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FIG. 3. Posterior distributions for ⌧ , As, and r using
BK18 [13], Planck [12], and the combination of the two.

In the ns–r plane (Fig. 4), the constraints now rule out
the expected potentials for single-field inflation (strongly
excluding V / �2, �, and even �2/3 at about 5�).

VII. CONCLUSIONS

We have derived constraints on the tensor-to-scalar
ratio r using the two most sensitive data sets to date,
namely BICEP3 and Planck PR4. The BICEP/Keck
Collaboration recently released a likelihood derived from
their data up to the 2018 observing season, demonstrat-
ing a sensitivity on r of �r = 0.013, covering the mul-
tipole range from ` = 20 to 300 [13]. Complementary
Planck PR4 data released in 2020 [14] provide informa-
tion on the large scales, with a polarized likelihood cov-
ering the multipole range from ` = 2 to ` = 150 [12].
This has poorer sensitivity, with �r = 0.024, but o↵ers
independent information, with the constraint on r com-
ing from a combination of TT , TE, and large-scale E
and B data. It is interesting to note that constraints de-
rived purely from temperature anisotropies alone are not
competitive anymore (�r = 0.1 [12]), since those data are
dominated by cosmic variance.

The addition of Planck data (including large angular
scales in polarization, as well as small angular scales in
TT and TE) allows us to increase the sensitivity on r,
as well as to break the degeneracy with the usual six
parameters of the ⇤CDM model. We find that other
⇤CDM parameters are not a↵ected by the addition of
BK18 data (Fig. 5). Combining Planck PR4 and BK18,
we find an upper limit of r < 0.034, which tightens to
r < 0.032 when adding BAO and CMB lensing data.

Ground-based experiments (such as BICEP/Keck, the
Simons Observatory [30], and later CMB-S4 [31]) will ob-
serve the sky with ever deeper sensitivity, placing even
stronger constraints on the tensor-to-scalar ratio r (or

FIG. 4. Constraints in the tensor-to-scalar ratio r ver-
sus scalar spectral index ns plane for the ⇤CDM model, us-
ing CMB data in combination with baryon acoustic oscil-
lation (BAO) and CMB lensing data. The CMB data are
Planck PR3 (TT,TE,EE+lowE, gray contour), Planck PR4
[12] (TT,TE,EE+lowlEB, green contour), and Planck PR4
joint with BK18 [13] (blue contour, this paper). These con-
straints assume the inflationary consistency relation and neg-
ligible running. Dotted lines show the loci of approximately
constant e-folding number 50 < N < 60, assuming simple
V / (�/mPl)

p single-field inflation. Solid lines show the ap-
proximate ns–r relation for locally power-law potentials, to
first order in slow roll. The solid black line (corresponding to
a linear potential) separates concave and convex potentials.
This plot is adapted from figure 28 in Ref. [11].

detecting primordial B modes of course). However, im-
proved measurements of the ⇤CDM parameters are es-
sential to achieve strong constraints on r. In particular
reionization optical depth require very large scales, which
are extremely di�cult to measure from ground. The next
generation of polarized CMB space missions (including
LiteBIRD [32]) will be able to deliver ⌧ with a precision
dominated by cosmic variance.

ACKNOWLEDGMENTS

Planck is a project of the European Space Agency
(ESA) with instruments provided by two scientific con-
sortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors
provided through a collaboration between ESA and a sci-
entific consortium led and funded by Denmark, and ad-
ditional contributions from NASA (USA). We gratefully
acknowledge support from the CNRS/IN2P3 Comput-
ing Center for providing computing and data-processing

Tristram et al ’21

P⇣ / �1�ns , r ⌘
PGW

P⇣

0.025 < 1� ns < 0.042 (slightly red)

r < 0.055

Viable region, using

ns � 1 = 6✏� 2⌘

r = 16✏

�N ⇠ �15

Tristram et al ’21

P⇣ / �
1�ns , r ⌘

PGW

P⇣

ns � 1 = 6✏� 2⌘

r = 16✏

P⇣ =
H

2

8⇡2M2
p
✏

= 2.2 · 10�9
PGW =

2H2

⇡2M2
p

⌘ r P⇣

We measured the combination H
2
/✏ Measuring GW (⌘ knowing r)

! scale of inflaton

{

H ' 4.5 · 1013 GeV
q

r

0.032

⇢
1/4 ' 1.4 · 1016 GeV

⇣
r

0.032

⌘1/4

Tristram et al ’21

P⇣ / �
1�ns , r ⌘

PGW

P⇣

ns � 1 = 6✏� 2⌘

r = 16✏

P⇣ =
H

2

8⇡2M2
p
✏

= 2.2 · 10�9
PGW =

2H2

⇡2M2
p

⌘ r P⇣

We measured the combination H
2
/✏ Measuring GW (⌘ knowing r)

! scale of inflaton

{

H ' 4.5 · 1013 GeV
q

r

0.032

⇢
1/4 ' 1.4 · 1016 GeV

⇣
r

0.032

⌘1/4



Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue
contours).
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data we use the full constraining power of Planck, i.e., Planck
TT,TE,EE+lowE+lensing, in combination with BK15.

The ��2 and the Bayesian evidence values for a selec-
tion of inflationary models with respect to the R2 model
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.
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Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.
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⇢
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end

+
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⇢end

Evaluate last term for

(i) instantaneous reheating after inflation

(ii) slowest possible decay Treh ⇠ MeV

�N = 0

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical
predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions have been obtained by
assuming dns/d ln k = 0.
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Figure 15: Upper bound on the reheating temperature TR as a function of m3/2 at 95% C.L.
for models of 1) Point 1 (upper left), 2) Point 2 (upper right), 3) Point 3 (lower left), and 4)
Point 4 (lower right), respectively. The regions surrounded by the black-dotted line indicate
the region consistent with Eq. (2.3).

of our interest, the gravitino decays at the cosmic temperature lower than the freeze-out
temperature of the LSP. Thus, the density parameter of the LSP from the decay of the
gravitino is evaluated as

⌦(decay)

LSP
=

mLSPY3/2snow

⇢crit
, (5.8)

where snow is the entropy density of the present universe, and ⇢crit is the critical density.
We show the contour of ⌦(decay)

LSP
= ⌦c (with ⌦c ' 0.26 [41] being the density parameter

of the cold dark matter).#14 We can see that, with the present choice of the MSSM mass

#14If the thermal relic abundance of the LSP is sizable, the bound should be imposed on the total mass

30

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Kawasaki, Kohri, Moroi, Takaesu ’17

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Kawasaki, Kohri, Moroi, Takaesu ’17

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Kawasaki, Kohri, Moroi, Takaesu ’17

Limits in Minimal Supersymmetric Standard Model for 6= benchmark

scenarios (6= superparticle masses)

Kawasaki, Kohri, Moroi, Takaesu ’17



Late times dominate for �
n

4
+

1

2
> �1 ) �

n

4
> �

3

2
) n < 6

Particles produced at peak don’t matter; diluted by subsequent production

Example: gravitinos,

� '
1

M2
p

! n = 0

�� (t� tend)

Late times dominate for �
n

4
+

1

2
> �1 ) �

n

4
> �

3

2
) n < 6

Particles produced at peak don’t matter; diluted by subsequent production

Example: gravitinos,

� '
1

M2
p

! n = 0

�� (t� tend)

Gauge group gi ci ki

U(1)Y g
0 9.90 1.469

SU(2)L g 20.77 2.071

SU(3)c gs 43.34 3.041

Table 1: The values of the constants ci and ki in the parameterization (24) for the Standard

Model gauge groups U(1)Y , SU(2)L, and SU(3)c. See [5] for details.

Ignoring the logarithmic dependence in eq. (24), the cross section is constant corre-

sponding to n = 0 in eq. (1). Figure 2 shows the comparison between the fully numerical

calculation (black, continuous), using R
(n)
� in eq. (20) with n = 0, and the instantaneous

reheating result (orange, dotted), given by R�,instant.(T ) from eq. (7). The latter by defini-

tion asymptotes to 1 at late times (large v). As it is clear, the instantaneous approximation

slightly overestimates the true gravitino abundance by a factor of ⇠ 1.1, as expected from

eq. (20). More importantly we see that gravitino production prior to the end of reheating

can be ignored, as any production between TRH and Tmax is diluted by the bulk of the

entropy produced in later inflaton decays.

10- 10- 0.01 10
10-4

0.001

0.010

0.100

1

Figure 2: Dark matter yield during and after reheating with n = 0; here �� = 10�11
m�.

The numerical result using R
(n)
� (eq. (20)) with n = 0 is shown as the continuous black

curve. The orange dotted curve is the instantaneous reheating solution from R�,instant.(T )

(eq. (7)).
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where F =
p
3MPm3/2 is the supersymmetry breaking order parameter.

The strong suppression (/ F
4) of the cross section would indicate that a relatively

high reheating temperature and gravitino mass are required to produce a su�cient quantity

of gravitinos to account for the observed relic density. Indeed for a gravitino mass of 1 EeV,

a reheating temperature of approximately 5 ⇥ 1010 GeV is needed [23], placing strong

constraints on inflationary models and supersymmetry breaking [28].

Figure 5 shows the exact and instantaneous results for R� in the n = 6 case. In this

case, one sees that the standard estimate of the dark matter abundance evaluated at TRH

is not very accurate and the final ratio is R� ⇠ 25.7, consistent with the result (21). From

eq. (6) we see that, in order to obtain the correct gravitino dark matter abundance, the

reheating temperature should be decreased by a factor ⇠ 2
3 with respect to that indicated

by the naive assumption of instantaneous decay.
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Figure 5: As in Fig. 2, for n = 6.

4 Conclusions

Reheating after inflation is responsible for the entire matter and radiation content of the

Universe. Thus, understanding the details of this process is crucial to our ability to develop

models incorporating entropy production, baryogenesis, and dark matter among many other
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13

Example: Massive spin 2 portal

gSM T
µ⌫

SM

⇤

gDM T
µ⌫

DM

⇤

� /
1

⇤4M4
T

6 Matter

Standard 

Model

Massive spin 2
Dark

Example: Massive spin 2 portal

Example: Massive spin 2 portal

gSM T
µ⌫

SM

⇤

gDM T
µ⌫

DM

⇤

Example: Massive spin 2 portal

gSM T
µ⌫

SM

⇤

gDM T
µ⌫

DM

⇤

Example: Massive spin 2 portal

gSM T
µ⌫

SM

⇤

gDM T
µ⌫

DM

⇤

� /
1

⇤4M4
T

6

where F =
p
3MPm3/2 is the supersymmetry breaking order parameter.

The strong suppression (/ F
4) of the cross section would indicate that a relatively

high reheating temperature and gravitino mass are required to produce a su�cient quantity

of gravitinos to account for the observed relic density. Indeed for a gravitino mass of 1 EeV,

a reheating temperature of approximately 5 ⇥ 1010 GeV is needed [23], placing strong

constraints on inflationary models and supersymmetry breaking [28].

Figure 5 shows the exact and instantaneous results for R� in the n = 6 case. In this

case, one sees that the standard estimate of the dark matter abundance evaluated at TRH

is not very accurate and the final ratio is R� ⇠ 25.7, consistent with the result (21). From

eq. (6) we see that, in order to obtain the correct gravitino dark matter abundance, the

reheating temperature should be decreased by a factor ⇠ 2
3 with respect to that indicated

by the naive assumption of instantaneous decay.
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FIG. 2. Narrow parametric resonance for the field χ in the

theory m2φ2

2
in Minkowski space for q ∼ 0.1. Time is shown

in units of m/2π, which is equal to the number of oscillations
of the inflaton field φ. For each oscillation of the field φ(t) the
growing modes of the field χ oscillate one time. The upper
figure shows the growth of the mode χk for the momentum
k corresponding to the maximal speed of growth. The lower
figure shows the logarithm of the occupation number of par-
ticles nk in this mode, see Eq. (25). As we see, the number
of particles grows exponentially, and lnnk in the narrow res-
onance regime looks like a straight line with a constant slope.
This slope divided by 4π gives the value of the parameter µk.
In this particular case µk ∼ 0.05, exactly as it should be in
accordance with the relation µk ∼ q/2 for this model.

On the other hand, for oscillations with a large ampli-

tude Φ the parameter q = g2Φ2

4m2 can be very large. In this
regime the resonance occurs for a broad range of values
of k, the parameter µk can be rather large, and reheat-
ing becomes extremely efficient. The resonance occurs
for modes with k2

m2 = A − 2q, i.e. above the line A = 2q
on the stability/instability chart for the Mathieu equa-
tion [1]. The standard methods of investigation of narrow
parametric resonance do not work here. The difference
between these two regimes can be easily grasped by com-
paring solutions of Eq. (30) for small and for large q, see
Figs. 2 and 3.
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FIG. 3. Broad parametric resonance for the field χ in

Minkowski space for q ∼ 2×102 in the theory m2φ2

2
. For each

oscillation of the field φ(t) the field χk oscillates many times.
Each peak in the amplitude of the oscillations of the field χ
corresponds to a place where φ(t) = 0. At this time the oc-
cupation number nk is not well defined, but soon after that
time it stabilizes at a new, higher level, and remains constant
until the next jump. A comparison of the two parts of this
figure demonstrates the importance of using proper variables
for the description of preheating. Both χk and the integrated
dispersion ⟨χ2⟩ behave erratically in the process of parametric
resonance. Meanwhile nk is an adiabatic invariant. Therefore,
the behavior of nk is relatively simple and predictable every-
where except the short intervals of time when φ(t) is very
small and the particle production occurs. In our particular
case, the average rate of growth of nk is close to the maximal
possible rate for our model, µk ∼ 0.3.

The time evolution is shown in units m/2π, which cor-
responds to the number of oscillations N of the inflaton
field φ. The oscillating field φ(t) ∼ Φ sin mt is zero at in-
teger and half-integer values of the variable mt/2π. This
allows us to identify particle production with time inter-
vals when φ(t) is very small.

During each oscillation of the inflaton field φ, the
field χ oscillates many times. Indeed, the effective mass
mχ(t) = gφ(t) is much greater than the inflaton mass m
for the main part of the period of oscillation of the field
φ in the broad resonance regime with q1/2 = gΦ

2m ≫ 1.
As a result, the typical frequency of oscillation ω(t) =
√

k2 + g2φ2(t) of the field χ is much higher than that of
the field φ. Within one period of oscillation of the field φ
the field χ makes O(q1/2) oscillations. That is why dur-
ing the most of this interval it is possible to talk about
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FIG. 5: Same as Fig. 4, but for the χ field.

explosive stage. As we remarked, the particle occupation
number is ill defined at this stage, and a nonlinear wave
description is more adequate.

The explosive stage of rescattering ends at about
mt ∼ 130 . In the next stage, characterized by pertur-
bative dynamics, the distributions smooth out and start
evolving (at a much slower rate) towards higher comov-
ing momenta. The spectra in the IR approach a satu-
rated power-law state, which then slowly propagates to-
wards the UV. Although one can observe a greater ten-
dency towards thermalization for the IR modes (where
the rescaled spectra are closer to flat), the overall dis-
tributions are still typical of the turbulent regime, and
they are far from thermal. If we contrast this with the
macroscopic behavior we have described above, particu-
larly the evolution of the EOS, we see that the system can
be considered in a pre–thermalized state (see also [17]),
but that thermalization is still far from being complete .

It is also instructive to consider the product of the
occupation number nk with the phase space sphere area
k2 and energy per mode ωk. This combination represents
the energy density of the quanta at momentum k (since
the product 4 π k2 ωk nk dk is the energy density of the
quanta whose momentum has a magnitude between k
and k + dk ).

In Figures 6 and 7, we plots the distributions at dif-
ferent times separated by intervals δt = 4π/m. This
allows us to visualize the growth of the distributions,
and to monitor the cascade of energy in the phase space
k. When the ultraviolet part of the distribution hits the
highest momentum of the simulation (defined by the grid
size), the energy is artificially reflected back to the IR
modes and the simulation is no longer reliable. Due to
the scale chosen (natural rather than log scale), only the
distributions at times greater than about 100/m can be
appreciated in the two figures 6 and 7. Moreover, the
double peak structure that can be observed for χ at late
times is due to the rescaling chosen. The plot for the
occupation number, nk k2 (not shown) has a high peak
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FIG. 7: Same as Figure 6, but for the field χ.

at k ∼ 4m , followed by a plateau up to k ∼ 30 m . The
combination k2ωknk shown has a peak at the momenta
corresponding to this plateau, showing that these mo-
menta dominate the energy density in the χ distribution.
The saturated spectra can be clearly seen in the green
(thick) curves on these plots.

The combination k2ωknk is also given in Figures 8 and
9, where we however show only few times, and we focus on
the IR part of the distributions. These figures show the
rapid broadening (towards the UV) of the distributions
in the violent rescattering stage, and the tendency to
saturation at later times.

D. Fluctuations and Effective Masses

The evolution of the scalar fields can be strongly af-
fected by the presence of dynamical effective masses for
the two fields. A high mass for some of the fields can
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iii) The third point is that w does not necessarily im-
mediately go to the radiation dominated value 1/3. This
is partly because immediately after preheating the light
field still has a significant induced effective mass due to
the interaction, and partly due to the significant residual
contribution from the homogeneous inflaton [13]. Unfor-
tunately, limitations on running longer simulations pre-
clude us from seeing further details of the time evolution
of w. However, we have a strong theoretical argument to
advance the discussion further. In a model with a massive
inflaton and light scalar χ even the radiation dominated
stage is transient. Indeed, sooner or later the massive
inflaton particles, even if significantly under-abundant at
the end of preheating, will become the dominant compo-
nent, and the universe will again be matter-dominated.

C. Occupation Numbers

The occupation numbers nχ
k and nφ

k are among the
most interesting variables to understand the micro-
physics in our system of two interacting fields. First,
we shall determine when the definition of nk is mean-
ingful. To do so, we consider the composition of total
energy density ϵ of the system of coupled φ and χ fields.
The total energy density ϵ can be decomposed into par-
tial contributions from the kinetic energy of both fields,
their gradient energy, their potential energy (φ only in
this model), and finally the interaction energy

ϵ =
1

2
φ̇2+

1

2
χ̇2+

1

2a2
(∇φ)2+

1

2a2
(∇χ)2+

1

2
m2φ2+

1

2
g2φ2χ2 .

(15)
Figure 3 shows the relative contribution to the total en-
ergy from each of the components for g2 = 2.5 × 10−7.
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FIG. 3: Relative contribution of each of the energy compo-
nents to the total energy, as a function of time. The vertical
axis is the log of the various energy components in units of
the initial energy m2φ2

0 multiplied by a3.

We note two features of this plot. First, the interaction
term is comparable to the other terms in the time interval
100/m < t < 120/m. In this short period, the formula

(6) for the energy of the particles is not a good approxi-
mation and the occupation number nk is not well defined.
Outside this time interval, nk is a meaningful quantity.
Secondly, the contribution from the background homoge-
neous inflaton is dominant even after preheating, up to
approximately t ∼ 150/m. A similar point was made for
the λφ4 model in [13].

Let us now turn to the occupation numbers nk. We
find it more instructive to output not the occupation
numbers nk per se (as it is commonly done in the lit-
erature) but the combination of nk with the energy per
mode ωk . This combination can be immediately com-
pared with the Rayleigh-Jeans spectrum,

nk ≈
Teff

ωk − µ
, (16)

which corresponds to the equipartition spectrum of clas-
sical waves (we introduce the chemical potential µ for
generality). The comparison allows to determine how
close the distribution is to the thermal one.
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FIG. 4: Time evolution of the combination ωφ,knφ
k , for the

model g2 = 2.5 · 10−7.

The combination nk ωk for the two fields is shown at
some characteristic times in the two Figures 4 and 5.
There are three distinct stages which characterize the
evolution covered by our simulation. The first stage,
characterized by linear dynamics, is the one of pre-
heating and early rescattering. The first modes to be
populated are the IR ones. Preheating of χ particles
occurs in the resonant band at comoving momentum
k∗ =

√
g mφ0 a1/4 ≃ 7 m a1/4 [6]. Then, quanta δ φ are

generated by rescattering. The annihilation δχk δχk →
δφk δφk amplifies quanta of the inflaton at k ≃ k∗ . Even
more effective is the rescattering of the χ quanta against
the inflaton zero mode, δχk φ0 → δχk δφk , which pro-
duces quanta of both φ and χ at momentum k ≃ k∗/2 .

The second stage is a violent stage of highly nonlinear
dynamics. Starting at mt ∼ 100 − 110 , the higher band
at k∗/2 both increases in its amplitude and broadens to-
wards higher momenta; quite interestingly, the peak lo-
cation shifts from ∼ k∗/2 to ∼ k∗ during this quick and
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III. OUTPUT OF THE CALCULATIONS

A. The Calculations

We performed three-dimensional lattice simulations for
the model of Section II. Our grid was a 256× 256 × 256
cube with a comoving edge size L = 10/m, which corre-
sponds to a comoving grid spacing of dx ≈ 0.04/m. As
energy flows towards the UV end of the spectrum the
simulations eventually reach a point where the grid spac-
ing is too large to capture the important UV physics.
By monitoring the spectra of the fields, however, we can
verify that these simulation parameters were adequate to
capture the relevant IR and UV physics well past the end
of preheating. The time step was dt = 0.001/m and the
inflaton mass was m = 10−6Mp. We used values of the
coupling near g2 = 10−7 This value is optimal because
it is large enough to produce highly efficient preheating,
but small enough that the occupation numbers nk ∼ 1/g2

produce strong rescattering. The results should be quali-
tatively similar for a wide range of values of g2, but would
require more IR and/or more UV to simulate accurately.

To probe later times and wider ranges of the couplings
it will be necessary to extend the lattice simulations.
This can be done with a parallelized version of the sim-
ulation code LATTICEEASY (currently under construc-
tion), or by combining the straightforward lattice simu-
lations with other methods, like the equations for a large
number of weakly coupled oscillators [22]. We intend to
pursue both of these approaches in subequent work.

In the rest of this section we present the results of our
simulations.

B. Equation of State

The time evolution of the EOS w(t) for different cou-
plings is shown in Figure 1. Each point plotted on this
figure represents the value of w averaged over a complete
inflaton oscillation. This represents one of the main re-
sults of our study.

Immediately after inflation, the EOS averaged over in-
flaton oscillations is w = 0. It sharply changes at the end
of preheating.

There are at least three important points worth enpha-
sizing about the evolution of w.

i) First, the transition of the EOS from w = 0 to the
value w ∼ 0.2 − 0.3 occurs very sharply, within a time
interval ∼ 10−36 sec.

Indeed, recall that the unit of time on the plots is 1/m,
where m is the inflaton mass, i.e. 10−37 sec. The first
stage of preheating is completed within about a hundred
of these units, i.e., 10−35 sec. The rise of w and gradual
saturation takes roughly the same time.

ii) Second, the dependence of w(t) on the coupling g2

for resonant preheating is a non-monotonic function of
g2.
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FIG. 1: Evolution of the equation of state w = w(t) as a
function of time (given in units of m−1) for various couplings
g2 around g2 = 2 × 10−7.

This is to say that the time during which preheating
comes to an end is very weakly (logarithmically) depen-
dent on the coupling. As seen from Figure 1 the curves
w(t) begin to shift to the left towards an earlier end of
preheating, as we vary g2 by 5%. However, at some point
the curves stop moving to the left and instead begin to
return toward the right. As we change g2 by about 25%,
the cycle repeats. As we vary g2, the function w not
only shifts, but it also varies its detailed shape. Still,
to characterize these variations, we pick up the moment
where w is equal to the value 0.15 (just for convenience
of calculation), w(ttran) = 0.15. This allows us to plot
the transition moment ttran(g2) as a function of g2, see
Figure 2.
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FIG. 2: Transition (preheating) time as a function of g2.

We see that the transition time varies between 100/m
and 150/m. This non-monotonic behavior of the dura-
tion of preheating is explained in the theory of broad
paremetric resonance [6] (see Sections 6 and 9 there).

The g2 dependence of the EOS is the critical issue
for the theory of modulated cosmological perturbations,
which we will discuss in Section IV.
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