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Waves from Binary Black Holes

(Figure: Kip Thorne)



GW150914: GR Is Pretty Good!

No PN inspiral - all NR
(or models)

Residuals � noise. GR
violations < 4%

Consistency:

Inspiral!M1, M2,
S1, S2
NR!Mf , Sf
Ringdown:
1 QNM!Mf , Sf



Quasi-normal modes: No Hair?

Stationary BH described only by
M and J (Kerr)
“A black hole has no hair”
Not necessarily true in alternative
theories
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Figurative representation of a black hole in action. All details of the infalling matter
are washed out. The final configuration is believed to be uniquely determined by
mass, electric charge, and angular momentum. Figure 1
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(Ruffini & Wheeler 1971)

Measure 2 least-damped QNMs
Check M , J from ! and �
Low SNR: next-gen LIGO, LISA

Dreyer et al (2004)
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Kerr Perturbations
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Overtones

Modes: hlm D

1X
nD0

Clmne
�i!lmnt

! D !r C i!i D !r � i=�

h � cos.!rt /e
�.t=�/

n D overtone index
No-hair: !lmn D !lmn.Mf ; af /
n sorts by decreasing damping times
Increasing n ! lower frequency
overtones often ignored (“subdominant”)



Ringdown Waveform Modeling

Buoannano, Cook, Pretorius (2007): equal mass BBH
- (2,2,0) + 3 overtones good even before peak of ‰4

- t.‰4;peak/ � t.hpeak/C 10M

EOB ringdown modeled with QNMs including overtones
Matching to inspiral-merger: sometimes pseudo-QNMs
Community: QNMs good for modeling, but h still
non-linear at tpeak
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Observing the Ringdown
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Single damped sinusoid model
Sensitive to start time
Discrepancy: non-linearities?
When does ringdown start?



Ringdown Start Time

At what point do QNMs provide the correct description?
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At tpeak (or even before) by including overtones!

(Giesler, Isi, Scheel, Teukolsky 2020)
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h22 D

NX
nD0

C22ne
�i!22n.t�t0/

Least-squares ! C22n, .MNR
f ; aNR

f / ! !22n
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Non-Linearities are Small!
Overtones ! linear description
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Overtone Decomposition
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Fundamental not dominant until � 10M (GW150914: � 3ms)
Early part dominated by overtones, not non-linearities!



Are We Just Overfitting?

Damped sinusoids are overcomplete

Completeness = red herring!

- QNMs ! an asymptotic expansion (“Any” wave eqn)

Fitting ¤ expansion in c.o.s.
Instability of QNMs? (Pseudospectra . . . )

- arXiv:2111.05415 (“Elephant and Flea”)
- Observationally irrelevant (arXiv:2205.08547)

Math is an experimental science!
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Consider small deviations from true .!; �/:

z!22n.Mf ; �f / D z!22n.Mf ; �f /.1C ı/; n > 0
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Robustness
Tested on 80 waveforms:
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Recovered remnant mass and spin median error ε ∼ 10−3
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Recovered .M; �/: median � � 10�3



Real Data: GW150914
Mass and spin with QNMs at t D tpeak:
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Testing the No-Hair Theorem with GW150914
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Cotesta et al arXiv:2201.00822 is wrong (Isi & Farr, Finch & Moore arXiv:2205.07809)
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The Area Theorem

Total horizon area of BHs cannot decrease

A D 8�M 2.1C
p
1 � �2/; � D J=M 2

Get M ’s and �’s for initial and final BHs:
Split h at tpeak

Analyze inspiral and ringdown separately
Premerger: Use NRSur7dq4 templates (PN as t ! �1)
Postmerger: Fit overtone model



Trickiness

P.E.: Match computed in freq space
Gibbs ! taper in t , then use f ! mixing or loss of SN
Compute in t -domain!

- Covariance = Toeplitz matrix, O.N 2/ inversion
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Results for GW150914
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Summary

Ringdown begins at peak strain (maybe earlier)
Overtones dominate early ringdown

Non-linearities in the ringdown surprisingly small

ˆ
are seemingly

Overtones enable a first test of the no-hair theorem
Similarly, first test of area theorem
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Fitting a Sequence of Basis Functions

Consider y D 1C x C x2 on Œ�1; 1�

Basis f1; x; x2g
Fit 1
Coefficient?
4=3

Fit f1; xg, stays 4=3
Fit f1; x; x2g. Changes to 1
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