

Large-Scale Structure 4. Zel'dovich approximation & Redshift Space Distortions

ICTP Summer School on Cosmology, July 2022

Aseem Paranjape

Zel'dovich Approximation (1970)

"Straight line motion"

 $\mathbf{v}(t,\mathbf{q}) = f(t)\,\nabla\psi(\mathbf{q})$

Ya. B. Zel'dovich

determined by initial conditions

determined by linear perturbation theory ($\sim dD_1/dt$)

(Movie: courtesy Sujatha Ramakrishnan)

Redshift Space Distortions

image courtesy: Percival (2013)

Linear theory power spectrum in redshift space [Kaiser 1987]

$$P_s(k,\mu) = (1+f\mu^2)^2 P(k)$$

Averaging over angles,

$$P_s(k) = \left(1 + \frac{2}{3}f + \frac{1}{5}f^2\right) P(k)$$

RSD: Linear Theory

Nonlinear effects: `Fingers-of-God'

Tegmark+ (2004) [SDSS]

Anisotropic Correlation Function

Power spectrum, and hence correlation function, is anisotropic.

Anisotropy can be characterised in several ways. Common choices are:

- Multipole moments
- Dependence on $r_{||}$ and r_{\perp}
- Clustering wedges

Padmanabhan+ (2012) [LasDamas SIMULATIONS]