ANALYTICAL APPROACHES TO GRAVITATIONAL WAVE SIGNALS

Thibault Damour

Institut des Hautes Etudes Scientifiques

Summer School on Cosmology 2022 ICTP, Trieste, Italy 13 July 2022

STARTING FROM 14 SEPT 2015: GRAVITATIONAL WAVE (GW) DETECTIONS BY TWO LIGO (+ VIRGO+KAGRA+...) GW DETECTORS

$$m_1 = 36^{+5}_{-4} M_{\odot}$$
$$m_2 = 29^{+4}_{-4} M_{\odot}$$
$$\chi_{\text{eff}} = -0.06^{+0.17}_{-0.18}$$
$$D_{\text{L}} = 410^{+160}_{-180} \text{Mpc}$$

LIGO-Virgo p>0.5 Events (01-02-03a-03b; nov 2021) 90 events, incl.: 2 NS-NS; 3 NS-BH; 85 BH-BH

Masses in the Stellar Graveyard

LIGO Raw Data for First Binary Black Hole Events

0.15

0.05

0.1

Time(s)

LIGO-Virgo data analysis

Various levels of search and analysis of signals:

Online trigger searches:

CoherentWaveBurst Time-frequency (Wilson, Meyer, Daubechies-Jaffard-Journe, Klimenko et al.) Omicron-LALInference sine-Gaussians Gabor-type wavelet analysis (Gabor,...,Lynch et al.) Matched-filter: PyCBC (f-domain), gstLAL (t-domain)

Offline data analysis:

Generic transient searches Binary coalescence searches

Here: focus on matched-filter definition

(crucial for high SNR, significance assessment, and parameter estimation)

MATCHED FILTERING SEARCH AND DATA ANALYSIS

Banks of templates (e.g. 250 000 EOBNR templates in O1) for search inspiralling and coalescing BBH GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; $+ \sim 50\ 000\ PN$ inspiralling templates for m1+m2< 4 Msun; $- 50\ 000\ PN$ inspiralling templates for m1+m2< 4 Msun; $- 325\ 000\ EOB$ templates $+ 75\ 000\ PN$ templates

Two types of templates:

Bank of spinning EOB[NR] templates

(Taracchini et al. 14, Bohé et al'17) in ROM form (Puerrer et al.'14); Nagar et al...

Bank of Phenom[EOB+NR] templates

(Ajith...'07, Hannam...'14, Husa...'16, Khan...'16)

$$h(f) = A(f)e^{i\Psi(f)}$$
$$\Psi(f) = \sum_{n} c_n v^n(f) \; ; \; v(f) \equiv (\pi M f)^{\frac{1}{3}}$$

7

Basics of Gravitational Waves

In linearized GR (Einstein 1916, 1918):

$$g_{ij} = \delta_{ij} + h_{ij}$$

Two Transverse-Traceless (TT) tensor polarizations propagating at v=c

$$h_{ij} = h_+ (t - \frac{z}{c})(e_x^i e_x^j - e_y^i e_y^j) + h_x (t - \frac{z}{c})(e_x^i e_y^j + e_x^j e_y^i)$$

$$\frac{\delta L}{L} = \frac{1}{2}h_{ij}n^i n^j$$

Lowest-order generation: quadrupole formula

$$h_{ij} \simeq \frac{2G}{c^4 r} \ddot{Q}_{ij}^{TT} (t - r/c)$$
$$Q_{ij} = \int d^3 x \frac{T^{00}}{c^2} \left(x^i x^j - \frac{1}{3} x^s x^s \delta_{ij} \right)$$

Pioneering the GWs from coalescing compact binaries

Freeman Dyson 1963

Einstein 1918 + Landau-Lifshitz 1941

Freeman Dyson's challenge: describe the intense flash of GWs emitted by the last orbits and the merger of a binary BH, when v~c and r~GM/c^2

Gravitational Waves emitted by the Merger of two Black Holes

Tools used for the 2-body pb

Post-Newtonian (PN) approximation (**expansion in 1/c**)

Post-Minkowskian (PM) approximation (expansion in G)

Multipolar post-Minkowskian (MPM) approximation theory to the GW emission of binary systems

Matched Asymptotic Expansions useful both for the motion of strongly self-gravitating bodies, and for the nearzone-wavezone matching

Gravitational Self-Force (SF): expansion in m1/m2

Effective One-Body (EOB) Approach

Numerical Relativity (NR)

```
Effective Field Theory (EFT)
```

Quantum scattering amplitude —> classical PM approximation theory aided by Double-Copy, « Feynman-integral Calculus », Experimental Mathematics, ...

Tutti Frutti method

R

e

С

e

n

t

Long History of the GR Problem of Motion

Einstein 1912 : geodesic principle

$$-\int m\sqrt{-g_{\mu\nu}\,dx^{\mu}\,dx^{\nu}}$$

Einstein 1913-1916 post-Minkowskian $a_{-}(x) - n_{-} + h_{-}(x) = h_{-} \ll 1$

Einstein, Droste : post-Newtonian

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + h_{\mu\nu}(x) , \ h_{\mu\nu} \ll 1$$
$$h_{00} \sim h_{ij} \sim \frac{v^2}{c^2} , \ h_{0i} \sim \frac{v^3}{c^3} , \ \partial_0 h \sim \frac{v}{c} \partial_i h$$

Weakly self-gravitating extended bodies:

$$\nabla_{\nu} T^{\mu\nu} = 0 \quad ; \quad T^{\mu\nu} = \rho' u^{\mu} u^{\nu} + p g^{\mu\nu} \Rightarrow \nabla_{u} u^{\mu} = O(\nabla p)$$

Einstein-Grossmann '13,

1916 post-Newtonian: Droste, Lorentz, Einstein (visiting Leiden), De Sitter ; Lorentz-Droste '17, Chazy '28, Levi-Civita '37,

Eddington' 21, ..., Lichnerowicz '39, Fock '39, Papapetrou '51, ... Dixon '64, Bailey-Israël '75, Ehlers-Rudolph '77....

Difficulties at higher PN approximations ca.1970:

Chandrasekhar-Nutku'69, Chandraskhar-Esposito'70, Burke'69-70, Thorne'69, Ohta-Okamura-Kimura-Hiida'73

BASICS OF BLACK HOLES

1916 Schwarzschild (non rotating) Black Hole (BH)

$$ds^{2} = -(1 - \frac{2GM}{c^{2}r})dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{c^{2}r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

Schwarzschild radius (singularity ?): $r_S = 2GM/c^2$

1939 Oppenheimer-Snyder « continued collapse »

1963 Kerr Rotating BH: M, S

1965 Doroshkevich, Zel'dovich, Novikov

1969 Penrose

Horizon: cylindrical-like regular null hyper-surface whose sectional area is nearly constant, and actually slowly increasing (Christodoulou '70, Christodoulou-Ruffini '71, Hawking '71)

No hair property in D=4

radial potential
$$A_S(r) = 1 - \frac{2GM}{c^2 r}$$

Challenge: Motion of Strongly Self-gravitating Bodies (NS, BH)

Multi-chart approach to motion of strong-self-gravity bodies, and matched asymptotic expansions [EIH '38], Manasse '63, Demianski-Grishchuk '74, D'Eath'75, Kates '80, Damour '82

Useful even for weakly self-gravitating bodies, i.e. "relativistic celestial mechanics", Brumberg-Kopeikin '89, Damour-Soffel-Xu '91-94

Combine two expansions in two charts:

1 - >

1...

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + Gh^{(1)}_{\mu\nu}(x) + G^2h^{(2)}_{\mu\nu}(x) + \dots G_{\alpha\beta}(x) = G^{(0)}_{\alpha\beta}(x) + G^{(1)}_{\alpha\beta}(x)_8 + \dots$$

Practical Techniques for Computing the Motion of Compact Bodies (NS or BH)

Skeletonization : $T_{\mu\nu} \rightarrow$ point-masses (Mathisson '31, Infeld'54,...)

Perturbatively solving Einstein eqs: Post-Minkowskian or Post-Newtonian

$$\Box \equiv \Delta - \frac{1}{c^2} \partial_t^2 \qquad (-g)^{1/2} g^{\mu\nu} \equiv \eta^{\mu\nu} + h^{\mu\nu} \text{ with } \partial_\nu h^{\mu\nu} = 0$$

$$\Box h^{\alpha\beta} = 16\pi G \sum_{a} m_a \int ds_a g^{1/2} \delta_4(x - z_a(s_a) u_a^{\alpha} u_a^{\beta} + N^{\alpha\beta} + \cdots$$

$$N^{\alpha\beta} = -h^{\mu\nu}\partial^{2}_{\mu\nu}h^{\alpha\beta} + \frac{1}{8}\eta^{\alpha\beta}\partial_{\mu}h\partial^{\mu}h - \frac{1}{4}\partial^{\alpha}h\partial^{\beta}h - \frac{1}{4}\eta^{\alpha\beta}\partial_{\mu}h_{\nu\rho}\partial^{\mu}h^{\nu\rho} + \frac{1}{2}\eta^{\alpha\beta}\partial_{\mu}h_{\nu\rho}\partial^{\nu}h^{\mu\rho} + \frac{1}{2}\partial^{\alpha}h^{\mu\nu}\partial^{\beta}h_{\mu\nu} - \partial^{\alpha}h^{\mu\nu}\partial_{\mu}h^{\beta}_{\nu} - \partial^{\beta}h^{\mu\nu}\partial_{\mu}h^{\alpha}_{\nu} + \partial_{\nu}h^{\alpha\mu}\partial^{\nu}h^{\beta}_{\mu} + \partial_{\nu}h^{\alpha\mu}\partial^{\mu}h^{\beta}_{\nu}$$
(A16)

These eqs of motion involve retarded gravitational interactions and thereby contain both conservative and dissipative effects, as exhibited by expanding them in a Post-Newtonian series in powers of 1/c (retardation)

2.5PN (1/c^5) Eqs of Motion (Damour-Deruelle'81, Damour'82)

$$a_{1} = \frac{Gm_{2}}{r_{12}^{2}} n_{12}$$
Newtonian acceleration

$$+ \frac{1}{t^{2}} \left\{ \left[\frac{5G^{2}m_{1}m_{2}}{r_{12}^{3}} + \frac{4G^{2}m_{2}^{2}}{r_{12}^{3}} + \frac{Gm_{2}}{r_{12}^{2}} \left(\frac{3}{2}(n_{12}v_{2})^{2} - v_{1}^{2} + 4(v_{1}v_{2}) - 2v_{2}^{2} \right) \right] n_{12}$$

$$+ \frac{1}{t^{2}} \left\{ \left[-\frac{5G^{2}m_{1}m_{2}}{r_{12}^{3}} + \frac{4G^{2}m_{2}^{2}}{r_{12}^{3}} - \frac{9G^{3}m_{2}^{3}}{r_{12}^{4}} - \frac{9G^{3}m_{2}^{3}}{r_{12}^{4}} + \frac{1}{t^{2}} \left\{ \left[-\frac{5TG^{3}m_{1}^{2}m_{2}}{4(n_{12}v_{1}) - 3(n_{12}v_{2})v_{1}^{2} - 6(n_{12}v_{2})^{2}(v_{1}v_{2}) - 2(v_{1}v_{2})^{2} + \frac{9}{2}(n_{12}v_{2})^{2}v_{2}^{2} + \frac{1}{2} \left(\frac{1}{t^{2}} \left(-\frac{5TG^{3}m_{1}m_{2}}{4r_{12}} - \frac{69G^{3}m_{1}m_{2}^{2}}{2r_{12}^{3}} - \frac{9G^{3}m_{2}^{3}}{r_{12}^{4}} + \frac{1}{t^{2}} \left(-\frac{5}{8}(n_{12}v_{2})^{4} + \frac{3}{2}(n_{12}v_{2})^{2}v_{1}^{2} - 6(n_{12}v_{2})^{2}(v_{1}v_{2}) - 2(v_{1}v_{2})^{2} + \frac{9}{2}(n_{12}v_{2})^{2}v_{2}^{2} + \frac{4(v_{1}v_{2})v_{2}^{2} - 2v_{1}^{4}}{r_{12}^{3}} + \frac{1}{t^{2}} \left(-\frac{6}{8}(n_{12}v_{1})^{2} - 39(n_{12}v_{1})(n_{12}v_{2}) + \frac{17}{2}(n_{12}v_{2})^{2} - \frac{15}{4}v_{1}^{2} - \frac{5}{2}(v_{1}v_{2}) + \frac{5}{4}v_{2}^{2} \right) + \frac{6G^{2}m_{1}m_{2}}{r_{12}^{3}} \left(-\frac{3}{2}(n_{12}v_{1})(n_{12}v_{2}) - 6(n_{12}v_{2})^{2} - 6(n_{12}v_{2}) + \frac{1}{2}\left(\frac{1}{t^{2}}(n_{12}v_{1}) - 2(n_{12}v_{1})(n_{12}v_{2}) - 6(n_{12}v_{2})^{2} - 8(v_{12}v_{1}) + \frac{1}{2}\left(\frac{1}{t^{2}}(n_{12}v_{1}) - 2(n_{12}v_{1})(n_{12}v_{2}) - 6(n_{12}v_{2})^{2} + \frac{1}{t^{2}}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) - 2(n_{12}v_{2}) \right) + \frac{1}{t^{2}}\left(-\frac{63}{4}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{63}{4}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{63}{1}(n_{12}v_{1})(v_{12}v_{2}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) - \frac{2}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) - \frac{2}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) + \frac{1}{t^{2}}\left(-\frac{1}{t^{2}}(n_{12}v_{1}) + \frac{$$

Technical bottleneck of PM approach (at the time and, partly, still today): computing spacetime integrals involving retarded propagators and the nonlinear gravitational interactions of GR

Beyond 2.5PN : Separate Conservative and Radiation Damping Effects

Conservative Dynamics: use the post-Newtonian (PN) approximation method

$$\Box^{-1} = (\Delta - \frac{1}{c^2}\partial_t^2)^{-1} = \Delta^{-1} + \frac{1}{c^2}\partial_t^2\Delta^{-2} + \dots$$

Simpler to iterate instantaneous
Newtonian 1/r=1/lx-yl potential 1/lx-yl

Radiation Damping: assume balance and compute radiation losses at infinity using a **Multipolar Post-Minkowskian** (MPM) approach

State of the art for PN dynamics

- 1PN (including v²/c²) [Lorentz-Droste '17], Einstein-Infeld-Hoffmann '38
- 2PN (inc. v⁴/c⁴) Ohta-Okamura-Kimura-Hiida '74, Damour-Deruelle '81 Damour '82, Schäfer '85, Kopeikin '85
- 2.5 PN (inc. v⁵/c⁵) Damour-Deruelle '81, Damour ⁵², Schäfer '85, LO-radiation-reaction Kopeikin '85
- 3 PN (inc. v⁶/c⁶) Jaranowski-Schäfer '98, Blanchet-Faye '00, Damour-Jaranowski-Schäfer '01, Itoh-Futamase '03, Blanchet-Damour-Esposito-Farèse' 04, Foffa-Sturani '11
- 3.5 PN (inc. v⁷/c⁷) Iyer-Will '93, Jaranowski-Schäfer '97, Pati-Will '02, Königsdörffer-Faye-Schäfer '03, Nissanke-Blanchet '05, Itoh '09
- 4PN (inc. v⁸/c⁸) Jaranowski-Schäfer '13, Foffa-Sturani '13,'16 Bini-Damour '13, Damour-Jaranowski-Schäfer '14, Marchand+'18, Foffa+'19

New feature at G⁴/c⁸ (4PN and 4PM) : **non-locality in time** (linked to IR divergences of formal PN-expansion) (Blanchet, TD '88)

- 5PN (inc. v¹⁰/c¹⁰ and G⁶) Bini-Damour-Geralico'19: complete modulo two
- numerical parameters; Bluemlein et al'21: potential-graviton contrib. and
- partial determination of radiation-graviton contrib. used QGRAF to generate
 545812 4-loop diagrams, and 332020 5-loop diagrams
- 6PN (inc. v¹²/c¹² and G⁷) Bini-Damour-Geralico'20: complete modulo four
- additional parameters

Inclusion of **spin-dependent effects**: Barker-O' Connell'75, Faye-Blanchet-Buonanno'06, Damour-Jaranowski-Schaefer'08, Porto-Rothstein '06, Levi '10, Steinhoff-Hergt-Schaefer '10, Steinhoff'11, Levi-Steinhoff'15-18, Bini-TD, Vines, Guevara-Ochirov-Vines,....

First complete 2PN and 2.5PN dynamics obtained by using 2PM (G^2) EOM of Bel et al.'81

soft (radiation) gravitons

2-body Taylor-expanded N + 1PN + 2PN Hamiltonian

$$H_{\rm N}(\mathbf{x}_a, \mathbf{p}_a) = \frac{\mathbf{p}_1^2}{2m_1} - \frac{1}{2} \frac{Gm_1m_2}{r_{12}} + (1 \leftrightarrow 2)$$

$$\begin{split} c^{2}H_{1\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{1}{8}\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{3}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(-12\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}m_{2}} + 2\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &+ \frac{1}{4}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G(m_{1}+m_{2})}{r_{12}} + (1 \leftrightarrow 2), \end{split}$$

$$\begin{split} c^{4}H_{2\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{1}{16}\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{5}} + \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\left(5\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} - \frac{11}{2}\frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} - \frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + 5\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- 6\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &+ \frac{1}{4}\frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}\left(m_{2}\left(10\frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19\frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}}\right) - \frac{1}{2}(m_{1}+m_{2})\frac{27(\mathbf{p}_{1}\cdot\mathbf{p}_{2}) + 6(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}m_{2}}\right) \\ &- \frac{1}{8}\frac{Gm_{1}m_{2}}{r_{12}}\frac{G^{2}(m_{1}^{2} + 5m_{1}m_{2} + m_{2}^{2})}{r_{12}^{2}} + (1 \leftrightarrow 2), \end{split}$$

11

2-body Taylor-expanded 3PN Hamiltonian [DJS 01]

$$\begin{split} c^{6}H_{3\mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= -\frac{5}{128}\frac{(\mathbf{p}_{1}^{2})^{4}}{m_{1}^{2}} + \frac{1}{32}\frac{Gm_{1}m_{2}}{r_{12}}\left(-14\frac{(\mathbf{p}_{1}^{2})^{3}}{m_{1}^{6}} + 4\frac{((\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2} + 4\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 6\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{4}m_{2}^{2}} \\ &\quad -10\frac{(\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2} + \mathbf{p}_{2}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2})\mathbf{p}_{1}^{2}}{m_{1}^{4}m_{2}^{2}} + 24\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{4}m_{2}^{2}} \\ &\quad +2\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} + \frac{(7\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 10(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} \\ &\quad +\frac{(\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2} - 2(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}^{3}} + 15\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{3}m_{2}^{3}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{12}\cdot\mathbf{p}_{1})(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{3}} + 5\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{3}}} + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}\left(\frac{1}{16}(m_{1} - 27m_{2})\frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} \\ &\quad -18\frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}m_{2}^{3}} + 5\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{3}(\mathbf{n}_{12}\cdot\mathbf{p}_{2})^{3}}{m_{1}^{3}m_{2}^{2}}} + \frac{17}{17}\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1}^{2}}{\mathbf{n}_{1}^{3}} + \frac{5}{12}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}}{m_{1}^{3}} \\ &\quad -\frac{18}{16}m_{1}\frac{(\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \frac{18}{m_{2}}\frac{25(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{17}{16}\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}}{m_{1}^{3}} + \frac{5}{12}\frac{(\mathbf{n}_{12}\cdot\mathbf{p}_{1})^{4}}{m_{1}^{3}m_{2}} \\ &\quad -\frac{18}{m_{1}}\frac{(\mathbf{15}\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{2}) + 11(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{1}\cdot\mathbf{p}_{1})(\mathbf{n}_{1}\cdot\mathbf{p}_{1})}{m_{1}^{3}m_{2}^{2}} + \frac{17}{16}\frac{\mathbf{p}_{1}^{2}(\mathbf{n}_{1}\cdot\mathbf{p}_{1})^{3}}{m_{1}^{3}m_{2}} \\ &\quad -\frac{18}{m_{1}}\frac{(\mathbf{p}_{1}\cdot\mathbf{p}_{2})(\mathbf{n}_{1}\cdot\mathbf{p}_{1})(\mathbf{n}_{1}\cdot\mathbf{p}_{2})}{m_{1}^{3}m_{1}^{3}} \\ &\quad -\frac{1}{8}m_{1}\frac{(\mathbf{p}_$$

* 5

2-body Taylor-expanded 4PN Hamiltonian [DJS, 2014, JS 2015]

(A3)

$$\begin{split} c^{8}H_{4\text{PN}}^{\text{local}}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{7(\mathbf{p}_{1}^{2})^{5}}{256m_{1}^{9}} + \frac{Gm_{1}m_{2}}{r_{12}}H_{48}(\mathbf{x}_{a},\mathbf{p}_{a}) + \frac{G^{2}m_{1}m_{2}}{r_{12}^{2}}m_{1}H_{46}(\mathbf{x}_{a},\mathbf{p}_{a}) \\ &+ \frac{G^{3}m_{1}m_{2}}{r_{12}^{3}}(m_{1}^{2}H_{441}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}m_{2}H_{442}(\mathbf{x}_{a},\mathbf{p}_{a})) \\ &+ \frac{G^{4}m_{1}m_{2}}{r_{12}^{4}}(m_{1}^{3}H_{421}(\mathbf{x}_{a},\mathbf{p}_{a}) + m_{1}^{2}m_{2}H_{422}(\mathbf{x}_{a},\mathbf{p}_{a})) \\ &+ \frac{G^{5}m_{1}m_{2}}{r_{12}^{4}}H_{40}(\mathbf{x}_{a},\mathbf{p}_{a}) + (1 \Leftrightarrow 2). \end{split}$$

11 (* * *)-	$45(\mathbf{p}_1^2)^4 9(\mathbf{n}_{12} \cdot \mathbf{p}_1)$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2$	$15(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2(\mathbf{p}_1^2)^2$	$9(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12})$	$(\mathbf{p}_2)(\mathbf{p}_1^2)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)$)
$a_{48}(x_a, p_a)$	128m ⁸	$64m_1^6m_2^2$	$64m_1^6m_2^2$	16	$m_1^6 m_2^2$	_
	$3(\mathbf{p}_1^2)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)^2$, 1	$5(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{p}_1^2)^2 \mathbf{p}_1$	$\frac{3}{2}$ 21(p_1^2) ³ p_2^2 35	$(n_{12} \cdot p_1)^5 (n_{12} \cdot p_2)^5$	2)3	
	32m ⁶ ₁ m ² ₂	$64m_1^6m_2^2$	$64m_1^6m_2^2$	256m ⁵ ₁ m ³ ₂		
	$_{12}^{25}(n_{12}\cdot p_1)^3(n_{12}\cdot p_2)$	$(\mathbf{p}_2)^3 \mathbf{p}_1^2 \ 33(\mathbf{n}_{12} \cdot \mathbf{p}_2)$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^3 (\mathbf{p}_1^2)^2$	$85(\mathbf{n}_{12} \cdot \mathbf{p}_1)^4(\mathbf{n}_{12})^4$	$({\bf p}_2)^2({\bf p}_1 \cdot {\bf p}_2)$	
	128m ⁵ ₁ m ³ ₂	2	56m ⁵ ₁ m ³ ₂	256m	m2	
	$45(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12} \cdot \mathbf{p}_1)$	$(\mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2) = (\mathbf{n}_1 \cdot \mathbf{p}_2)$	$(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_2 \cdot \mathbf{p}_2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_2 \cdot \mathbf$	$(\mathbf{p}_2) = 25(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	$(n_{12} \cdot p_2)(p_1 \cdot p_2)$	2
	128m ³ ₁ /	n ³ ₂	$256m_1^5m_2^3$	6	$4m_1^5m_2^3$	
	$\frac{7(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{1}$	$p_1^2(p_1 \cdot p_2)^2 = 3(n_1)^2$	$(2 \cdot \mathbf{p}_1)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^3$	$3p_1^2(p_1 \cdot p_2)^3$, 55	$(n_{12} \cdot p_1)^5 (n_{12} \cdot p_1)^5$	2) p [
	64m ⁵ m	2	$64m_1^5m_2^5$	64m ³ ₁ m ³ ₂	$256m_1^5m_2^3$	
	$7(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_2)$)p ² ₁ p ² ₂ _ 25(n ₁₂ ·p	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1^2)^2 \mathbf{p}_2^2$	23(n ₁₂ ·p ₁) ⁴ (p	$(-\mathbf{p}_2)\mathbf{p}_2^2$	
	$128m_1^5m_2^3$	2	256m ⁵ ₁ m ³ ₂	256m ⁵ m	2	
	$+\frac{7(\mathbf{n}_{12}\cdot\mathbf{p}_1)^2\mathbf{p}_1^2(\mathbf{p}_1\cdot\mathbf{p}_1)}{2}$	$(\mathbf{p}_2)\mathbf{p}_2^2 = 7(\mathbf{p}_1^2)^2(\mathbf{p}_1)^2$	$p_2)p_2^2 = 5(n_{12} \cdot p_1)$	$(n_{12} \cdot p_2)^4 p_1^2 + 7$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^4 (\mathbf{p}_1^2)^2$	
	$128m_1^5m_2^3$	256m ⁵	$m_2^3 = 64$	$m_1^4 m_2^4$	$64m_1^4m_2^4$	
	$(n_{12} \cdot p_1)(n_{12} \cdot p_2)^3$	$\mathbf{p}_{1}^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2}) + (\mathbf{n}_{12} \cdot \mathbf{p}_{2})$	$(\mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 = 5$	$(n_{12} \cdot p_1)^4 (n_{12} \cdot p_2)^4$	$p_2)^2 p_{2,1}^2 21(n_{12})$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 \mathbf{p}_2^2$
	$4m_1^4m_2^4$		16m ⁴ ₁ m ⁴ ₂	$64m_1^4m_2^4$		$64m_1^4m_2^4$
	$3(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1^2)^2 \mathbf{p}_2^2$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_1)^3$	$(\mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)\mathbf{p}_{2+1}^2$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)\mathbf{p}_1^2$	$(\mathbf{p}_1 \cdot \mathbf{p}_2)\mathbf{p}_2^2$, (\mathbf{n}_1)	$(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$
	$32m_1^4m_2^4$	$4m_1^4$	# ⁴ 2	16m ⁴ ₁ m ⁴ ₂		$16m_1^4m_2^4$
	$\mathbf{p}_{1}^{2}(\mathbf{p}_{1}\cdot\mathbf{p}_{2})^{2}\mathbf{p}_{2}^{2}$, 7(1)	$\mathbf{n}_{12} \cdot \mathbf{p}_1)^4 (\mathbf{p}_2^2)^2 = 3($	$\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2 (\mathbf{p}_2^2)^2$	$7(\mathbf{p}_1^2)^2(\mathbf{p}_2^2)^2$		(A4a)
	32m+m+	64m ² m ²	32m ⁺ m ⁺	128m ² m ²		() a really

$n_{46}(\mathbf{x}_a, \mathbf{p}_a) =$	160m ⁶ ₁	192.m ⁶	16m ⁶	64m ⁶ ₁	$128m_1^5m_2$			
	$67(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12})$	$(\mathbf{p}_2)\mathbf{p}_1^2 = 167(\mathbf{n}_1)$	$(\mathbf{p}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})(\mathbf{p}_{12} \cdot \mathbf{p}_{2})$	2) ² , 1547(n ₁₂ -	$(p_1)^4(p_1 \cdot p_2)$	$851(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 \mathbf{p}_1^2$	$(p_1 \cdot p_2)$	
	16m ₁ ⁵ m ₂		128m ₁ ³ m ₂	256	$m_1^5 m_2$	128m ₁ ³ m ₂		
	$1099(\mathbf{p}_1^2)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)$) 3263(n ₁₂ · p	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 + 10$	$67(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2$	$(2 \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 = 456$	$57(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2(\mathbf{p}_1^2)^2$	t.	
	$256m_1^5m_2$	1280	$m_1^4 m_2^2$	480m ⁴ ₁ m	2	$3840m_1^4m_2^2$		
	$3571(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2) - 3073(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)\mathbf{p}_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2) - 4349(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 - 560(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 - 560(\mathbf{p}$							
	320m	m ²	480	$n_1^4 m_2^2$	1280	$m_1^4 m_2^2$		
	$3461p_1^2(p_1 \cdot p_2)^2$	1673(n ₁₂ ·p ₁)	⁴ p ₂ ² 1999(n ₁₂ · p	$(1)^2 \mathbf{p}_1^2 \mathbf{p}_2^2$, 2081	$(p_1^2)^2 p_2^2 = 13(n$	$(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^3$	ŧ	
	$3840m_1^4m_2^2$	1920m ⁴ ₁ m ² ₂	3840m	m ² 3840	lm ⁴ m ²	8m ³ ₁ m ³ ₂		
	$191(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)^3 \mathbf{p}_1^2 - 19(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2 (\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 (\mathbf{p}_1 \cdot \mathbf{p}_2) - 5(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 (\mathbf{p}_1 \cdot \mathbf{p}_2) - 5(\mathbf{p}_1 \cdot \mathbf{p}_2) - 5(p$							
	192m ³ m ³	and the second	$384m_1^3m_2^3$		384m ³ ₁ m ³ ₂			
	$11(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_2)^2 + 77(\mathbf{p}_1\cdot\mathbf{p}_2)^3 + 233(\mathbf{n}_{12}\cdot\mathbf{p}_1)^3(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_2^2 + 47(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_1^2\mathbf{p}_2^2$							
	192m ³	w2	96m ³ ₁ m ³ ₂	96m ³ ₁ m ³ ₂		$32m_1^3m_2^3$		
	$(n_{12} \cdot p_1)^2 (p_1 \cdot p_2)$	p] 185p](p1	$p_2)p_2^2 = 7(n_{12} \cdot p_1)$	$(n_{12} \cdot p_2)^4$, 7	$(n_{12} \cdot p_2)^4 p_1^2$			
2	384m ³ ₁ m ³ ₂	384m ³	m ³ ₂ 41	$n_1^2 m_2^4$	$4m_1^2m_2^4$			
	$7(n_{12} \cdot p_1)(n_{12} \cdot p_2)$	$(p_1 \cdot p_2)$, 21	$(n_{12} \cdot p_2)^2 (p_1 \cdot p_2)$	$(2^{2}, 7(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2})$	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$, 4	$(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2 \mathbf{p}_2^2$		
	$2m_1^2m_2^4$	+	$16m_1^2m_2^4$	6m	² m ⁴ ₂	$48m_1^2m_2^4$		
	$133(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12})$	$(\mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)\mathbf{p}_2^2$	$77(\mathbf{p}_1 \cdot \mathbf{p}_2)^2 \mathbf{p}_2^2$	197(n ₁₂ ·p ₁) ² (p	p ² ₂) ² 173p ² ₁ (p ² ₂)	$(13(p_2^2)^3)^2$	(1.11)	
			04 2 4	01 2 4	10. 7	1 0 6 1	(/440)	

$H_{441}(\mathbf{x}_a, \mathbf{p}_a) =$	$=\frac{5027(\mathbf{n}_{12}\cdot\mathbf{p}_1)^4}{384m_1^4}$	$\frac{22993(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{960m_1^4}$	$\frac{\mathbf{p}_1^2}{1152m_1^4} - \frac{6695(\mathbf{p}_1^2)^2}{1152m_1^4} - $	$-\frac{3191(\mathbf{n}_{12} \cdot \mathbf{p}_1)^3(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{640m_1^3m_2}$	
	$+\frac{28561(\mathbf{n}_{12}\cdot\mathbf{p}_1)(\mathbf{n}_{12}\cdot\mathbf{p}_2)\mathbf{p}_1^2}{1920m_1^3m_2}$		$\frac{77(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2(\mathbf{p}_1)}{384m_1^3m_2}$	$(\mathbf{p}_2) + \frac{752969\mathbf{p}_1^2(\mathbf{p}_1 \cdot \mathbf{p}_2)}{28800m_1^3m_2}$	
	$-\frac{16481(\mathbf{n}_{12}\cdot\mathbf{p}_1)}{960m^2}$	$\frac{(n_{12} \cdot \mathbf{p}_2)^2}{m^2} + \frac{944}{m^2}$	$\frac{133(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2 \mathbf{p}_1^2}{4800m_1^2 m_2^2}$	$-\frac{103957(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)(\mathbf{p}_1 \cdot \mathbf{p}_2)}{2400m_1^2m_2^2}$	
	$+\frac{791(\mathbf{p}_1\cdot\mathbf{p}_2)^2}{400m_1^2m_2^2}+$	$\frac{26627(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{1600m_1^2m_2^2}$	$\frac{\mathbf{p}_2^2}{4800m_1^2m_2^2}$	$\frac{2}{2} + \frac{105(\mathbf{p}_2^2)^2}{32m_2^4}$,	(A4c

$$\begin{split} H_{442}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \left(\frac{2749\pi^{2}}{8192} - \frac{211189}{19200}\right) \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{4}} + \left(\frac{63347}{1600} - \frac{1059\pi^{2}}{1024}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2} \mathbf{p}_{1}^{2}}{m_{1}^{4}} + \left(\frac{375\pi^{2}}{8192} - \frac{23533}{1280}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{4}}{m_{1}^{4}} \\ &+ \left(\frac{10631\pi^{2}}{8192} - \frac{1918349}{57600}\right) \frac{(\mathbf{p}_{1} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{13723\pi^{2}}{16384} - \frac{2492417}{57600}\right) \frac{\mathbf{p}_{1}^{2}\mathbf{p}_{2}^{2}}{m_{1}^{2}m_{2}^{2}} \\ &+ \left(\frac{1411429}{19200} - \frac{1059\pi^{2}}{512}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}\mathbf{p}_{1}^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{248991}{6400} - \frac{6153\pi^{2}}{2048}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \\ &- \left(\frac{30383}{960} + \frac{36405\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \left(\frac{1243717}{14400} - \frac{40483\pi^{2}}{16384}\right) \frac{\mathbf{p}_{1}^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{2}m_{2}} \\ &+ \left(\frac{2369}{60} + \frac{35655\pi^{2}}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{3}(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}} + \left(\frac{43101\pi^{2}}{16384} - \frac{391711}{6400}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})\mathbf{p}_{1}^{2}}{m_{1}^{3}m_{2}} \\ &+ \left(\frac{56955\pi^{2}}{16384} - \frac{1646983}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}^{3}m_{2}}, \end{split}$$

$$H_{421}(\mathbf{x}_{a}, \mathbf{p}_{a}) = \frac{64861\mathbf{p}_{1}^{2}}{4800m_{1}^{2}} - \frac{91(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{8m_{1}m_{2}} + \frac{105\mathbf{p}_{2}^{2}}{32m_{2}^{2}} - \frac{9841(\mathbf{n}_{12} \cdot \mathbf{p}_{1})^{2}}{1600m_{1}^{2}} - \frac{7(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{2m_{1}m_{2}}, \quad (A4e)$$

$$\begin{split} H_{422}(\mathbf{x}_{\sigma},\mathbf{p}_{\sigma}) &= \left(\frac{1937033}{57600} - \frac{199177\pi^2}{49152}\right) \frac{\mathbf{p}_1^2}{m_1^2} + \left(\frac{176033\pi^2}{24576} - \frac{2864917}{57600}\right) \frac{(\mathbf{p}_1 \cdot \mathbf{p}_2)}{m_1 m_2} + \left(\frac{282361}{19200} - \frac{21837\pi^2}{8192}\right) \frac{\mathbf{p}_2^2}{m_2^2} \\ &+ \left(\frac{698723}{19200} + \frac{21745\pi^2}{16384}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)^2}{m_1^2} + \left(\frac{63641\pi^2}{24576} - \frac{2712013}{19200}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_1)(\mathbf{n}_{12} \cdot \mathbf{p}_2)}{m_1 m_2} \\ &+ \left(\frac{3200179}{57600} - \frac{28691\pi^2}{24576}\right) \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_2)^2}{m_2^2}, \end{split}$$
(A4f

$$H_{40}(\mathbf{x}_{a},\mathbf{p}_{a}) = -\frac{m_{1}^{4}}{16} + \left(\frac{6237\pi^{2}}{1024} - \frac{169799}{2400}\right)m_{1}^{3}m_{2} + \left(\frac{44825\pi^{2}}{6144} - \frac{609427}{7200}\right)m_{1}^{2}m_{2}^{2}.$$
 (A4g)

$$H_{4\text{PN}}^{\text{nonloc}}(t) = -\frac{1}{5} \frac{G^2 M}{c^8} I_{ij}^{(3)}(t) \\ \times \operatorname{Pf}_{2r_{12}/c} \int_{-\infty}^{+\infty} \frac{\mathrm{d}v}{|v|} I_{ij}^{(3)}(t+v),$$
 13

Perturbative Theory of the Generation of Gravitational Radiation

- Einstein '16, '18 (+ Landau-Lifshitz 41, and Fock '55) : h_+ , h_x and **quadrupole** formula
- Relativistic, multipolar extensions of LO quadrupole radiation :
- Sachs-Bergmann '58, Sachs '61, Mathews '62, Peters-Mathews '63, Pirani '64
- Campbell-Morgan '71,
- Campbell et al '75,

nonlinear effects:

Bonnor-Rotenberg '66, Epstein-Wagoner-Will '75-76 Thorne '80, .., Will et al 00 MPM Formalism:

Blanchet-Damour '86, Damour-lyer '91, Blanchet '95 '98 Combines multipole exp. , Post Minkowkian exp., analytic continuation, and PN matching

MULTIPOLAR POST-MINKOWSKIAN FORMALISM (BLANCHET-DAMOUR-IYER)

Decomposition of space-time in various overlapping regions:

- 1. near-zone: r << lambda : PN
- 2. exterior zone: r >> r_source: MPM
- 3. far wave-zone: Bondi-type expansion then matching between the zones

in exterior zone, iterative solution of Einstein's vacuum field equations by means of a double expansion in non-linearity and in multipoles, with crucial use of analytic continuation (complex B) for dealing with formal UV divergences at r=0

The PN-matched MPM formalism has allowed to compute the GW emission to very high accuracy (Blanchet et al)

Link radiative multipoles <-> source variables

(Blanchet-Damour '89'92, Damour-Iyer'91, Blanchet '95...)

$$\begin{split} U_{ij}(U) &= M_{ij}^{(2)}(U) + \frac{2GM}{c^3} \int_0^{+\infty} d\tau \, M_{ij}^{(4)}(U - \tau) \left[\ln\left(\frac{c\tau}{2r_0}\right) + \frac{11}{12} \right] \qquad \text{tail} \\ \text{radiative} \\ \text{quadrupole} \\ \text{seen at} \\ &= -\frac{2}{7} M_{a(i)}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i)}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i)}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i} M_{j)a}^{(4)} S_b \\ \text{memory} \\ &= -\frac{2}{7} M_{a(i)}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i)}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i)}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i)} M_{j)a}^{(4)} S_b \\ \text{memory} \\ &= -\frac{2}{7} M_{a(i)}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i)}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i)}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i)} M_{j)a}^{(4)} S_b \\ \text{memory} \\ &= -\frac{2}{7} M_{a(i)}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i)}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i)}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i)} M_{j)a}^{(4)} S_b \\ \text{memory} \\ &= -\frac{2}{7} M_{a(i)}^{(3)} M_{j)a}^{(2)} - \frac{5}{7} M_{a(i)}^{(4)} M_{j)a}^{(1)} + \frac{1}{7} M_{a(i)}^{(5)} M_{j)a} + \frac{1}{3} \varepsilon_{ab(i)} M_{j)a}^{(4)} S_b \\ \text{memory} \\ \text{memo$$

Perturbative (3.5PN) GW flux from (circular) binary system

- Iowest order : Einstein 1918 Peters-Mathews 63
- 1 + (v²/c²) : Wagoner-Will 76
- ... + (v^3/c^3) : Blanchet-Damour 92, Wiseman 93
- ... + (v^4/c^4) : Blanchet-Damour-Iyer Will-Wiseman 95
- ... + (v⁵/c⁵) : Blanchet 96
- ... + (v⁶/c⁶) : Blanchet-Damour-Esposito-Farèse-Iyer 2004¹
- ... + (v⁷/c⁷) : Blanchet
- ... + most of (v^8/c^8) : Blanchet et al

$$\nu = \frac{m_1 m_2}{(m_1 + m_2)^2}$$

$$x = \left(\frac{v}{c}\right)^2 = \left(\frac{G(m_1 + m_2)\Omega}{c^3}\right)^{\frac{2}{3}} = \left(\frac{\pi G(m_1 + m_2)f}{c^3}\right)^{\frac{2}{3}}$$

$$\begin{split} \mathcal{F} &= \frac{32c^5}{5G}\nu^2 x^5 \bigg\{ 1 + \left(-\frac{1247}{336} - \frac{35}{12}\nu \right) x + 4\pi x^{3/2} \\ &+ \left(-\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2 \right) x^2 + \left(-\frac{8191}{672} - \frac{583}{24}\nu \right) \pi x^{5/2} \\ \textbf{quadrupole} \\ \textbf{radiation} &+ \left[\frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\text{E}} - \frac{856}{105}\ln(16\,x) \right. \\ &+ \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2 \right) \nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3 \right] x^3 \\ \textbf{3.5PN} &+ \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2 \right) \pi x^{7/2} + \mathcal{O}\left(\frac{1}{c^8}\right) \bigg\} . \end{split}$$

4PN still incomplete-

Analytical GW Templates for BBH Coalescences ?

PN corrections to Einstein's quadrupole frequency « chirping » from PN-improved balance equation dE(f)/dt = - F(f)

$$\frac{d\phi}{d\ln f} = \frac{\omega^2}{d\omega/dt} = Q_{\omega}^N \widehat{Q}_{\omega}$$
$$Q_{\omega}^N = \frac{5c^5}{48\nu v^5}; \ \widehat{Q}_{\omega} = 1 + c_2 \left(\frac{v}{c}\right)^2 + c_3 \left(\frac{v}{c}\right)^2$$

 $\mbox{\ensuremath{\mathsf{w}}}$ slow convergence of PN $\mbox{\ensuremath{\mathsf{w}}}$

Brady-Creighton-Thorne'98:

inability of current computational
 techniques to evolve a BBH through its last
 ~10 orbits of inspiral » and to compute the
 merger

Damour-Iyer-Sathyaprakash'98: use resummation methods for E and F

Buonanno-Damour '99-00: novel, resummed approach: Effective-One-Body analytical formalism

Effective One Body (EOB) Method

Buonanno-Damour 1999, 2000; Damour-Jaranowski-Schaefer 2000; Damour 2001 (SEOB) [developed by: Barausse, Bini, Buonanno, Damour, Jaranowski, Nagar, Pan, Schaefer, Taracchini, ...]

Resummation of perturbative PN results —> approximate description of the merger + addition of ringdown (Vishveshwara 70, Davis-Ruffini-Tiomno 1972) [+ CLAP (Price-Pullin'94)] Buonanno-Damour 2000

Predictions as early as 2000 :

continued transition, non adiabaticity, first complete waveform, final spin (OK within 10%), final mass

EOB: resumming the dynamics of a two-body system (m_1,m_2,S_1,S_2) in terms of the dynamics of a particle of mass mu and spin S* moving in some effective metric g(M,S)

Effective metric for non-spinning bodies: a nu-deformation of Schwarzschild

$$M = m_1 + m_2 \qquad \mu = \frac{m_1 m_2}{m_1 + m_2} \qquad \nu = \frac{\mu}{M} = \frac{m_1 m_2}{(m_1 + m_2)^2}$$
$$ds_{\text{eff}}^2 = -A(r;\nu) dt^2 + B(r;\nu) dr^2 + r^2 \left(d\theta^2 + \sin^2\theta \, d\varphi^2\right)$$

$$\begin{split} \mathcal{H}_{N}(\mathbf{x}_{a},\mathbf{p}_{a}) &= \frac{\mathbf{p}_{1}^{2}}{2m_{1}^{2}} - \frac{1}{2} \frac{Gm_{1}m_{2}}{r_{12}} + (1 \leftrightarrow 2) \\ & c^{2}\mathcal{H}_{1PN}(\mathbf{x}_{a},\mathbf{p}_{a}) = -\frac{1}{8} \frac{(\mathbf{p}_{1}^{2})^{2}}{m_{1}^{2}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{m_{1}^{2}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{(\mathbf{p}_{1}-\mathbf{p}_{2})}{m_{1}m_{2}} + 2 \frac{(\mathbf{n}_{12}-\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & + \frac{1}{2} \frac{Gm_{1}m_{2}}{m_{1}^{2}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + \frac{1}{4} \frac{(\mathbf{p}_{1}-\mathbf{p}_{2})}{m_{1}m_{2}} + 2 \frac{(\mathbf{n}_{12}-\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & + \frac{1}{2} \frac{Gm_{1}m_{2}}{m_{1}^{2}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + \frac{1}{4} \frac{(\mathbf{p}_{1}-\mathbf{p}_{2})}{m_{1}m_{2}} + (1 \leftrightarrow 2), \\ & + \frac{1}{2} \frac{Gm_{1}m_{2}}{m_{1}^{2}} \left(-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + \frac{1}{2} \frac{(\mathbf{p}_{12}-\mathbf{p}_{1})^{2}(\mathbf{n}_{2}+\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right) \\ & - \frac{6}{6} \frac{(\mathbf{p}_{1}-\mathbf{p}_{2})(\mathbf{n}_{2}+\mathbf{p}_{1})(\mathbf{n}_{2}+\mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} - \frac{3}{2} \frac{(\mathbf{p}_{1}-\mathbf{p}_{2})^{2}(\mathbf{n}_{2}+\mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right) \\ & + \frac{1}{4} \frac{G^{2}m_{1}m_{2}}{d_{1}^{2}} \left(m_{2}\left(10 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19 \frac{\mathbf{p}_{2}^{2}}{m_{1}^{2}} \right) - \frac{3}{2} (m_{1}+\mathbf{n}_{2}) \frac{27(\mathbf{p}_{1}+\mathbf{p}_{2}) + 6(\mathbf{n}_{12}+\mathbf{p}_{1})(\mathbf{n}_{12}+\mathbf{p}_{2})}{m_{1}m_{2}} \right) \\ & -\frac{1}{8} \frac{Gm_{1}m_{2}}{d_{1}m_{2}} \left(m_{2}\left(01 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 19 \frac{\mathbf{p}_{2}^{2}}{m_{2}^{2}} \right) - \frac{1}{2} (m_{1}+\mathbf{n}_{2}) \frac{27(\mathbf{p}_{1}+\mathbf{p}_{2}) + 6(\mathbf{n}_{12}+\mathbf{p}_{1})(\mathbf{n}_{12}+\mathbf{p}_{2})}{m_{1}m_{2}}} \right) \\ & -\frac{1}{8} \frac{C^{2}m_{1}m_{2}}}{d_{1}m_{2}} \left(m_{2}\left(m_{1}-\mathbf{p}_{2}\right) + \frac{1}{2} \frac{Cm_{1}m_{2}}{m_{1}m_{2}}} \right) \\ & -\frac{1}{8} \frac{C^{2}m_{1}m_{2}}}{m_{1}m_{2}} \left(\frac{1}{2} \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + \frac{1}{2} \frac{Cm_{1}m_{2}}}{m_{1}m_{2}} \right) \frac{C^{2}m_{1}m_{2}}}{m_{1}m_{2}}} \right) \\ & -\frac{1}{8} \frac{C^{2}m_{1}m_{2}}}{C^{2}m_{1}m_{2}} \left(\frac{1}{2} \frac{\mathbf{p}_{1}^{2}}{m_{1}m_{2}}} + \frac{1}{2} \frac{Cm_{1}m_{2}}}{m_{1}m_{2}}} \right) \frac{Cm_{1}m_{2}}}{m_{1}m_{2}}} \right) \\ & -\frac{1}{8} \frac{C^{2}m_{1}m_{2}}}{m_{1}m_{2}}} \left(\frac{1}{10} \left(10 \frac{\mathbf{p}_{1}}{m_{1}} + \frac{1}{2} \frac{Cm_{1}m_{2}}}{m_{1}m_{2}}} \right) \frac{Cm_{1}m_{2}}}{m_{1}m_{2}}} \right) \frac{Cm_{1}m_{2}}}{m_{1}m$$

Explicit 3PN EOB dynamics (Damour-Jaranowski-Schaefer '01)

post-geodesic effective mass-shell:

$$\begin{split} g_{\text{eff}}^{\mu\nu} P'_{\mu} P'_{\nu} + \mu^2 c^2 + Q(P'_{\mu}) &= 0 , \\ ds_{\text{eff}}^2 &= -A(R;\nu) dt^2 + B(R;\nu) dR^2 + R^2 (d\theta^2 + \sin^2\theta d\phi^2) \\ M &= m_1 + m_2, \quad \mu = \frac{m_1 m_2}{m_1 + m_2}, \quad \nu = \frac{m_1 m_2}{(m_1 + m_2)^2} = \frac{\mu}{M} \\ A^{3\text{PN}}(u) &= 1 - 2u + 2\nu u^3 + \left(\frac{94}{3} - \frac{41}{32}\pi^2\right)\nu u^4, \\ \overline{D}^{3\text{PN}}(u) &= 1 + 6\nu u^2 + (52\nu - 6\nu^2) u^3, \\ \widehat{Q}^{3\text{PN}} &\equiv \frac{Q}{\mu^2 c^2} = (8\nu - 6\nu^2) u^2 \frac{p_\tau^4}{c^4}. \end{split}$$

Spinning EOB effective Hamiltonian $H_{\text{eff}} = H_{\text{orb}} + H_{\text{so}} \rightarrow H_{\text{EOB}} = Mc^2 \sqrt{1 + 2\nu \left(\frac{H_{\text{eff}}}{\mu c^2} - 1\right)}$

$$\hat{H}_{\text{orb}}^{\text{eff}} = \sqrt{A\left(1 + B_p p^2 + B_{np} (\boldsymbol{n} \cdot \boldsymbol{p})^2 - \frac{1}{1 + \frac{(\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2}{r^2}} \frac{(r^2 + 2r + (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2)}{\mathcal{R}^4 + \Delta (\boldsymbol{n} \cdot \boldsymbol{\chi}_0)^2} ((\boldsymbol{n} \times \boldsymbol{p}) \cdot \boldsymbol{\chi}_0)^2 + Q_4\right)}.$$

 $H_{\rm so} = G_S \boldsymbol{L} \cdot \boldsymbol{S} + G_{S^*} \boldsymbol{L} \cdot \boldsymbol{S}^*,$

$$\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2; \ \mathbf{S}_* = \frac{m_2}{m_1} \mathbf{S}_1 + \frac{m_1}{m_2} \mathbf{S}_2,$$

Gyrogravitomagnetic ratios (when neglecting spin² effects)

$$r^{3}G_{S}^{\rm PN} = 2 - \frac{5}{8}\nu u - \frac{27}{8}\nu p_{r}^{2} + \nu \left(-\frac{51}{4}u^{2} - \frac{21}{2}up_{r}^{2} + \frac{5}{8}p_{r}^{4}\right) + \nu^{2}\left(-\frac{1}{8}u^{2} + \frac{23}{8}up_{r}^{2} + \frac{35}{8}p_{r}^{4}\right)$$

$$r^{3}G_{S_{*}}^{\mathrm{PN}} = \frac{3}{2} - \frac{9}{8}u - \frac{15}{8}p_{r}^{2} + \nu\left(-\frac{3}{4}u - \frac{9}{4}p_{r}^{2}\right) - \frac{27}{16}u^{2} + \frac{69}{16}up_{r}^{2} + \frac{35}{16}p_{r}^{4} + \nu\left(-\frac{39}{4}u^{2} - \frac{9}{4}up_{r}^{2} + \frac{5}{2}p_{r}^{4}\right) + \nu^{2}\left(-\frac{3}{16}u^{2} + \frac{57}{16}up_{r}^{2} + \frac{45}{16}p_{4}^{4}\right)$$

Resummed EOB waveform

(Damour-Iyer-Sathyaprakash '98) Damour-Nagar '07, Damour-Iyer -Nagar '08, Pan et al. '10

$$\begin{split} h_{\ell m} &\equiv h_{\ell m}^{(N,\epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \hat{h}_{\ell m}^{(\epsilon)} \hat{h}_{\ell m}^{\rm NQC} \\ \hat{h}_{\ell m}^{(\epsilon)} &= \hat{S}_{\rm eff}^{(\epsilon)} T_{\ell m} e^{i\delta_{\ell m}} \rho_{\ell m}^{\ell} \\ \bar{h}_{\ell m}^{(\epsilon)} &= \hat{S}_{\rm eff}^{(\epsilon)} T_{\ell m} e^{i\delta_{\ell m}} \rho_{\ell m}^{\ell} \\ T_{\ell m} &= \frac{\Gamma(\ell + 1 - 2i\hat{k})}{\Gamma(\ell + 1)} e^{\hat{\pi}k} e^{2i\hat{k}\ln(2kr_0)} \\ \end{split}$$

$$\begin{aligned} & \text{NB: T_Im} \\ \text{resums an} \\ \text{infinite number} \\ \text{of terms and} \\ \text{already contains,} \\ \text{eg, 4.5PN tail^3 terms} \\ \text{(Messina-Nagar17)} \end{aligned}$$

$$\begin{aligned} & \rho_{22}(x;\nu) = 1 + \left(\frac{55\nu}{84} - \frac{43}{42}\right) x + \left(\frac{19583\nu^2}{42336} - \frac{33025\nu}{21168} - \frac{20555}{10584}\right) x^2 \\ & + \left(\frac{10620745\nu^3}{39118464} - \frac{6292061\nu^2}{3259872} + \frac{41\pi^2\nu}{192} - \frac{48939325\nu}{9779616} - \frac{428}{105} \text{culerlog}_2(x) + \frac{1556919113}{122245200}\right) x^3 \\ & + \left(\frac{9202}{2205} \text{culerlog}_2(x) - \frac{387216563023}{160190110080}\right) x^4 + \left(\frac{439877}{55566} \text{culerlog}_2(x) - \frac{16094530514677}{533967033600}\right) x^5 + \mathcal{O}(x^6), \end{aligned}$$

$$\mathcal{F}_{\varphi} \equiv -\frac{1}{8\pi\Omega} \sum_{\ell=2}^{\ell_{\max}} \sum_{m=1}^{\ell} (m\Omega)^2 |Rh_{\ell m}^{(\epsilon)}|^2$$

Numerical Relativity (NR)

Mathematical foundations :

Darmois 27, Lichnerowicz 43, Choquet-Bruhat 52-, new hyperbolic formulations of Einstein's eqs,...

Breakthrough:

Pretorius 2005 generalized harmonic coordinates, constraint damping, excision Moving punctures:

Campanelli-Lousto-Maronetti-Zlochover 2006 Baker-Centrella-Choi-Koppitz-van Meter 2006

The first EOB vs NR comparisons

Buonanno-Cook-Pretorius 2007

FIG. 21 (color online). We compare the NR and EOB frequency and $\text{Re}[_{-2}C_{22}]$ waveforms throughout the entire inspiral-merger-ring-down evolution. The data refers to the d = 16 run.

SXS COLLABORATION NR CATALOG

•<u>www.blackholes.org</u>

(Mroué et al.'13, Boyle et al. '19)

The last version contains 2018 simulated waveforms including 1426 spin-precessing configurations

FIG. 3: Waveforms from all simulations in the catalog. Shown here are h_+ (blue) and h_x (red) in a sky direction parallel to the initial orbital plane of each simulation. All plots have the same horizontal scale, with each tick representing a time interval of 2000*M*, where *M* is the total mass.

NR waveforms play a crucial role for an accurate description of the merger, and of large-spin effects. But they have limitations: number of orbits, sampling of the multi-parameter space.

Numerical relativity

-0.01

0.00

0.01

NR-completed resummed 5PN EOB radial A potential

(here Damour-Nagar-Bernuzzi '13, Nagar-et al '16; alternative: Taracchini et al '14, Bohe et al '17)

4PN analytically complete + 5 PN logarithmic term in the A(u, nu) function,

With u = GM/R and $nu = m1 m2 / (m1 + m2)^2$

[Damour 09, Blanchet et al 10, Barack-Damour-Sago 10, Le Tiec et al 11, Barausse et al 11, Akcay et al 12, Bini-Damour 13, Damour-Jaranowski-Schäfer 14, Nagar-Damour-Reisswig-Pollney 15]

$$\begin{split} A(u;\nu,a_{6}^{c}) &= P_{5}^{1} \Biggl[1 - 2u + 2\nu \, u^{3} + \nu \left(\frac{94}{3} - \frac{41}{32} \pi^{2} \right) \, u^{4} \\ &+ \nu \left[-\frac{4237}{60} + \frac{2275}{512} \pi^{2} + \left(-\frac{221}{6} + \frac{41}{32} \pi^{2} \right) \nu + \frac{64}{5} \ln(16e^{2\gamma}u) \right] u^{5} \\ \nu &= \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}} + \nu \left[a_{6}^{c}(\nu) - \left(\frac{7004}{105} + \frac{144}{5} \nu \right) \ln u \right] u^{6} \Biggr] \\ a_{6}^{c\,\text{NR-tuned}}(\nu) &= 81.38 - 1330.6 \,\nu + 3097.3 \,\nu^{2} \end{split}$$

NR-calibrated 5PN contribution

EOB[NR] / NR Comparison

Instantaneous GW power at coalescence ~ 10^56 erg/s ~ 10^-3 c^5/G

TEMPLATE BANKS USED FOR SEARCH AND DATA ANALYSIS

Banks of templates (e.g. 250 000 EOBNR templates in O1) for search inspiralling and coalescing BBH GW waveforms: m1, m2, chi1=S1/m1^2, chi2=S2/m2^2 for m1+m2> 4Msun; $+ \sim 50\ 000\ PN$ inspiralling templates for m1+m2< 4 Msun; $- 50\ 000\ PN$ inspiralling templates for m1+m2< 4 Msun; $- 325\ 000\ EOB$ templates $+ 75\ 000\ PN$ templates

Two types of templates:

Bank of spinning EOB[NR] templates

(Taracchini et al. 14, Bohé et al'17) in ROM form (Puerrer et al.'14); Nagar et al...

Bank of Phenom[EOB+NR] templates

(Ajith...'07, Hannam...'14, Husa...'16, Khan...'16)

$$h(f) = A(f)e^{i\Psi(f)}$$
$$\Psi(f) = \sum_{n} c_n v^n(f) \; ; \; v(f) \equiv (\pi M f)^{\frac{1}{3}}$$

46

A glimpse of new analytical methods under active development:

effective field theory, tutti frutti, classical and quantum scattering.

EFT approach (Goldberger-Rothstein'06, Goldberger-Ros, Porto, Levi, Foffa-Sturani, Bluemlein...)

separating scales: r_s << r << lambda

Equivalent to usual methods (with some technical differences)

Similar but different from MPM method

potential graviton modes

 $\exp[iS_{\text{NRGR}}[x_a, \bar{h}]] = \int \mathcal{D}H_{\mu\nu} \exp[iS[\bar{h} + H, x_a] + iS_{\text{GF}}],$

Use QFT methods and codes p-space integration method of regions reached 5PN (with ambiguities)

$$\begin{split} S_{\text{mult}} &= -\frac{1}{\Lambda} \left\{ \int \mathrm{d}\tau \left[E + \frac{1}{2} \dot{x}^{\mu} L_{\alpha\beta} \omega_{\mu}^{\alpha\beta} - \frac{1}{2} \sum_{n \geq 0} (c_n^{\mathcal{I}} \mathcal{I}^{\mu_1 \cdots \mu_n \alpha\beta} \mathcal{E}_{\alpha\beta;\mu_1 \cdots \mu_n} + c_n^{\mathcal{J}} \mathcal{J}^{\mu_1 \cdots \mu_n \alpha\beta} \mathcal{B}_{\alpha\beta;\mu_1 \cdots \mu_n}) \right] \right\} \\ &\simeq \frac{1}{\Lambda} \int \mathrm{d}t \left[\frac{1}{2} E h_{00} + \frac{1}{2} \epsilon_{ijk} L^i h_{0j,k} + \frac{1}{2} Q^{ij} \mathcal{E}_{ij} + \frac{1}{6} O^{ijk} \mathcal{E}_{ij,k} - \frac{2}{3} J^{ij} \mathcal{B}_{ij} + \cdots \right], \end{split}$$

SIXTH POST-NEWTONIAN LOCAL-IN-TIME DYNAMIC

G. 1. Schematic representation of the irreducible information mained, at each post-Minkowskian level (keyed by a power of = GM/r), in the local dynamics. Each vertical column of dots scribes the post-Newtonian expansion (keyed by powers of p^2) (an energy-dependent function parametrizing the scattering igle. The various columns at a given post-Minkowskian level correspond to increasing powers of the symmetric mass-ratio ν . See text for details.

Self-force computation using BH perturbation (Regge-Wheeler-Zerilli) + Detweiler's redshift +First-law BBH (LeTiec-Blanchet-Whiting'11)

6PN dynamics complete at 3PM and 4PM nearly completely determined

Nonlocal-in-time interaction

$$S_{\text{nonloc}}^{4+5\text{PN}}[x_1(s_1), x_2(s_2)] = \frac{G^2 \mathcal{M}}{c^3} \int dt \text{PF}_{2r_{12}^h(t)/c}$$
$$\times \int \frac{dt'}{|t-t'|} \mathcal{F}_{1\text{PN}}^{\text{split}}(t, t')$$

$$\mathcal{F}_{1\text{PN}}^{\text{split}}(t,t') = \frac{G}{c^5} \left(\frac{1}{5} I_{ab}^{(3)}(t) I_{ab}^{(3)}(t') + \frac{1}{189c^2} I_{abc}^{(4)}(t) I_{abc}^{(4)}(t') + \frac{16}{45c^2} J_{ab}^{(3)}(t) J_{ab}^{(3)}(t') \right).$$

recent EFT computations (Foffa-Sturani, Bluemlein et al) come close to completing the 5PN dynamics

Tutti-Frutti strategy (Bini-TD-Geralico'20) uses analytical knowledge from PN, MPM and SF

Quantum Scattering Amplitudes and 2-body Dynamics

Modern techniques for amplitudes (generalized unitarity; double copy; method of regions; IBPs; differential eqs; Bern, Dixon, Dunbar, Carrasco, Johansson, Cachazo et al., Bjerrum-Bohr et al., Cachazo-Guevara,...) can be used (Damour '17CheungRothsteinSolon'18) to improve the classical 2-body dynamics: need a quantum/classical dictionary. Many recent results: Bern et al; DiVecchia-Heissenberg-Russo-Veneziano, Bjerrum-Bohr, Damgaard, Vanhove; Plefka et al, Riva-Vernizzi; Jakobsen,⁵⁰ Mogull, Manohar, Ridgway, Shen,...

Classical scattering perturbation theory

Approach initiated long ago: Rosenblum'78 Westpfahl'79,'85 Portilla'80 Bel et al.'81 limited by the technical difficulty of computing the integrals beyond G^2, ie at G^2=2-loop. **Recently developed to compete with quantum-scattering approach: Kalin-Porto, Porto et al, Plefka et al, Dlapa-Kalin-Liu-Porto,...**

Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order

Zvi Bern,¹ Clifford Cheung,² Radu Roiban,³ Chia-Hsien Shen,¹ Mikhail P. Solon,² and Mao Zeng⁴

¹Mani L. Bhaumik Institute for Theoretical Physics, University of California at Los Angeles, Los Angeles, California 90095, USA

²Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125

two-loop

level

G^3

³Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁴Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

(Received 28 January 2019; published 24 May 2019)

We present the amplitude for classical scattering of gravitationally interacting massive scalars at third post-Minkowskian order. Our approach harnesses powerful tools from the modern amplitudes program such as generalized unitarity and the double-copy construction, which relates gravity integrands to simpler gauge-theory expressions. Adapting methods for integration and matching from effective field theory, we extract the conservative Hamiltonian for compact spinless binaries at third post-Minkowskian order. The resulting Hamiltonian is in complete agreement with corresponding terms in state-of-the-art expressions at fourth post-Newtonian order as well as the probe limit at all orders in velocity. We also derive the scattering angle at third post-Minkowskian order and find agreement with known results.

52

potential gravitons only Scattering Amplitudes and Conservative Binary Dynamics at $\mathcal{O}(G^4)$

Zvi Bern,¹ Julio Parra-Martinez⁽⁰⁾,² Radu Roiban,³ Michael S. Ruf⁽⁰⁾,⁴

Chia-Hsien Shen⁵, Mikhail P. Solon,¹ and Mao Zeng⁶ ¹Mani I. Bhaumik Institute for Theoretical Physics. University of California at Los Angeles.

three-loop level G^4

FIG. 2. Sample diagrams at $\mathcal{O}(G^4)$. From left to right: a contribution in the probe limit, a nonplanar diagram that contains iteration terms, and a diagram that contains contributions related to the tail effect.

$$\begin{split} \mathcal{M}_{4}(\boldsymbol{q}) &= G^{4}M^{7}\nu^{2}|\boldsymbol{q}| \left(\frac{\boldsymbol{q}^{2}}{4^{1/3}\tilde{\mu}^{2}}\right)^{-3c}\pi^{2} \left[\mathcal{M}_{4}^{p} + \nu \left(\frac{\mathcal{M}_{4}^{t}}{c} + \mathcal{M}_{4}^{f}\right)\right] + \int_{\boldsymbol{q}} \frac{\tilde{I}_{r,1}^{4}}{Z_{1}Z_{2}Z_{3}} + \int_{\boldsymbol{q}} \frac{\tilde{I}_{r,1}^{2}}{Z_{1}Z_{2}} + \int_{\boldsymbol{q}} \frac{\tilde{I}_{r,1}}{Z_{1}} + \int_{\boldsymbol{q}} \frac{\tilde{I}_{r,2}^{2}}{Z_{1}}, \\ \mathcal{M}_{4}^{p} &= -\frac{35(1 - 18\sigma^{2} + 33\sigma^{4})}{8(\sigma^{2} - 1)}, \quad \mathcal{M}_{4}^{t} = h_{1} + h_{2}\log\left(\frac{\sigma + 1}{2}\right) + h_{3}\frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2} - 1}}, \\ \mathcal{M}_{4}^{f} &= h_{4} + h_{5}\log\left(\frac{\sigma + 1}{2}\right) + h_{6}\frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2} - 1}} + h_{7}\log(\sigma) - h_{2}\frac{2\pi^{2}}{3} + h_{8}\frac{\operatorname{arccosh}^{2}(\sigma)}{\sigma^{2} - 1} + h_{9}\left[\operatorname{Li}_{2}\left(\frac{1 - \sigma}{2}\right) + \frac{1}{2}\log^{2}\left(\frac{\sigma + 1}{2}\right)\right] \\ &+ h_{10}\left[\operatorname{Li}_{2}\left(\frac{1 - \sigma}{2}\right) - \frac{\pi^{2}}{6}\right] + h_{11}\left[\operatorname{Li}_{2}\left(\frac{1 - \sigma}{1 + \sigma}\right) - \operatorname{Li}_{2}\left(\frac{\sigma - 1}{\sigma + 1}\right) + \frac{\pi^{2}}{3}\right] + h_{2}\frac{2\sigma(2\sigma^{2} - 3)}{(\sigma^{2} - 1)^{3/2}}\left[\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right) - \operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right)\right] \\ &+ \frac{2h_{3}}{\sqrt{\sigma^{2} - 1}}\left[\operatorname{Li}_{2}(1 - \sigma - \sqrt{\sigma^{2} - 1}) - \operatorname{Li}_{2}(1 - \sigma + \sqrt{\sigma^{2} - 1}) + 5\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right) - 5\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma - 1}{\sigma + 1}}\right) \\ &+ 2\log\left(\frac{\sigma + 1}{2}\right)\operatorname{arccosh}(\sigma)\right] + h_{12}K^{2}\left(\frac{\sigma - 1}{\sigma + 1}\right) + h_{13}K\left(\frac{\sigma - 1}{\sigma + 1}\right)E\left(\frac{\sigma - 1}{\sigma + 1}\right) + h_{14}E^{2}\left(\frac{\sigma - 1}{\sigma + 1}\right), \tag{6}$$

soft (radiationlike) gravitons Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at $\mathcal{O}(G^4)$ Zvi Bern,¹ Julio Parra-Martinez,² Radu Roiban,³ Michael S. Ruf,¹ tail in Chia-Hsien Shen,⁴ Mikhail P. Solon,¹ and Mao Zeng⁵ ~~~•••~~~ near-zone **Conservative Dynamics of Binary Systems at Fourth** Post-Minkowskian Order in the Large-eccentricity Expansion Μ \bullet Christoph Dlapa,¹ Gregor Kälin,¹ Zhengwen Liu,¹ and Rafael A. Porto¹ l_{ij}(t-r) $G^{4}M^{7}\nu^{2}|\boldsymbol{q}|\pi^{2}\left[\mathcal{M}_{4}^{\mathrm{p}}+\nu\left(4\mathcal{M}_{4}^{\mathrm{t}}\log\left(\frac{p_{\infty}}{2}\right)+\mathcal{M}_{4}^{\pi^{2}}+\mathcal{M}_{4}^{\mathrm{rem}}\right)\right]+\int_{\boldsymbol{a}}\frac{\tilde{I}_{r,1}^{4}}{Z_{1}Z_{2}Z_{2}}+\int_{\boldsymbol{a}}\frac{\tilde{I}_{r,1}^{2}\tilde{I}_{r,2}}{Z_{1}Z_{2}}+\int_{\boldsymbol{a}}\frac{\tilde{I}_{r,1}\tilde{I}_{r,3}}{Z_{1}}+\int_{\boldsymbol{a}}\frac{\tilde{I}_{r,2}^{2}}{Z_{1}},$ $\mathcal{M}_{4}^{\rm p} = -\frac{35\left(1 - 18\sigma^2 + 33\sigma^4\right)}{8\left(\sigma^2 - 1\right)},$ $\mathcal{M}_4^{\mathrm{t}} = r_1 + r_2 \log\left(\frac{\sigma+1}{2}\right) + r_3 \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^2 - 1}},$ (3) $\mathcal{M}_{4}^{\pi^{2}} = r_{4}\pi^{2} + r_{5} \operatorname{K}(\frac{\sigma-1}{\sigma+1}) \operatorname{E}(\frac{\sigma-1}{\sigma+1}) + r_{6} \operatorname{K}^{2}(\frac{\sigma-1}{\sigma+1}) + r_{7} \operatorname{E}^{2}(\frac{\sigma-1}{\sigma+1}),$ $\mathcal{M}_{4}^{\text{rem}} = r_{8} + r_{9} \log\left(\frac{\sigma+1}{2}\right) + r_{10} \frac{\arccos(\sigma)}{\sqrt{\sigma^{2}-1}} + r_{11} \log(\sigma) + r_{12} \log^{2}\left(\frac{\sigma+1}{2}\right) + r_{13} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \log\left(\frac{\sigma+1}{2}\right) + r_{14} \frac{\operatorname{arccosh}^{2}(\sigma)}{\sigma^{2}-1}$ $+r_{15}\operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right)+r_{16}\operatorname{Li}_{2}\left(\frac{1-\sigma}{1+\sigma}\right)+r_{17}\frac{1}{\sqrt{\sigma^{2}-1}}\left[\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)-\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right)\right].$ 10011

$$\mathcal{M}_{4}^{\text{radgrav},\text{f}} = \frac{12044}{75} p_{\infty}^{2} + \frac{212077}{3675} p_{\infty}^{4} + \frac{115917979}{793800} p_{\infty}^{6} \\ - \frac{9823091209}{76839840} p_{\infty}^{8} + \frac{115240251793703}{1038874636800} p_{\infty}^{10} \\ - \frac{411188753665637}{4155498547200} p_{\infty}^{12} + \cdots, \qquad (6)$$

subtleties linked to radiative effects

whose first three terms match the sixth PN order result in Eq. (6.20) of Ref. [42].

Conclusions

- Analytical approaches to GW signals have played a crucial role (in conjunction with Numerical Relativity simulations) for the detection, interpretation and parameter estimation of coalescing binary systems (BBH and BNS). They will remain very important for future GW detectors: second generation ground-based detectors, space detectors, second generation ground-based detectors.
- The development of new analytical approaches (EFT, classical or quantum scattering approaches, Tutti-Frutti,...) has started to bring new results of interest for GW detection and must be pursued vigorously.

Henri Poincaré

«Il n'y a pas de problèmes résolus, il y a seulement des problèmes plus ou moins résolus »

«There are no solved problems, there are only more or less solved problems »

