Testing the No-Hair & Area Theorems with LIGO

Saul Teukolsky Cornell University & Caltech

ICTP, July 12, 2022

Collaborators

- Matt Giesler (Caltech)
- Max Isi (MIT)
- Mark Scheel (Caltech)
- Will Farr (CCA/Stony Brook)

arXiv:1903.08284, 1905.00869, 2012.04486

Waves from Binary Black Holes

(Figure: Kip Thorne)

GW150914: GR Is Pretty Good!

- No PN inspiral all NR (or models)
- Residuals ~ noise. GR violations < 4%
- Consistency:
 - Inspiral $\rightarrow M_1, M_2, S_1, S_2$
 - NR $\rightarrow M_f$, S_f
 - Ringdown: 1 QNM $\rightarrow M_f, S_f$

Quasi-normal modes: No Hair?

- Stationary BH described only by *M* and *J* (Kerr)
- "A black hole has no hair"
- Not necessarily true in alternative theories

(Ruffini & Wheeler 1971)

Quasi-normal modes: No Hair?

- Stationary BH described only by *M* and *J* (Kerr)
- "A black hole has no hair"
- Not necessarily true in alternative theories

- Measure 2 least-damped QNMs
- Check M, J from ω and τ
- Low SNR: next-gen LIGO, LISA

Dreyer et al (2004)

(Ruffini & Wheeler 1971)

Kerr Perturbations

$$\Psi_{4} = \int d\omega \, e^{-i\omega t} \sum_{lm} e^{im\phi} S_{lm}(\theta, a\omega) R_{lm}(r, \omega)$$
$$\frac{d^{2}R}{dr_{*}^{2}} + \left[\omega^{2} - V(r)\right] R = 0 \qquad (a = 0)$$
$$\Psi_{4} \sim \frac{d^{2}h}{dt^{2}}$$

Late times:
$$h \sim \sum C_{lmn} e^{-i\omega_{lmn}(t-r_*)} S_{lm}(\theta, a\omega_{lmn})$$

Modes:
$$h_{lm} = \sum_{n=0} C_{lmn} e^{-i\omega_{lmn}t}$$
 $(Y_{lm} \text{ vs. } S_{lm})$

Overtones

Modes:
$$h_{lm} = \sum_{n=0}^{\infty} C_{lmn} e^{-i\omega_{lmn}t}$$

$$\omega = \omega_{\rm r} + i\omega_{\rm i} = \omega_{\rm r} - i/\tau$$
$$h \sim \cos(\omega_{\rm r}t)e^{-(t/\tau)}$$

- *n* = overtone index
- No-hair: $\omega_{lmn} = \omega_{lmn}(M_f, a_f)$
- n sorts by decreasing damping times
- Increasing $n \rightarrow$ lower frequency
- overtones often ignored ("subdominant")

Buoannano, Cook, Pretorius (2007): equal mass BBH
 (2,2,0) + 3 overtones good even before peak of Ψ₄

- $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$

- Buoannano, Cook, Pretorius (2007): equal mass BBH
 (2,2,0) + 3 overtones good even before peak of Ψ₄
 - $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$
- EOB ringdown modeled with QNMs including overtones

Buoannano, Cook, Pretorius (2007): equal mass BBH
 (2,2,0) + 3 overtones good even before peak of Ψ₄

- $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$

- EOB ringdown modeled with QNMs including overtones
- Matching to inspiral-merger: sometimes pseudo-QNMs

Buoannano, Cook, Pretorius (2007): equal mass BBH
 (2,2,0) + 3 overtones good even before peak of Ψ₄

- $t(\Psi_{4,\text{peak}}) \sim t(h_{\text{peak}}) + 10M$

- EOB ringdown modeled with QNMs including overtones
- Matching to inspiral-merger: sometimes pseudo-QNMs
- Community: QNMs good for modeling, but *h* still non-linear at t_{peak}

Observing the Ringdown

• IMR: NR \rightarrow $(M_f, \chi_f) \rightarrow \omega_{220}$

- Single damped sinusoid model
- Sensitive to start time
- Discrepancy: non-linearities?
- When does ringdown start?

Ringdown Start Time

At what point do QNMs provide the correct description?

Ringdown Start Time

At what point do QNMs provide the correct description?

At tpeak (or even before) by including overtones!

(Giesler, Isi, Scheel, Teukolsky 2020)

$$h_{22} = \sum_{n=0}^{N} C_{22n} e^{-i\omega_{22n}(t-t_0)}$$

Least-squares $\rightarrow C_{22n}, (M_f^{NR}, a_f^{NR}) \rightarrow \omega_{22n}$

$$\mathcal{M} = 1 - \frac{\langle h_{22}^{\text{NR}}, h_{22}^{N} \rangle}{\sqrt{\langle h_{22}^{\text{NR}}, h_{22}^{\text{NR}} \rangle \langle h_{22}^{N}, h_{22}^{N} \rangle}}$$

 $\langle x(t), y(t) \rangle = \int_{t_0}^T x(t) \overline{y(t)} dt$

Non-Linearities are Small!

Overtones \rightarrow linear description

 $h_{22}^{NR} = SXS:BBH:0305$

Overtone Decomposition

• Fundamental not dominant until $\sim 10M$ (GW150914: ~ 3 ms)

• Early part dominated by overtones, not non-linearities!

• Damped sinusoids are overcomplete

- Damped sinusoids are overcomplete
- Completeness = red herring!

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)
 - arXiv:2111.05415 ("Elephant and Flea")

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)
 - arXiv:2111.05415 ("Elephant and Flea")
- Math is an experimental science!

- Damped sinusoids are overcomplete
- Completeness = red herring!
 - QNMs \rightarrow an asymptotic expansion ("Any" wave eqn)
- Fitting \neq expansion in c.o.s.
- Instability of QNMs? (Pseudospectra ...)
 - arXiv:2111.05415 ("Elephant and Flea")
 - Observationally irrelevant (arXiv:2205.08547)
- Math is an experimental science!

Consider *small* deviations from true (ω, τ) :

$$\widetilde{\omega}_{22n}(M_f,\chi_f) = \widetilde{\omega}_{22n}(M_f,\chi_f)(1+\delta), \quad n > 0$$

Robustness

Tested on 80 waveforms:

Recovered (*M*, χ): median $\epsilon \sim 10^{-3}$

Real Data: GW150914 Mass and spin with QNMs at $t = t_{\text{peak}}$:

Testing the No-Hair Theorem with GW150914

- $f_{221}(M_f, \chi_f)(1 + \delta f_1)$ $\tau_{221}(M_f, \chi_f)(1 + \delta \tau_1)$
- δf₁ = 0 to 20%
 (δτ₁ to 100%)
- Bayes factor for no-hair vs. floating $(f, \tau) = 1.75$

• SNR ≈ 24

 ≈ 14 in ringdown

 ≈ 8 in LSC analysis

Testing the No-Hair Theorem with GW150914

- $f_{221}(M_f, \chi_f)(1 + \delta f_1)$ $\tau_{221}(M_f, \chi_f)(1 + \delta \tau_1)$
- δf₁ = 0 to 20%
 (δτ₁ to 100%)
- Bayes factor for no-hair vs. floating $(f, \tau) = 1.75$

• SNR ≈ 24

 ≈ 14 in ringdown

 ≈ 8 in LSC analysis

Cotesta et al arXiv:2201.00822 is wrong (Isi & Farr, Finch & Moore arXiv:2205.07809)

The Area Theorem

Total horizon area of BHs cannot decrease

$$A = 8\pi M^2 (1 + \sqrt{1 - \chi^2}), \qquad \chi = J/M^2$$

- Get *M*'s and χ's for initial and final BHs:
 Split *h* at t_{peak}
 Analyze inspiral and ringdown *separately*
- Premerger: Use NRSur7dq4 templates (PN as t → -∞) Postmerger: Fit overtone model

Trickiness

- P.E.: Match computed in freq space
- Gibbs \rightarrow taper in *t*, then use $f \rightarrow$ mixing or loss of SN
- Compute in *t*-domain!
 - Covariance = Toeplitz matrix, $\mathcal{O}(N^2)$ inversion

Trickiness

- P.E.: Match computed in freq space
- Gibbs \rightarrow taper in *t*, then use $f \rightarrow$ mixing or loss of SN
- Compute in *t*-domain!
 - Covariance = Toeplitz matrix, $\mathcal{O}(N^2)$ inversion

Results for GW150914

- Exclude ΔA < 0 with
 97% prob (N = 1)
 95% prob (N = 0)
- Area th OK to $\gtrsim 2\sigma$

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown
- Non-linearities in the ringdown surprisingly small

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown
- Non-linearities in the ringdown surprisingly small

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown
- Non-linearities in the ringdown surprisingly small
- Overtones enable a first test of the no-hair theorem

- Ringdown begins at peak strain (maybe earlier)
- Overtones dominate early ringdown
- Non-linearities in the ringdown surprisingly small
- Overtones enable a first test of the no-hair theorem
- Similarly, first test of area theorem

• Consider
$$y = 1 + x + x^2$$
 on $[-1, 1]$

- Consider $y = 1 + x + x^2$ on [-1, 1]
- Basis $\{1, x, x^2\}$

- Consider $y = 1 + x + x^2$ on [-1, 1]
- Basis {1, *x*, *x*²}
- Fit 1 Coefficient?

- Consider $y = 1 + x + x^2$ on [-1, 1]
- Basis {1, *x*, *x*²}
- Fit 1 Coefficient?
- 4/3

- Consider $y = 1 + x + x^2$ on [-1, 1]
- Basis {1, *x*, *x*²}
- Fit 1 Coefficient?
- 4/3
- Fit {1, *x*}, stays 4/3

- Consider $y = 1 + x + x^2$ on [-1, 1]
- Basis {1, *x*, *x*²}
- Fit 1 Coefficient?
- 4/3
- Fit {1, *x*}, stays 4/3
- Fit $\{1, x, x^2\}$. Changes to 1