
ICTP 2022 — Inflation

In the next pages you will find the text and the solutions of some home-
works, connected to the lectures on “Inflation” given at the 2022 ICTP Sum-
mer School. Some of them have the purpose of proving some statements
that were made without proof during the lectures. Some other of them are
estimates, made to clarify some concept through quick computations (so
sometimes I simplified things, to be able to get more quickly to the answer).

Marco Peloso



Homework set 1

Problem 1.1: For a perfect fluid with energy density ρ and pressure p,
in a flat, isotropic, and homogeneous Universe with scale factor a, we have
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where dot denotes time differentiation, and Mp is the reduced Planck mass.
(i) Manipulate these equations, so to obtain the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (2)

(ii) Denote by w ≡ p
ρ

the constant equation of state of the fluid. From the

continuity equation, write and solve a differential equation for ρ (a). Insert
the solution in the first equation of (1) and solve for a(t).

(iii) Specify the solution you found for the cases of w = 1/3 (radiation),
w = 0 (matter), and w = −1 (vacuum energy).

Problem 1.2: The figure below depicts us, surrounded by the last scat-
tering surface (the region from which the CMB radiation was emitted, when
the scale factor was about 1, 100 times smaller than today). For simplicity,
assume that it is our horizon, and denote its radius as dH ' H−1. The green
area represents a causally connected region at that time according to stan-
dard cosmology, as observed today. Assuming matter domination from CMB
emission to today, and recalling the evolution of the scale factor and of the
horizon discussed at lecture, evaluate the ratio r/R and the angle θ under
which we observe that region.
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ä

a
+
✓

ȧ
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where dot denotes time di↵erentiation, and Mp is the reduced Planck mass
(related to Newton constant by 8⇡G = 1

M2
p
).

(i) Manipulate these equations, so to obtain the continuity equation

⇢̇ + 3
ȧ

a
(⇢ + p) = 0 (2)

(ii) Denote by w ⌘ p
⇢

the constant equation of state of the fluid. From the

continuity equation, write and solve a di↵erential equation for ⇢ (a). Insert
the solution in the first equation of (1) and solve for a(t).

(iii) Specify the solution you found for the cases of w = 1/3 (radiation),
w = 0 (matter), and w = �1 (vacuum energy).

Problem 1.2: The figure shows us in the central location, surrounded
by the last scattering surface (the region from which the CMB radiation was
emitted). It was emitted when a = a0/1100. The green area represents a
causally connected region at that time, as observed today. Assuming matter
domination from CMB emission to today, and recalling the evolution of the
scale factor and of the horizon discussed at lecture, evaluate the ratio

r R
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ä

a
+
✓

ȧ
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⇢

the constant equation of state of the fluid. From the
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the solution in the first equation of (1) and solve for a(t).

(iii) Specify the solution you found for the cases of w = 1/3 (radiation),
w = 0 (matter), and w = �1 (vacuum energy).

Problem 1.2: The figure shows us in the central location, surrounded
by the last scattering surface (the region from which the CMB radiation was
emitted). It was emitted when a = a0/1100. The green area represents a
causally connected region at that time, as observed today. Assuming matter
domination from CMB emission to today, and recalling the evolution of the
scale factor and of the horizon discussed at lecture, evaluate the ratio r/R
and estimate the angle ✓. This is the angular size of the CMB regions that
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Homework set 2

Problem 2.1: In slow roll approximation,

3Hφ̇+ V ′ ' 0 , H2 ' V

3M2
p

(3)

where V is the inflaton potential, a the scale factor, H ≡ ȧ
a
, and where dot

and prime denote, respectively, differentiation with respect to time t and to
the inflaton field φ. (i) From the definition of H, and of the number of e-folds

eN = aend
a

(where “end” denotes the end of inflation), show that dφ
dN
' M2

pV
′

V
.

(ii) Integrate this relation for the inflaton potential V = 1
2
m2φ2, express the

slow roll parameters ε and η as a function of N , and show that the spectral
tilt and the rensor–scalar ratio are given by (for N � 1)

ns ' 1− 6ε+ 2η ' 1− 2

N
, r ' 16ε ' 8

N
(4)

(iii) Evaluate these quantities for N = 60, and compare them with the
values in the following Figure (taken from the 2018 Planck paper on inflation)

Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK15 (blue
contours).
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK15 or BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint
68 % and 95 % CL regions assume dns/d ln k = 0.

data we use the full constraining power of Planck, i.e., Planck
TT,TE,EE+lowE+lensing, in combination with BK15.

The ��2 and the Bayesian evidence values for a selec-
tion of inflationary models with respect to the R2 model
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Problem 2.2: A mode of comoving wavenumber k crossed the horizon
during inflation when its physical wavelength satisfied λ

2π
= ak

k
= H−1k . The

time tk corresponds to the number of e-folds N inside inflation. Assume
that we can effectively describe reheating as being dominated by a source of
constant (and unknown) equation of state w. Setting the present value of
the scale factor to one, a0 = 1, show that the relation

eN ≡ aend
ak

=
Hk

k

aend
areh

areh
a0

, (5)

evaluated for the Planck pivot scale k = 0.05 Mpc−1, can be rewritten as

N ' 55.6 + 2 ln
V

1/4
k

1016 GeV
+ ln

1016 GeV

ρ
1/4
end

− 1− 3w

12 (1 + w)
ln
ρend
ρreh

. (6)

In these expressions, V is the inflaton potential and ρ is the energy density;
the suffixes “end” and “reh” denote, respectively, the end of inflation and
reheating. Hint: use conservation of entropy to evaluate the last factor of
(5).
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• Garćıa-Bellido, MP, Unal ’16, ’17

• Bartolo et al, ’16

V (�) + g2 (�� �0)
2 �2

• Pearce, MP, Sorbo ’16, ’17

Signatures of particle production during inflation

reheating ?

Marco Peloso, University of Minnesota

V (�) +
�

4f
F F̃

• Namba, MP, Shiraishi, Sorbo, Unal ’15
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Homework set 3

Problem 3.1: Consider a universe filled with a massive inflaton that
decays into radiation with decay rate Γφ. Denote by ρφ and ργ the energy
densities of the inflaton and of the radiation, respectively, and by H ≡ ȧ

a

the Hubble rate (a is the scale factor of the Universe, and dot denotes time
differentiation).

The system is governed by the equations

ρ̇φ + (3H + Γφ) ρφ = 0

ρ̇γ + 4Hργ = Γφρφ

ρφ + ργ = 3M2
pH

2 (7)

(i) Verify that, for Γφ = 0, the solutions ρφ (a) and ργ (a) agree with what
we found in homework 1, namely ρφ ∝ a−3 and ργ ∝ a−4.

(ii) We are interested in the evolution of ργ at very early times. At these
times ργ � ρφ, and Γφ � H. Use these approximations in the first and third
equations of the above system, and find the approximate solution for ρφ (a)
and H (a). Take the initial condition ρφ = ρ̄ at a = 1.

Show that the second equation in the above system can be rewritten as

dργ
da

+
4

a
ργ =

Γφ
aH

ρφ (8)

Insert the solutions ρφ (a) and H (a) into this equation. Solve this equa-
tion to obtain the early time solution for ργ (a). Take the initial condition
ργ = 0 (hint: it might be useful to consider the differential equation for the
combination a4ργ).

(iii) Find the maximum value of ργ (a), and denote it by ρmax.
(iv) A common approximation done in studying this problem is to assume

that the inflaton instantaneously decays at Γφ = H. Use the third equation
above to find the energy density of radiation at the decay obtained with this
assumption. Denote it as ρinst.

(v) Discuss the ratio ρmax

ρinst
, showing that it is parametrically given by the

ratio between the initial Hubble rate and the inflaton decay rate. Notice that
this quantity can be several orders of magnitude greater than one.



Problem 3.2: From the previous problem, we have seen that ργ reaches
a peak soon after the end of inflation, and then it decreases as a−3/2, while
the inflaton is still dominating. Consider a particle X, produced by light
particles γ from the thermal bath with a γ + γ → X + X process, having
cross section proportional to a fixed poweer of the temperature, σ ∝ T n. Its
physical number density is governed by

dNX

dt
+ 3HNX = σ n2

γ (9)

where we recall that nγ ∝ T 3 (notice that we are neglecting the decrease of
nγ due to the production of X, and the inverse process X + X → γ + γ;
these assumptions are appropriate if the cross section is sufficiently small).
Compute the abundance YX ≡ nX

nγ
and study wether its growth is dominated

by earlier times (when ργ is close to its peak) or by late times (when the
decay of the inflaton completes). In the former case, the approximation
of instantaneous inflaton decay is a bad approximation for the purpose of
computing the final abundance of X. In the latter case, the approximation
is good. To see which times dominate, show that the abundance evolves
according to

YX = t−5/4
∫ t

tin

dt′

t′
C (t′)

α
(10)

where C is constant and α is related to n. Find this relation. The production
is dominated by the earliest times tin if α < 0.



Solutions

Problem 1.1

(i) We take the time derivative of the first of (1)

2
ȧä

a2
− 2

ȧ3

a3
=

ρ̇

3M2
p

(11)

which we rewrite as

ρ̇ = 6M2
p

ȧ

a

[
ä

a
− ȧ2

a2

]
(12)

Take the second equation in (1) minus three times the first equation in
(1)

2
ä

a
− 2

(
ȧ

a

)2

= − p

M2
p

− ρ

M2
p

(13)

From the last two equations we just wrote, we have

ρ̇ = 3M2
p

ȧ

a
×
[
− p

M2
p

− ρ

M2
p

]
(14)

which immediately gives the continuity equation indicated in the text.
(ii) We have

dρ

dt
+ 3

1

a

da

dt
(1 + w) ρ = 0 (15)

and we consider the differential

dρ+ 3 (1 + w)
da

a
ρ = 0 (16)

We separate variables

dρ

ρ
= −3 (1 + w)

da

a
(17)

and integrate ∫ ρ

ρin

dρ

ρ
= −3 (1 + w)

∫ a

1

da

a
(18)



This is integrated to give

ln
ρ

ρin
= −3 (1 + w) ln a (19)

and, taking the exponential of this,

ρ = ρin a
−3(1+w) (20)

Next, we inert this in the first of (1)

ȧ

a
=

ρ1/2√
3Mp

=
ρ
1/2
in√
3Mp

a−
3(1+w)

2 (21)

which we again rewrite in separate form

da

a
× a 3(1+w)

2 =
ρ
1/2
in√
3Mp

dt (22)

We need to distinguish two cases

w = −1 →
∫ a

1

da

a
=

ρ
1/2
in√
3Mp

∫ t

tin
dt

→ ln a =
ρ
1/2
in√
3Mp

(t− tin)

→ a = exp


 ρ

1/2
in√
3Mp

(t− tin)


 (23)

and

w 6= −1 →
∫ a

1
da a

3(1+w)
2
−1 =

ρ
1/2
in√
3Mp

∫ t

tin
dt

→ 2

3 (1 + w)

[
a

3(1+w)
2 − 1

]
=

ρ
1/2
in√
3Mp

(t− tin) (24)

Imposing a = 0 at t = 0 amounts in

2

3 (1 + w)
[0− 1] =

ρ
1/2
in√
3Mp

(0− tin) ⇒ tin =
2Mp√

3 (1 + w) ρ
1/2
in

(25)



namely, the constant factors cancel, and

w 6= −1 → a
3(1+w)

2 =
3 (1 + w)

2

ρ
1/2
in√
3Mp

t

→ a =


3 (1 + w)

2

ρ
1/2
in√
3Mp




2
3(1+w)

t
2

3(1+w)

→ a =
(
t

tin

) 2
3(1+w)

(26)

where we recognized the above expression for tin. Notice that indeed a = 1
for t = tin.

(vii) We have

radiation, w =
1

3
, a =

(
t

tin

)1/2

non− relativistic matter, w = 0 , a =
(
t

tin

)2/3

cosmological constant, w = −1 , a = exp


 ρ

1/2
in√
3Mp

(t− tin)


 (27)

Problem 1.2

(This is an estimate, and we do not enter into the definition of the vari-
ous horizons in FLRW, nor we account for the small corrections due to the
present accelerated phase), We denote as dCMB the size of the horizon at
CMB emission, when the scale factor was aCMB = a0

1100
. In our estimate,

we identify the radius of the last scattering surface observed by us with the
present horizon. The horizon grows as t, which, in matter domination, scales
as a3/2. Therefore

R = dCMB
a
3/2
0

a
3/2
CMB

(28)

The radius r in the figure corresponds to the region that was of size dCMB

at CMB emission. The size of any given physica region scales as a, and so

r = dCMB
a0

aCMB

(29)



We therefore have the ratio (notice that dCMB simplifies in the ratio)

r

R
=

√
aCMB

a0
' 0.03 (30)

and the angle

θ = 2 arcsin
r

2R
' 1.7◦ (31)

Problem 2.1

(i) We use the definition of H and N to “trade” dt for dN :

dN eN = −aend
a2

da ⇒ dN = −da
a

= −H dt (32)

This gives
dφ

dN
' − 1

H

dφ

dt
' V ′

3H2
' M2

p V
′

V
(33)

(ii) For the inflaton potential V = 1
2
m2φ2, this relation reads

dφ

dN
' 2M2

p

φ
(34)

which is integrated as

∫ φ

φend

dφφ ' 2M2
p

∫ N

0
dN (35)

and solved by
φ2 − φ2

end ' 4M2
pN (36)

We can also evaluate the slow roll parameters

ε ≡ M2
p

2

(
V ′

V

)2

=
2M2

p

φ2
, η ≡M2

p

V ′′

V
=

2M2
p

φ2
(37)

Inflation ends at ε ' 1 so that φend '
√

2Mp. We then find

φ2 ' (4N + 2)M2
p ' 4N M2

p , N � 1 (38)



The slow roll parameters are therefore

ε = η ' 1

2N
(39)

and

ns ' 1− 2

N
, r ' 8

N
(40)

For N = 60 we obtain ns ' 0.967 and r ' 0.13 in agreement with the
figure in the text.

Problem 2.2

From the definition of a Megaparsec, and from the use of natural units,
we have

k = 0.05 Mpc−1 ' 3.2× 10−40 GeV (41)

From the Friedmann equation during inflation

Hk =
V

1/2
k√
3Mp

' 2.4× 1013 GeV


 V

1/4
k

1016 GeV




2

(42)

Therefore, from the first factor in (5),

ln
Hk

k
' 121.7 + 2 ln

V
1/4
k

1016 GeV
(43)

We then use the fact that the energy of a species with equation of state
w scales as ρ ∝ a−3(1+w), to write

ln
aend
areh

=
1

3 (1 + w)
ln
ρreh
ρend

(44)

Conservation of entropy during standard cosmology, is expressed as g∗s T 3 a3 =
const, where T is the temperature of the thermal bath and g∗s counts the
effecctive bosonic relativistic degrees of freedom for entropy. Assuming Stan-
dard Model content at reheating, g∗s,reh = 106.75. Treating the neutri-
nos as massless (as they are effectively massless when they decoupled) to-
day we have g∗s,0 ' 3.91. From this, and from the current temperature
T0 ' 2.73 K ' 2.35× 10−13 GeV we find

106.75× T 3
reh a

3
reh ' 3.91×

(
2.35× 10−13 GeV

)3
a30 (45)



Namely,
areh
a0
' 7.8× 10−14 GeV

Treh
(46)

For the thermal bath at the end of reheating, ρ
1/4
reh =

(
π2

30
g∗
)1/4

Treh '
2.43Treh. As a consequence

ln
areh
a0
' ln

1.9× 10−13 GeV

ρ
1/4
reh

' −66.1 + ln
1016 GeV

ρ
1/4
reh

(47)

Combining the three factors

N ' 55.6 + 2 ln
V

1/4
k

1016 GeV
+

1

3 (1 + w)
ln
ρreh
ρend

+ ln
1016 GeV

ρ
1/4
reh

= 55.6 + 2 ln
V

1/4
k

1016 GeV
+ ln

1016 GeV

ρ
1/4
end

+ ln
ρ
1/4
end

ρ
1/4
reh

+
1

3 (1 + w)
ln
ρreh
ρend

= 55.6 + 2 ln
V

1/4
k

1016 GeV
+ ln

1016 GeV

ρ
1/4
end

+

[
1

4
− 1

3 (1 + w)

]
ln
ρend
ρreh

= 55.6 + 2 ln
V

1/4
k

1016 GeV
+ ln

1016 GeV

ρ
1/4
end

− 1− 3w

12 (1 + w)
ln
ρend
ρreh

(48)

as we wanted to prove.

Problem 3.1

(i) For Γφ = 0, we have

dρφ
dt

+ 3
1

a

da

dt
ρφ = 0 (49)

We consider the differential, and separate variables,

dρφ
ρφ

= −3
da

a
(50)

which we integrate ∫ ρφ

ρφ,in

dφ

φ
= −3

∫ a

ain

da

a
(51)



to find
ln

ρφ
ρphi,in

= −3 ln
a

ain
(52)

which we exponentiate so to write

ρφ = ρφ,in

(
ain
a

)3

(53)

The computation is identical for radiation, with 3 replaced by 4

ργ = ργ,in

(
ain
a

)4

(54)

(ii) Assuming Γφ � H and ργ � ρφ, the first and third equation rewrite

ρ̇φ + 3Hρφ = 0

ρφ = 3H2M2
p (55)

From the first equation we obtained eq. (53), which we rewrite (using the
initial values specified in the text) as

ρφ = ρ̄ a−3 (56)

The other equation then gives

H =
ρ
1/2
φ√
3Mp

=
ρ̄1/2√
3Mp

1

a3/2
(57)

We now need to solve

dργ
dt

+ 4H ργ = Γφ ρφ (58)

We divide by H to write

dργ
dt
a
dt

da
+ 4ργ =

Γφ
H
ρφ (59)

or
dργ
da

+
4

a
ργ =

Γφ
aH

ρφ (60)

or
dργ
da

+
4

a
ργ =

Γφ
a

√
3Mp a

3/2

ρ̄1/2
ρ̄

a3
(61)



or
dργ
da

+
4

a
ργ =

C

a5/2
, C ≡

√
3ΓφMpρ̄

1/2 (62)

As suggested in the text, we note that

d (a4ργ)

da
= a4

dργ
da

+ 4 a3 ργ = a4
(
dργ
da

+
4

a
ργ

)
(63)

Therefore
d (a4ργ)

da
= C a3/2 (64)

We integrate it to write

∫ a4ργ

0
d
(
a4 ργ

)
= C

∫ a

1
a3/2da (65)

which gives

a4ργ = C
2

5
a5/2

∣∣∣
a

1
⇒ ργ =

2C

5

a5/2 − 1

a4
(66)

(iii) We need to find the maximum of the function

f (a) ≡ a5/2 − 1

a4
(67)

for a > 1. We see that this function starts at zero (at the initial value
a = 1 of the scale factor), then it grows, due to the inflaton decay, and
then it decreases, since the dilution from the expansion is stronger than the
production from the inflaton. We have

df

da
=

d

da

(
a−3/2 − a−4

)
= −3

2
a−5/2 + 4a−5 = 0 (68)

giving

a5/2 =
8

3
⇒ a =

(
8

3

)2/5

(69)

so that

fmax =
(

8

3

)−8/5 (8

3
− 1

)
' 0.35 (70)

Therefore

ρmax '
2

5

√
3ΓφMpρ̄

1/2 0.35 ' 0.24ΓφMpρ̄
1/2 (71)



(iv) In this case we have

Γφ = H =
ρ
1/2
inst√
3Mp

⇒ ρinst = 3M2
pΓ2

φ (72)

(v) The ratio is

ρmax

ρinst
' 0.24ρ̄1/2

3MpΓφ
=

0.24×
√

3MpHinitial

3MpΓφ
' 0.14

Hinitial

Γφ
(73)

Problem 3.2

Let us denote the physical number density of particles in the thermal
bath as nγ ∝ T 3. Let us denote with nX the physical number density of the
particle X, and with YX ≡ nX

nγ
the abundance of the particle relative to the

thermal bath.
The number density of X is governed by

dnX
dt

+ 3HnX = σ n2
γ (74)

Typically we are interested in the abundance of a particle X, defined by
the ratio between the number density of this particle and that of the thermal
bath,

YX ≡
nX
nγ

(75)

Particles are produced by the thermal bath formed immediately, with this
high Trh. However, these particles are diluted by the radiation that keeps
being produced by the decaying inflaton. This dilution effect becomes less
and less relevant as ρφ decreases below ργ, which happens when H ' Γφ.

Let us compute the evolution equation for YX .

dYX
dt

=
1

nγ

dnX
dt
− nX
n2
γ

dnγ
dt

=
1

nγ

[
−3HnX + σn2

γ

]
− nX
n2
γ

dnγ
dT

dT

dt
(76)



Since nγ = CT 3 (where C is a constant), we have dnγ = 3T 2CdT =

3T 2 nγ
T 3dT , namely dnγ

dT
= 3nγ

T
. Therefore

dYX
dt

= −3HYX + σ nγ −
nX
n2
γ

3nγ
T

dT

dt
(77)

which we rewrite as

dYX
dt

+ 3

[
H +

1

T

dT

dt

]
YX = σ nγ (78)

We know from the text that ργ ∝ a−3/2, meaning that T ∝ ρ1/4γ ∝
a−3/8. We also know that the inflaton is dominating and that it is effectiively
behaving as matter, so that a ∝ t2/3, and T ∝ t−1/4. We then have

H +
1

T

dT

dt
=

2

3t
+

d
dt

(
t−1/4

)

t−1/4
=

5

12 t
(79)

We also have
σnX ∝ T 3+n ∝ t−

n+3
4 (80)

so that
dYX
dt

+
5

4

YX
t

= C t−
n+3
4 (81)

where C is a constant.
It is convenient to define ỸX ≡ t5/4 YX , so that

dỸX
dt

=
5

4
t1/4YX + t5/4

dYX
dt

= t5/4
(
dYX
dt

+
5

4

YX
t

)
(82)

so that
dỸX
dt

= C t−
n+3
4 t5/4 = Ct−

n
4
+ 1

2 (83)

which we integrate to obtain

YX = t−5/4
∫ t

tin

dt′

t′
C (t′)

−n
4
+ 3

2 (84)

We see that the production is dominated by the earliest times if

−n
4

+
3

2
< 0 ⇒ n > 6 (85)


