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Linear evolution

Assume early Universe (say, prior to CMB last scattering) well described using small perturbations on 
FLRW geometry ( ). Assume .


Metric:  


Conformal Hubble parameter: 


Recall Friedmann equation:  


Photon distribution: Bose-Einstein with , 


Dark matter density:  ;     Baryon density: 

Dark matter peculiar velocity:                  ;     Baryon peculiar velocity: 


Fourier convention:   

c = 1 Ωk = 0

ds2 = a(η)2[−(1 + 2φ(η, x)) dη2 + (1 − 2ψ(η, x)) dx2]
ℋ ≡ d ln a/dη = aH

ℋ2 = a2H2
0 [a−3Ωm0 + a−4ΩR0 + ΩΛ0]
T = T̄(η) (1 + Θ(η, x, ̂p)) ρ̄γ ∝ T̄4

ρdm = ρ̄dm(η)(1 + δdm(η, x)) ρb = ρ̄b(η)(1 + δb(η, x))
vdm(η, x) vb(η, x)

f(η, x) = ∫
d3k

(2π)3
ei k⋅x fk(η) ≡ ∫k

ei k⋅x fk(η)

[See Dodelson, `Modern Cosmology’]



Linear evolution

Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


Photon Boltzmann equation


DM continuity ;                      Baryon continuity        

DM Euler         ;                      Baryon Euler


Einstein equations


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


Photon Boltzmann equation


DM continuity ;                      Baryon continuity        

DM Euler         ;                      Baryon Euler


Einstein equations


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

Linear evolution



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


 ;   [  is electron scattering optical depth: ]


     ;             

  ;      ; [ ]


 


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

·Θk + ikμ Θk = ·ψk − ikμ φk − ·τ [Θ0k − Θk + μvbk] τ ·τ = − neσTa

·δdm,k = − ikvdm,k + 3 ·ψk
·δb,k = − ikvb,k + 3 ·ψk

·vdm,k + ℋvdm,k = − ik φk
·vb,k + ℋvb,k = − ik φk + ·τR [3iΘ1k + vb,k] R ≡ (4ρ̄γ)/(3ρ̄b)

k2(φk − ψk) = − 32πGa2 ρ̄γ Θ2k

3ℋ ·ψk + k2ψk − 3ℋ2φk = − 4πGa2 [ρ̄dmδdm,k + ρ̄bδb,k + 4ρ̄γΘ0k]

Linear evolution



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


 ;   [  is electron scattering optical depth: ]


     ;             

  ;      ; [ ]


 


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

·Θk + ikμ Θk = ·ψk − ikμ φk − ·τ [Θ0k − Θk + μvbk] τ ·τ = − neσTa

·δdm,k = − ikvdm,k + 3 ·ψk
·δb,k = − ikvb,k + 3 ·ψk

·vdm,k + ℋvdm,k = − ik φk
·vb,k + ℋvb,k = − ik φk + ·τR [3iΘ1k + vb,k] R ≡ (4ρ̄γ)/(3ρ̄b)

k2(φk − ψk) = − 32πGa2 ρ̄γ Θ2k

3ℋ ·ψk + k2ψk − 3ℋ2φk = − 4πGa2 [ρ̄dmδdm,k + ρ̄bδb,k + 4ρ̄γΘ0k]

Linear evolution

Baryon-photon coupling

Acoustic oscillations (CMB, BAO)



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


 ;   [  is electron scattering optical depth: ]


     ;             

  ;      ; [ ]


 


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

·Θk + ikμ Θk = ·ψk − ikμ φk − ·τ [Θ0k − Θk + μvbk] τ ·τ = − neσTa

·δdm,k = − ikvdm,k + 3 ·ψk
·δb,k = − ikvb,k + 3 ·ψk

·vdm,k + ℋvdm,k = − ik φk
·vb,k + ℋvb,k = − ik φk + ·τR [3iΘ1k + vb,k] R ≡ (4ρ̄γ)/(3ρ̄b)

k2(φk − ψk) = − 32πGa2 ρ̄γ Θ2k

3ℋ ·ψk + k2ψk − 3ℋ2φk = − 4πGa2 [ρ̄dmδdm,k + ρ̄bδb,k + 4ρ̄γΘ0k]

Linear evolution

Gravitational coupling

Growth of structure



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


 ;   [  is electron scattering optical depth: ]


     ;             

  ;      ; [ ]


 


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

·Θk + ikμ Θk = ·ψk − ikμ φk − ·τ [Θ0k − Θk + μvbk] τ ·τ = − neσTa

·δdm,k = − ikvdm,k + 3 ·ψk
·δb,k = − ikvb,k + 3 ·ψk

·vdm,k + ℋvdm,k = − ik φk
·vb,k + ℋvb,k = − ik φk + ·τR [3iΘ1k + vb,k] R ≡ (4ρ̄γ)/(3ρ̄b)

k2(φk − ψk) = − 32πGa2 ρ̄γ Θ2k

3ℋ ·ψk + k2ψk − 3ℋ2φk = − 4πGa2 [ρ̄dmδdm,k + ρ̄bδb,k + 4ρ̄γΘ0k]

Linear evolution

Expansion of Universe

Growth of structure tempered



Linearise Boltzmann equations and Einstein equations. Work in Fourier space. Define  and .


Define monopole, dipole moments of photon temperature fluctuation:


 ;     ;    


Assume irrotational flow (valid since no linear sources):

 ;      [so if , then ]


Equations (neglecting neutrinos):


 ;   [  is electron scattering optical depth: ]


     ;             

  ;      ; [ ]


 


·f ≡ df/dη μ ≡ ̂p ⋅ ̂k

Θ0k(η) ≡
1

4π ∫ dΩ Θk(η, ̂p) Θ1k(η) ≡
i

4π ∫ dΩ Θk(η, ̂p) ( ̂p ⋅ ̂k) Θℓk(η) ≡
iℓ

4π ∫ dΩ Θk(η, ̂p) 𝒫ℓ( ̂p ⋅ ̂k)

vdm,k ≡ ̂k vdm,k vb,k ≡ ̂k vb,k v = ∇ω vk = ik ωk

·Θk + ikμ Θk = ·ψk − ikμ φk − ·τ [Θ0k − Θk + μvbk] τ ·τ = − neσTa

·δdm,k = − ikvdm,k + 3 ·ψk
·δb,k = − ikvb,k + 3 ·ψk

·vdm,k + ℋvdm,k = − ik φk
·vb,k + ℋvb,k = − ik φk + ·τR [3iΘ1k + vb,k] R ≡ (4ρ̄γ)/(3ρ̄b)

k2(φk − ψk) = − 32πGa2 ρ̄γ Θ2k

3ℋ ·ψk + k2ψk − 3ℋ2φk = − 4πGa2 [ρ̄dmδdm,k + ρ̄bδb,k + 4ρ̄γΘ0k]

Linear evolution

Length scales

 versus k {ℋ, ∂/∂η}
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but logarithmic. We will treat super-horizon versions of this equation as well as 
the more familiar sub-horizon version. When going though the math, though, it is 
useful to bear in mind the dueling concepts of gravity and pressure. 

7.1.1 Three Stages of Evolution 
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Figure 7.2. The linear evolution of the gravitional potential $ . Dashed line denotes that the 
mode has entered the horizon. Evolution through the shaded region is described by the transfer 
function. The potential is unnormalized, but the relative normalization of the three modes is 
as it would be for scale-invariant perturbations. Here baryons have been neglected, Qm — 1, 
and h = 0.5. 

The evolution of cosmological perturbations breaks up naturally into three 
stages. To see this, let's cheat and look at the solutions for several different modes. 
Figure 7.2 shows the gravitational potential as a function of scale factor for long-, 
medium-, and short-wavelength modes. Early on, all of the modes are outside the 
horizon {hrj <^ 1) and the potential is constant. At intermediate times (shaded in 
the figure), two things happen: the wavelengths fall within the horizon and the uni-
verse evolves from radiation domination {a <^ agq) to matter domination (a » aeq). 
Without getting into the details, we see that the order of these epochs (agq and 
the epoch of horizon crossing) greatly affects the potential. The large-scale mode, 
which enters the horizon well after agq̂  evolves much differently than the small-scale 
mode, which enters the horizon before equality. Finally, at late times, all the modes 
evolve identically again, in this case (where flrn — 1) remaining constant. 

Linear evolution

Relative amplitude:

∼ k−2 ln(k/keq)

At late times, all relevant

modes sub-Hubble, so:








so relative behaviour of :

 at small 


 at large 

δk ∼ k2φk

Pδ ∼ k4Pφ ∼ k (k3Pφ)
Pδ

∼ k k

∼ k−3 (ln(k/keq))
2

k
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Figure 7.3. The evolution of perturbations to the dark matter in the same model as plotted in 
Figure 7.2. Amplitude starts to grow upon horizon entry (different times for the three different 
modes shown here). Well after aeq, all sub-horizon modes evolve identically, scaling as the 
growth factor. In the case plotted, a flat, matter dominated universe, the growth factor is 
simply equal to a. 

potential at late times is to use Poisson's equation (the large-/c, no-radiation limit 
of Eq. (5.81)) 

^ = ? ? ^ - {a > aiate). (7.6) fc2 
The background density of matter is Pm — ^mpcr/a^^ and AnGpcr = {3/2)HQ, SO 

6{k^a) {a > aiate). (7.7) 
(3 /2)0^ i72 

This, together with Eq. (7.5), allows us to relate the overdensity today to the 
primordial potential 

3 k (7.8) 
^mJ-J-Q 

Equation (7.8) holds regardless of how the initial perturbation $p was generated. 
In the context of inflation, ^p(^) is drawn from a Gaussian distribution with mean 
zero and variance (Eq. (6.100)) P^ = (507rV9/c^)(A:/i/o)''"^^H(^m/^i(a = 1))^ 
So the power spectrum of matter at late times is 

P{k,a) = 2^^d%j^T\k) [-^^)' (« > '^late). (7.9) 
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Figure 7.2. Amplitude starts to grow upon horizon entry (different times for the three different 
modes shown here). Well after aeq, all sub-horizon modes evolve identically, scaling as the 
growth factor. In the case plotted, a flat, matter dominated universe, the growth factor is 
simply equal to a. 

potential at late times is to use Poisson's equation (the large-/c, no-radiation limit 
of Eq. (5.81)) 

^ = ? ? ^ - {a > aiate). (7.6) fc2 
The background density of matter is Pm — ^mpcr/a^^ and AnGpcr = {3/2)HQ, SO 

6{k^a) {a > aiate). (7.7) 
(3 /2)0^ i72 

This, together with Eq. (7.5), allows us to relate the overdensity today to the 
primordial potential 

3 k (7.8) 
^mJ-J-Q 

Equation (7.8) holds regardless of how the initial perturbation $p was generated. 
In the context of inflation, ^p(^) is drawn from a Gaussian distribution with mean 
zero and variance (Eq. (6.100)) P^ = (507rV9/c^)(A:/i/o)''"^^H(^m/^i(a = 1))^ 
So the power spectrum of matter at late times is 

P{k,a) = 2^^d%j^T\k) [-^^)' (« > '^late). (7.9) 

   
d2δ
da2

+ ( d ln(H)
da

+
3
a ) dδ

da
−

3Ωm0

2a5

H2
0

H2
δ = 0 ( ⟹

d2δ
da2

+
3

2a
dδ
da

−
3

2a2
δ = 0 during matter domination)

Linear evolution
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Figure 7.4. The power spectrum in two Cold Dark Matter models, with (ACDM) and without 
(sCDM) a cosmological constant. The spectra have been normalized to agree on large scales. 
The spectrum in the cosmological constant model turns over on larger scales because of a 
later aeq. Scales to the left of the vertical line are still evolving linearly. 

a = a*), the photon distribution can be characterized by only two moments, the 
monopole Go and the dipole ©i. All other moments are suppressed because the 
photons are tightly coupled to the electron/proton gas. After decoupling this ceases 
to be true, and to completely characterize the photon distribution we will need to 
follow high moments. However, for the purposes of the matter distribution, what 
the photons are doing after a* is irrelevant. For, by that time, which is typically well 
into the matter era, the potential is dominated by the dark matter itself. To sum 
up then, we can neglect all photon moments except for the monopole and dipole 
when we are considering the evolution of the matter distribution. 

Neglecting the higher radiation moments, the four relevant Boltzmann equations 
(Section 4.7) become 

©r 0 + kQ r.l - $ 

k —k 
©r.l - ^©r.O = - y ^ 

S -\-ikv = - 3 ^ 

(7.11) 

(7.12) 

(7.13) 

V -\—V = ik^. 
a (7.14) 

Even with the assumption that only the monopole and dipole are retained, getting 

〈 δk δ
∗

k′ 〉 = (2π)3 δD(k− k
′)P (k)

Linear power spectrum



At late times (well after photon decoupling), ignore radiation, assume baryons 
follow dark matter and neglect shear. 

Then, setting ,







 ;   [ ]


Defining , assuming irrotational flow (i.e., ) and :








where ,   ,   

φ = ψ

∇2ψ − 3ℋ ·ψ − 3ℋ2ψ = 4πGa2ρ̄m δ·δ + ∇ ⋅ [(1 + δ)v] = 3 ·ψ
·v + ℋv + (v ⋅ ∇) v = − ∇ψ v2 ≡ v ⋅ v

θ ≡ ∇ ⋅ v ∇ × v = 0 k/ℋ ≫ 1

·δk + θk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
δk2

α(k1, k2)

·θk + ℋθk +
3
2

Ωmℋ2δk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
θk2

β(k1, k2)

k12 ≡ k1 + k2 α(k1, k2) =
k1 ⋅ k12

k2
1

β(k1, k2) =
k2

12(k1 ⋅ k2)
2 k2

1 k2
2

Non-linear evolution



At late times (well after photon decoupling), ignore radiation, assume baryons 
follow dark matter and neglect shear. 

Then, setting ,







 ;   [ ]


Defining , assuming irrotational flow (i.e., ) and :








where ,   ,   

φ = ψ

∇2ψ − 3ℋ ·ψ − 3ℋ2ψ = 4πGa2ρ̄m δ·δ + ∇ ⋅ [(1 + δ)v] = 3 ·ψ
·v + ℋv + (v ⋅ ∇) v = − ∇ψ v2 ≡ v ⋅ v

θ ≡ ∇ ⋅ v ∇ × v = 0 k/ℋ ≫ 1

·δk + θk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
δk2

α(k1, k2)

·θk + ℋθk +
3
2

Ωmℋ2δk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
θk2

β(k1, k2)

k12 ≡ k1 + k2 α(k1, k2) =
k1 ⋅ k12

k2
1

β(k1, k2) =
k2

12(k1 ⋅ k2)
2 k2

1 k2
2

Non-linear evolution



Recovering linear sub-Hubble evolution:


Ignore quadratic terms (r.h.s.), differentiate 1st, use 
1st and second to eliminate  and :





Solutions are 


 (decaying mode) 

and 


 (growing mode)


Note: during matter domination, 

θk
·θk

··δk + ℋ ·δk −
3
2

Ωm(η)ℋ2 δk = 0

δ = D− ∝ ℋ/a = H

δ = D+ ∝ H∫
a

da′￼/(a′￼H(a′￼))3

D+ ∝ a

At late times (well after photon decoupling), ignore radiation, assume baryons 
follow dark matter and neglect shear. 

Then, setting ,










Defining , assuming irrotational flow (i.e., ) and :








where ,   ,   

φ = ψ

∇2ψ − 3ℋ ·ψ − 3ℋ2ψ = 4πGa2ρ̄m δ + 𝒪 ((∇ψ)2, ℋ2ψ2)·δ + ∇ ⋅ [(1 + δ)v] = 3 ·ψ + 𝒪 (v ⋅ ∇ψ, δ ·ψ)
·v + ℋv + (v ⋅ ∇) v = − ∇ψ + 𝒪 (ℋψ v, ℋv2v, ψ ∇ψ, v2 ∇ψ)

θ ≡ ∇ ⋅ v ∇ × v = 0 k /ℋ ≫ 1

·δk + θk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
δk2

α(k1, k2)

·θk + ℋθk +
3
2

Ωmℋ2δk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
θk2

β(k1, k2)

k12 ≡ k1 + k2 α(k1, k2) =
k1 ⋅ k12

k2
1

β(k1, k2) =
k2

12(k1 ⋅ k2)
2 k2

1 k2
2

Non-linear evolution



Comments:

• Generic solutions will clearly be non-linear in 

the ICs (e.g., PT expansion).  
Hence, e.g., non-zero 3-point function:  
late time field is non-Gaussian even if ICs are 
perfectly Gaussian. 


•Assumptions of zero shear and vorticity valid until 
`shell crossing’ (multi-streaming in phase space).  
For genuine CDM, multi-streaming will occur at 
small enough scales at any time during MD.  
So will access multi-streamed scales.


• Coarse-graining of some kind is thus needed. See 
literature on renormalised perturbation theory 
(RPT) or effective field theory (EFT).

∫k1
∫k2

At late times (well after photon decoupling), ignore radiation, assume baryons 
follow dark matter and neglect shear. 

Then, setting ,










Defining , assuming irrotational flow (i.e., ) and :








where ,   ,   

φ = ψ

∇2ψ − 3ℋ ·ψ − 3ℋ2ψ = 4πGa2ρ̄m δ + 𝒪 ((∇ψ)2, ℋ2ψ2)·δ + ∇ ⋅ [(1 + δ)v] = 3 ·ψ + 𝒪 (v ⋅ ∇ψ, δ ·ψ)
·v + ℋv + (v ⋅ ∇) v = − ∇ψ + 𝒪 (ℋψ v, ℋv2v, ψ ∇ψ, v2 ∇ψ)

θ ≡ ∇ ⋅ v ∇ × v = 0 k /ℋ ≫ 1

·δk + θk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
δk2

α(k1, k2)

·θk + ℋθk +
3
2

Ωmℋ2δk = − ∫k1
∫k2

(2π)3δD(k − k12) θk1
θk2

β(k1, k2)

k12 ≡ k1 + k2 α(k1, k2) =
k1 ⋅ k12

k2
1

β(k1, k2) =
k2

12(k1 ⋅ k2)
2 k2

1 k2
2

Non-linear evolution



Non-linear approximations



Spherical Collapse

ρinit

r

d2R / dt2 = −GM(<R,t) / R2

Assume no shell-crossing: M(<R,t) = M(<Rinit,tinit) = constant



Linearly extrapolated value:

Nonlinear solution:

Value at collapse

Excursion set peaks 3

TopHat-filtered variance:

s ≡ σ2
0 ≡

〈

δ2
〉

=

∫

d ln k∆2(k)W (kR)2 . (3)

We will exclusively use the notation ν ≡ δc/σ0 where
δc = 1.686 is the usual spherical collapse threshold.

Gaussian-filtered spatial moments:

σ2
jG ≡

∫

d ln k∆2(k) k2jWG(kRG)
2 , j ≥ 1 , (4)

so that σ2
1G =

〈

(∇δG)
2
〉

and σ2
2G =

〈

(∇2δG)
2
〉

.

Mixed moment:

σ2
1m ≡

〈

−δ∇2δG
〉

=

∫

d ln k∆2(k) k2WG(kRG)W (kR) . (5)

Characteristic volume:

R∗ ≡
√
3σ1G/σ2G ; V∗ = (2π)3/2R3

∗ . (6)

These are the same as defined by Bardeen et al. (1986).

Spectral parameter:

γ ≡ σ2
1m

σ0σ2G
=

〈

−δ∇2δG
〉

√

〈 δ2 〉 〈 (∇2δG)2 〉
= 〈xµ 〉 , (7)

where we defined the standardised variables

µ ≡ δ/σ0 and x ≡ −∇2δG/σ2G . (8)

Note that this definition of γ is similar but not identical
to the corresponding one in Bardeen et al. (1986), since
our peak heights are defined using TopHat smoothing.

2.2 Matching filter scales

The technical problem which we address in this subsec-
tion is how to ensure that the peaks in the Gaussian fil-
tered density field δG will have an overdensity δTH = δc
when smoothed with a TopHat, since essentially all mea-
surements in simulations use TopHats only. In practice,
we need a mapping between the scales RTH and RG of
the two filters. All previous work accomplishes this either
by matching the volumes: (4π/3)R3

TH = (2π)3/2 R3
G, or

by matching the variances:
〈

δ2TH

〉

=
〈

δ2G
〉

. In this sec-
ond case, the relation between RTH and RG depends on
the shape of the power spectrum. But neither of these
conditions guarantee that a peak identified on scale RG

satisfies δTH = δc.
For this reason, we construct the mapping between

RTH and RG by finding that RG (at a given RTH) for
which 〈 δG|δTH 〉 = δTH. This is equivalent to 〈 δGδTH 〉 =
〈

δ2TH

〉

. This definition circumvents the technical com-
plication arising from the variance of the Laplacian of
δTH (which involves a divergent integral). For the ΛCDM
P (k) we consider in this paper, RG ≈ 0.46RTH with a
mild mass-dependence which we account for, in the range
we explore, 3× 1010 < m/(h−1M#) < 3× 1015.

Our choice of matching between RTH and RG,
namely 〈 δG|δ 〉 = δ, means that p(δG|δ) is a Gaussian
with mean δ and variance

〈

δ2G
〉

− s. However,
〈

δ2G
〉

≈ s

to better than 5% and, thus, p(δG|δ) ≈ δD(δG − δ) (since
the cross-correlation between δG and δ is very close to
unity). This significantly simplifies our ESP analysis for
the following reason. In principle, the excursion set peaks
framework also requires us to keep track of the variable
x̃ ≡ δ′/

√

〈 δ′2 〉, where δ′ = dδ/ds. This scalar (isotropic)
variable correlates with µ and x, but not with the other
(anisotropic) variables used by Bardeen et al. (1986).
Therefore, one should in principle work with the three-
dimensional Gaussian vector (µ, x, x̃). However, because
p(δG|δ) ≈ δD(δG − δ), it turns out that setting x̃ = x
yields an excellent approximation (notice that this re-
lation is exact for the Gaussian filter). We have indeed
checked that our final answers for dn/d lnm only change
by a few percent if we switch between the approximate
and exact treatments. In the following, we will therefore
always set x̃ = x and only work with the two-dimensional
Gaussian vector (µ, x).

Even though we smooth the density field with a
tophat filter, there is no compelling reason to use such a
filter except to make a connection with the spherical col-
lapse approximation. Numerical simulations indeed sug-
gest that, while the Lagrangian volume occupied by the
proto-halos is rather compact, it is more diffuse than a
tophat window (Dalal et al., 2008; Porciani et al., 2002;
Despali et al., 2013). However, since a deep understand-
ing of halo collapse is still lacking, we will stick to the
tophat (and Gaussian) filters for simplicity.

2.3 Excursion set peaks with a constant barrier

Apart from the fact that the peak height is defined using
TopHat filtering, there is no formal change in the deriva-
tion by Paranjape & Sheth (2012) of the number density
of excursion set peaks for a constant barrier (and this
derivation is formally the same as that in Appel & Jones,
1990). In this case we get

fESP(ν) = VNESP(ν)

= (V/V∗)(e
−ν2/2/

√
2π)

×
∫ ∞

0

dx
x
γν

F (x)pG(x− γν; 1− γ2) , (9)

where V = m/ρ̄ = 4πR3/3 is the Lagrangian volume as-
sociated with the TopHat smoothing filter, F (x) is the
peak curvature function from equation (A15) of Bardeen
et al. (1986) and pG(y− ȳ;Σ2) is a Gaussian distribution
in y with mean ȳ and variance Σ2. (As noted in Paran-
jape & Sheth, 2012, F (x) *= 1 reflects the fact that the
ESP calculation averages over a special subset of posi-
tions.) Since we have been careful to define ν and hence
the mass using TopHat filtering, the mass function fol-
lows in the usual way from equation (2).

Figure 1 compares the ESP result for a constant bar-
rier B(s) = δc = 1.686 (solid red) with the fit to N -body
simulations from Tinker et al. (2008) (dashed green). For
the latter we used parameters from Table 2 of Tinker et
al. (2008) appropriate for halos identified using the spher-
ical overdensity (SO) definition at 200 times the mean

c© 0000 RAS, MNRAS 000, 1–12

Virialisation:

2 (K.E.) + (P.E.) = 0


Also K.E. + P.E. = constant


R(tvir) = R(tta) / 2

Δvir = 18𝜋2 ≃ 178

Spherical Collapse



Zel’dovich Approximation (1970)

Ya. B. Zel’dovich

“Straight line motion”

v(t,q) = f(t)∇ψ(q)

determined by linear perturbation theory

( ~ dD1/dt )

determined by initial conditions

(Movie: courtesy Sujatha Ramakrishnan)
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Figure 1. MICE-GC dark-matter lightcone simulation at z = 0.6. The image shows the wide dynamic range, about 5 decades in scale,
sampled by this Nbody simulation.

(linear) scales accessible to the observable universe, where

clustering statistics are Gaussian, down to to the highly non-

linear regime of structure formation where gravity drives

dark-matter and galaxy clustering away from Gaussianity.

We build halo and galaxy catalogues in order to help the de-

sign and exploitation of new wide-area cosmological surveys.

We present several applications of this large cosmological

simulation for 2D and 3D clustering statistics of dark-matter

in comoving outputs and in the lightcone.

One of the main focus of this paper is to investigate the

impact of mass-resolution e↵ects in the modeling of dark-

matter and galaxy clustering observables by comparing the

MICE-GC, and previous MICE runs, to analytic fits avail-

able based on high-resolution N-body simulations. For this

purpose, we have throughly analyzed the simulation outputs

using basic 3D and 2D clustering statistics in comoving out-

puts and in the lightcone. We show that our results are con-

sistent with previous work in linear and weakly non-linear

scales, and show how the new simulation better samples

power on small-scales, described by the highly non-linear

regime of gravitational clustering.

This paper is the first of a series of three introduc-

ing the MICE-GC end-to-end simulation, its validation and

several applications. Paper I (i.e. this paper) presents the

MICE-GC N-body lightcone simulation and its validation

using dark-matter clustering statistics. The halo and mock

galaxy catalog, along with their validation and applications

to abundance and clustering statistics are presented in Pa-

per II (Crocce et al. 2013). The all-sky lensing maps and

the inclusion of lensing properties to the mock galaxies are

discussed in Paper III (Fosalba et al. 2013).

Accompanying this series of papers, we make a first

public data release of the MICE-GC lightcone galaxy mock

(MICECAT v1.0) through a dedicated webportal for simu-

lations: http://cosmohub.pic.es, where detailed information

on the data provided can be found. We plan to release im-

proved versions of the MICE galaxy mocks through this web-

portal in due time.

This paper is organized as follows: Section §2 presents

the MICE-GC simulation and how it compares to state-of-

the-art in the field of numerical simulations in cosmology.

In §3, we validate the dark-matter outputs of the simulation

using the 3D matter power-spectrum, and its Fourier trans-

form, the 2-point correlation function (i.e., 2PCF). In §4
we investigate the distribution of dark-matter in the all-sky

lightcone by means of 2D pixelized maps. We focus in the

clustering of projected dark-matter counts in redshift bins

in real and redshift space using the angular power spec-

trum and its Legendre Transform, the angular 2PCF. We

compare these results to previous simulations and available

numerical fits. Section §5 presents an analysis of the 3-point

correlation function of the dark-matter comoving outputs in

the MICE-GC, and compares it to previous MICE runs and

theory predictions. Finally, in §6 we summarize our main

results and conclusions.

c� 0000 RAS, MNRAS 000, 000–000

MICE series



Simulations: CDM
Numerical techniques

Goal:  
Solve collisionless Boltzmann eqn with cold ICs


Approach:  
N-body technique 

• Sample phase space distribution function with mass tracers (`particles’) and 

follow their positions and velocities (Newton’s law augmented by Poisson 
equation).


• Avoid small scale 2-body effects through `force softening’ (Newton’s gravitational 
law with a core radius).


• Code efficiency + accuracy increases by combining Fourier techniques on 
particle mesh (PM) for large scale forces with direct calculations for small scale 
forces.


• Test for convergence of various statistics with Npart, softening scale, PM grid size, 
etc.


Typical application:  
Periodic cubic box in comoving coordinates.

304 M. R. Lovell et al.

Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6 and m1.5 (left to right, then top to bottom). The image
intensity and hue indicate the projected squared dark matter density and the density-weighted mean velocity dispersion, respectively (Springel et al. 2008a).
Each panel is 1.5 Mpc on a side.

While genuine haloes in a simulation at a given resolution are
expected to be present in the same simulation at higher resolu-
tion, this need not be the case for spurious haloes, as illustrated in
Fig. 5. Springel et al. (2008a) showed that it is possible to match
haloes and subhaloes between different resolution simulations by
tracing their particles back to the initial conditions and identifying
overlapping Lagrangian patches in the two simulations. We refer

to the initial Lagrangian region of each halo, or more precisely
the unperturbed simulation particle load, as its ‘protohalo’. The
initial positions of the particles displayed in Fig. 5 are shown in
Fig. 6. The two large objects originate from protohaloes of similar
size and location, but there are clear discrepancies in the number,
location and mass of the small objects. Thus, attempts to match
small haloes in the two simulations will often fail because spurious

MNRAS 439, 300–317 (2014)
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Products

Post-processing:

Identify halos, substructure, merger tree.


Predictions: 

Halo + subhalo mass functions, accretion history, clustering (halos/DM).

Figure 4

Steep mass functions. The black solid line shows the z = 0 dark matter halo mass function
(Mhalo = Mvir) for the full population of halos in the universe as approximated by Sheth, Mo &
Tormen (2001). For comparison, the magenta lines show the subhalo mass functions at z = 0
(defined as Mhalo = Msub = Mpeak, see text) at the same redshift for host halos at four
characteristic masses (Mvir = 1012, 1013, 1014, and 1015M�) with units given along the right-hand
axis. Note that the subhalo mass functions are almost self-similar with host mass, roughly shifting
to the right by 10⇥ for every decade increase in host mass. The low-mass slope of subhalo mass
function is similar than the field halo mass function. Both field and subhalo mass functions are
expected to rise steadily to the cuto↵ scale of the power spectrum, which for fiducial CDM
scenarios is ⌧ 1M�.

“flat” region of a galaxy rotation curve. For our “small-scale” mass of Mvir = 1011M�,

typically Vmax ' 1.2Vvir ' 60 km s�1.

1.4. Dark matter substructure

It was only just before the turn of the century that N -body simulations set within a cos-

mological CDM framework were able to robustly resolve the substructure within individual

dark matter halos (Ghigna et al. 1998; Klypin et al. 1999a). It soon became clear that

the dense centers of small halos are able to survive the hierarchical merging process: dark

matter halos should be filled with substructure. Indeed, subhalo counts are nearly self-

similar with host halo mass. This was seen as welcome news for cluster-mass halos, as the

substructure could be easily identified with cluster galaxies. However, as we will discuss

in the next section, the fact that Milky-Way-size halos are filled with substructure is less

clearly consistent with what we see around the Galaxy.

Quantifying subhalo counts, however, is not so straightforward. Counting by mass

is tricky because the definition of “mass” for an extended distribution orbiting within a

12 Bullock • Boylan-Kolchin
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Figure 4. Average mass profiles at z = 0 and accretion histories for halos in three different mass bins (see shaded regions in the bottom
panel of Fig. 2). Top left: Average mass profiles of all halos in each bin, plotted as enclosed mass (in units of M200), versus inner density
(in units of 200× the critical density). Dashed lines are best-fit NFW profiles, which have a single adjustable parameter, the concentration,
c = r200/r−2. Heavy symbols indicate the enclosed mass, M−2, and density, 〈ρ−2〉, at the scale radius of each profile. Residuals from
the best fits are shown in the bottom inset. Top right: Same as top-left panel, but scaled to the enclosed mass, M−2, and overdensity,
〈ρ−2〉, at the scale radius. Scaled in this manner, halo mass profiles all look alike and are very well approximated by an NFW profile
(dashed curve). Bottom left: Average accretion histories of the same halos shown in the top panels. The plots show the growth of the
virial mass of the main progenitor, normalized to the final mass at z = 0, as a function of time, expressed in terms of the critical density
of the Universe at each redshift. The dashed curves are not fits to the data. Rather, they indicate accretion histories parameterized, as
in the top panel, by an NFW profile in this M -ρ plane. The single adjustable parameter to these profiles is fully specified by the filled
heavy symbols, which indicate M−2, chosen to match that of the mass profiles (top-left panel) and by ρcrit(z−2), computed as 776 〈ρ−2〉
following the correlation shown in the middle panel of Fig. 3. The open heavy symbols indicate the scale mass and density of the fitted
NFW profile. Bottom right: Same accretion histories as in the bottom-left panel, but scaled to M−2 and 〈ρ−2〉 (open heavy symbols in
the bottom-left panel). Note the remarkable similarity in the shape of the halo mass profiles at z = 0 and that of the accretion histories
of their main progenitors.
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3. HALO MASS FUNCTION

3.1. Fitting Formula and General Results

Although the number density of collapsed halos of a given
mass depends sensitively on the shape and amplitude of the power
spectrum, successful analytical Ansätze predict the halo abun-
dance quite accurately by using a universal function describ-
ing the mass fraction of matter in peaks of a given height, ! !
"c/#(M; z), in the linear density field smoothed at some scale R ¼
(3M /4$%̄m)

1/3 (Press & Schechter 1974; Bond et al. 1991; Sheth
& Tormen 1999). Here, "c # 1:69 is a constant corresponding to
the critical linear overdensity for collapse and #(M ; z) is the rms
variance of the linear density field smoothed on scale R(M ). The
traditional nonlinear mass scale M$ corresponds to # ¼ "c. This
fact has motivated the search for accurate universal functions de-
scribing simulation results by Jenkins et al. (2001), White (2002),
and Warren et al. (2006). Following these studies, we choose the
following functional form to describe halo abundance in our
simulations:

dn

dM
¼ f (#)

%̄m
M

d ln #%1

dM
: ð2Þ

In extended Press-Schechter theory, the overdensity at a location
in a linear density field follows a random walk with decreasing
smoothing scale. The function f (#) is the #-weighted distribution
of first crossings of these random walks across a barrier separat-
ing collapsed objects from uncollapsed regions (e.g., where the
random-walking overdensity first crosses "c). The function f (#)
is expected to be universal to the changes in redshift and cos-
mology and is parameterized as

f (#) ¼ A
#

b

! "%a

þ1

# $
e%c=# 2

; ð3Þ

where

#2 ¼
Z

P(k)Ŵ (kR)k 2 dk; ð4Þ

P(k) is the linear matter power spectrum as a function of wave-
number k, and Ŵ is the Fourier transform of the real-space top-
hat window function of radius R. It is convenient to recall that the
matter variance monotonically decreases with increasing smooth-
ing scale; thus, higherM corresponds to lower #. In the figures and
text, we will use log #%1 as the independent variable. This quan-
tity increases monotonically with halo mass.

The functional form (3) was used in Warren et al. (2006) with
minor algebraic difference, and is similar to the forms used by
Sheth & Tormen (1999)11 and Jenkins et al. (2001). ParametersA,
a, b, and c are constants to be calibrated by simulations. The pa-
rameter A sets the overall amplitude of the mass function, while a
and b set the slope and amplitude of the low-mass power law, re-
spectively. The parameter c determines the cutoff scale at which
the abundance of halos exponentially decreases.

The best-fit values of these parameters were determined by fit-
ting equation (3) to all the z ¼ 0 simulations using &2 minimiza-
tion and are listed in Table 2 for each value of !. For! ) 1600,

we fix the value of A to be 0.26 without any loss of accuracy.12

This allows the other parameters to vary monotonically with!,
allowing for smooth interpolation between values of !.
Figure 5 shows the mass function measured for three values

of ! and the corresponding best-fit analytic functions. We plot
(M 2/%̄m) dn/dM rather than dn/dM to reduce the dynamic range
of the y-axis, as dn/dM values span nearly 14 orders of magni-
tude. The figure shows that as ! increases the halo masses be-
come systematically smaller. Thus, from ! ¼ 200 to 3200, the
mass scale of the exponential cutoff reduces substantially. The
shape of the mass function is also altered; at! ¼ 200 the loga-
rithmic slope at low masses is *%1.85, while at ! ¼ 3200 the
slope is nearly%2. This change in slope is due to two effects. First,
the fractional change in mass when converting between values of
! is not a constant; it depends on halo mass. Because halo con-
centrations are higher for smaller halos, the fractional change is
higher at lower masses, thus steepening the mass function. Sec-
ond, a number of low-mass objects withinR200 of a larger halo are
‘‘exposed’’ as distinct halos when halos are identified with ! ¼
3200. Although all halos contain substructure, these ‘‘revealed’’
subhalos will only impact overall abundance of objects at low
mass,M P 1012 h%1 M+, because the satellite fraction (the frac-
tion of all halos located within virial radii of larger halos) de-
creases rapidly from #20% to zero for M > 1012 h%1 M+ (e.g.,
Kravtsov et al. 2004). This trend can be understood using aver-
age properties of subhalos in parent CDM halos. Subhalo popu-
lations are approximately self-similar with only a weak trend with
mass (e.g., Moore et al. 1999; Gao et al. 2004), and the largest11 A convenient property of the Sheth & Tormenmass function is that one re-

covers the mean matter density of the universe when integrating over all mass;
the function is normalized such that

R
f (#) d ln #%1 ¼ 1. Eq. (3) does not con-

verge when integrating to log #%1 ¼ %1. In Appendix C we present a modified
fitting function that is properly normalized at all ! but still produces accurate
results at z ¼ 0.

12 Although a four-parameter function is required to accurately fit the data at
low!, at high overdensities the error bars are sufficiently large that a degeneracy
between A and a emerges, and the data can be fit with only three free parameters,
given a reasonable choice for A.

Fig. 5.—Measured mass functions for all WMAP1 simulations, plotted as
(M 2/%̄m) dn/dM against logM . The solid curves are the best-fit functions from
Table 2. The three sets of points show results for! ¼ 200, 800, and 3200 ( from
top to bottom). To provide a rough scaling betweenM and #%1, the top axis of the
plot shows#%1 for thismass range for theWMAP1 cosmology. The slight offset be-
tween the L1280 results and the solid curves is due to the slightly lower value of
"m ¼ 0:27.
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Figure 3. Baryon Acoustic Oscillations (BAO) measured in MICE-GC (black symbols with error-bars) power spectrum compared to the
theory prediction from Renormalized Perturbation Theory, RPT (blue line, see Crocce and Scoccimarro 2008) and the latest numerical
fit from the Coyote Emulator (orange line, Heitmann et al. 2013) and the revised Halofit (green line, Takahashi et al. 2012). The RPT
model at two loops reproduces very well the BAO in the simulation across redshifts (each panel is shown up to the maximum k where
RPT is valid). In turn at z = 0 the Emulator yields a very good match with MICE-GC (except for the amplitude of the first peak
with a di↵erence . 2%). At z = 0.5, 1 the broad-band power has the correct shape but is 2% (systematically) above the N-body. The
revised halofit also agrees with MICE-GC at the 2% level at these redshifts but the amplitude of the oscillations are somewhat too large.
Displayed error-bars assume Gaussian fluctuations, �P =

p
2/nmodesPk, but we take Pk to be the non-linear spectrum (see text).

logical simulation as a powerful tool to model accurately

current and upcoming deep wide-area astronomical surveys

such as DES2, HSC3, Euclid4, DESI5, HETDEX6, LSST7,

WFIRST8, among others.

We test the ability of MICE-GC to model these large-

surveys on the smaller scales and to what extent it resolves

the small-mass halos inhabited by the faintest galaxies these

surveys will observe. Figure 2 shows how MICE-GC com-

pares to the largest simulations currently available in per-

formance to sample large cosmological volumes and capture,

at the same time, low enough luminosity galaxies Lmin, or

equivalently, large enough r-band absolute magnitude Mr.

The relation between minimum halo mass and minimum

galaxy luminosities modeled, as shown in the Figure, as-

sumes a sub-halo abundance matching galaxy assignment

scheme on well-resolved dark-matter halos containing at least

100 particles. We show the following simulations: Millen-

nium XXL (MXXL; Angulo et al. (2012)), Horizon Runs

(HR; Kim et al. (2009, 2011)), Horizon Simulation (HS;

Teyssier et al. (2009)), DEUSS (Alimi et al. 2012), Jubilee

(Watson et al. 2013), MICE Intermediate Resolution (MICE-

IR; Fosalba et al. (2008)), MICE Super-Hubble-Volume (MICE-

SHV; Crocce et al. (2010)) and the MICE-GC simulation.

This suite of simulations includes numbers of particles

2
www.darkenergysurvey.org

3
www.naoj.org/Projects/HSC

4
www.euclid-ec.org

5
desi.lbl.gov

6
hetdex.org

7
www.lsst.org

8
wfirst.gsfc.nasa.gov

that span from about 10 billion up to 1 trillion particles,

already accesible in the largest supercomputers around the

world. This figure shows the trade-o↵ between high mass

resolution and large volume sampling what tends to dis-

tribute the most competitive simulations to date along the

dashed lines shown, depending on the number of particles

used. As an example, in order to resolve Mr = �18 galaxies

one would need to develop a simulation with a (4 Gpc/h)3

box-size that includes about 5 trillion particles (i.e, 163843).

This is one order of magnitude larger than the MXXL and

almost two orders of magnitude bigger than e.g, the MICE-

GC, which are among the largest simulations completed to

date.

3 3D CLUSTERING

3.1 Power spectrum

One of our main goals is to study the large scale clustering

with high precision, in particular the baryon acoustic oscilla-

tions (BAO). Hence Fig. 3 shows the matter 3D power spec-

trum measured in MICE-GC at large (BAO) scales for three

comoving outputs, z = 0, 0.5 and 1 (divided by a smooth

broad-band power). For comparison we included linear the-

ory, the Renormalized Perturbation Theory prediction as

presented in Crocce & Scoccimarro (2008), and the numer-

ical fits from Heitmann et al. (2013) (i.e., the Coyote Emu-

lator) and Takahashi et al. (2012), which we shall name the

revised halofit. The prediction from RPT reproduces very

well the region of BAO, thus cross validating the model-

ing and the N-body precision in describing this feature. We
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