational Reheating prediction:

Dark matter sector

●Fermionic DM:

●Bosonic DM:  

2 × 105 < 𝑚𝑓 < 3 × 108 𝐺𝑒𝑉

50 < 𝑚𝑆, Τ1 8 𝑚𝑋 < 1000 𝑒𝑉

Inflaton sector

●Inflaton equation of state

●Energy scale 

●Inflationary e-folds

ωϕ = 0.6,0.99

𝐻𝑒𝑛𝑑 = 1 × 109, 5 × 1013 𝐺𝑒𝑉

62 < 𝑁𝑒𝑓𝑜𝑙𝑑 < 63
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Predictions from primordial gravitational waves

Spectrum of the gravitational today

Index of the GW spctrum:

𝑛𝐺𝑊 =
6ωϕ − 2

3ωϕ + 1

From BBN bounds set by Plank 2018 data: 

R. Haque, DM, S. T. Paul, L. Sriramkumar,  Phys.Rev.D 104 (2021) 6, 
063513
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Constraining specific models

α = 1 → 0.9681 ≤ 𝑛𝑠 ≤ 0.9687
𝑛 ≥ 4.75

7 × 106 < 𝑚𝑓 < 9 × 107 𝐺𝑒𝑉

60 < 𝑚𝑆, Τ1 8 𝑚𝑋 < 1000 𝑒𝑉

α = 10 → 0.9611 ≤ 𝑛𝑠 ≤ 0.9687
𝑛 ≥ 5.15

3 × 106 < 𝑚𝑓 < 2 × 107 𝐺𝑒𝑉

30 < 𝑚𝑆, Τ1 8 𝑚𝑋 < 400 𝑒𝑉

Predictions:
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Compare the Graviational reheating scenario with the case 
where explicit coupling present between Inflaton and radiation 

sector
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Main points and outcomes 

❑We took a model-independent approach to acquire a precise cosmological 
prediction. We switch off all possible unknown parameters, implying that 
the inflaton sector is coupled with the observable sector only through 
gravitational interaction.

❑ Predicts Very narrow range of DM mass, low reheating temperature, 
unique GW spectrum, Stiff reheating equation of state.

❑ The scenario discards a large number of possible models of dark matter 
and inflation that are otherwise consistent with PLANCK. 



Thank  You


