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Figure 8. Constraints from this work (baseline+Planck; orange), DESY1 redMaGiC 3x2pt + CMASS RSD/BAO + Planck (purple),
and the published constraints of the DES Y1 MG analysis (black-dashed) (Abbott et al. 2019). Compared to the case with redMaGiC
(purple), using DMASS (orange) improves the MG constraints by 29% for µ0 and 21% for ⌃0 with the same external data sets. The
DMASS case is even comparable to that of DESY1MG (black-dashed) despite the lack of the external data sets. The shift of ⌦m in
DESY1MG is caused by the SNe Ia data favoring low ⌦m. Overall, the constraints in the three cases are consistent.

tial reason for this. If the DMASS algorithm faithfully repli-
cated the properties of CMASS, this peak would have been
replicated in DMASS and even amplified at the low-redshifts
edge where the algorithm poorly works. As the first source
bin lies largely in front of the lens bin, it is possible that the
tangential shear signal measured with the first source bin
only captures correlations with the DMASS galaxies at low
redshifts where galaxy bias peaks. Lee et al. (2021) tested
the impact of the unmodeled local peak on the galaxy bias
constraint inferred from the tangential shear measurement.
In fixed ⇤CDM cosmology, they found that the resulting
constraint is not biased by the local peak above the scale of
4h�1 Mpc. It is less likely that the local peak will a↵ect our
result as we utilize the scales larger than 4h�1 Mpc, and in-
clude the angular galaxy clustering and shear measurements
that are less sensitive to an irregularity in galaxy bias at the
redshift tails. However, it is worth testing its impact in the
frame of modified gravity as well to rule out the possibility of
this unmodeled systematics biasing the result. For this, we
repeat the analysis without the tangential shear signals from
the first and second source bins. The signal from the second
source bin is excluded to completely remove any potential
e↵ect related to galaxy bias from the low-redshift end of
DMASS. The results are presented in Figure 7. Each panel
shows the contours of the MG parameters (left) and ⌦m–
S8 (right) with all tangential shear signals (solid lines) and
without the signals from the first two source bins (dashed

lines). Both panels are for the case of baseline+Planck. As
shown in this figure, we do not find significant bias or degra-
dation in the constraints.

7.2 Comparison with the DES Y1 MG analysis

Earlier, the DES Collaboration reported the constraints on
µ0 and ⌃0 obtained from the DES Y1 data in DESY1MG. As
this work follows their analysis methods with the same shear
catalog, comparing the results of this work with DESY1MG
enables us to validate the capability of using DMASS as
gravitational lenses to combine the spectroscopic and imag-
ing surveys e�ciently. This section briefly describes the lens
sample and external data sets used in DESY1MG and com-
pares their MG constraints with ours. As we do not report
the result for the DES data alone, we only compare the re-
sults measured with the external data sets.

DESY1MG utilized the 3x2pt data vectors measured
with the redMaGiC lenses (Rozo & Ryko↵ et al., 2016;
Elvin-Poole & Crocce et al., 2018) and the DES Y1 meta-
calibration sources (Sheldon & Hu↵ 2017; Hu↵ & Mandel-
baum 2017; Zuntz & Sheldon et al., 2018). The redMaGiC
sample consists of 660, 000 galaxies over an area of 1321 deg2.
The sample was divided into five redshift bins, using three
di↵erent cuts on intrinsic luminosity: 0.15 < z < 0.3,
0.3 < z < 0.45, 0.45 < z < 0.6, 0.6 < z < 0.75, and
0.75 < z < 0.9. The first three bins were selected us-

MNRAS 000, 1–16 (2021)

Ψ = 4πG(1 + μ0)δρm

Φ + Ψ = 8πG(1 + Σ0)δρm

DES-2020-0532
FERMILAB-PUB-21-207-AE

MNRAS 000, 1–16 (2021) Preprint 26 October 2021 Compiled using MNRAS LATEX style file v3.0

Probing gravity with the DES-CMASS sample and BOSS

spectroscopy

S. Lee,1 E. M. Hu↵,2 A. Choi,3 J. Elvin-Poole,3,4 C. Hirata,3,4 K. Honscheid,3,4 N. MacCrann,5

A. J. Ross,3 M. A. Troxel,1 T. F. Eifler,6,2 H. Kong,3,4 A. Ferté,2 J. Blazek,3,7 D. Huterer,8
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ABSTRACT

The DES-CMASS sample (DMASS) is designed to optimally combine the weak lens-

ing measurements from the Dark Energy Survey (DES) and redshift-space distortions

(RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spec-

troscopic Survey (BOSS). In this paper, we demonstrate the feasibility of adopting

DMASS as the equivalent of CMASS for a joint analysis of DES and BOSS in the

framework of modified gravity. We utilize the angular clustering of the DMASS galax-

ies, cosmic shear of the DES metacalibration sources, and cross-correlation of the

two as data vectors. By jointly fitting the combination of the data with the RSD mea-

surements from the CMASS sample and Planck data, we obtain the constraints on

modified gravity parameters µ0 = �0.37
+0.47
�0.45 and ⌃0 = 0.078

+0.078
�0.082. Our constraints

of modified gravity with DMASS are tighter than those with the DES Year 1 red-
MaGiC sample with the same external data sets by 29% for µ0 and 21% for ⌃0,

and comparable to the published results of the DES Year 1 modified gravity analysis

despite this work using fewer external data sets. This improvement is mainly because

the galaxy bias parameter is shared and more tightly constrained by both CMASS

and DMASS, e↵ectively breaking the degeneracy between the galaxy bias and other

cosmological parameters. Such an approach to optimally combine photometric and

spectroscopic surveys using a photometric sample equivalent to a spectroscopic sam-

ple can be applied to combining future surveys having a limited overlap such as DESI

and LSST.

Key words: cosmological parameters – gravitational lensing – large-scale structure of

the Universe

© 2021 The Authors
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Combination of weak-lensing measurements (DES) and redshift-space distortion measurements 
(CMASS - BOSS):









Cassini

O(1)

Fifth force and anomalous light bending
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• Light bending

Solar system tests 

• Post-Newtonian parameter

• Bending of lights 

• Shapiro time delay  
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This bound holds for a constant w. To probe dynamical dark energy we usually parametrize
w = w(z):

w = w0 +
waz

1 + z
= wa + w0(1� a/a0) . (2.3)

With this definition we have the following bound from Planck 2018 + SN + BAO:

w0 = �0.961± 0.077 , wa = �0.28± 0.30 (68%) . (2.4)

Plot.

2.1.3 The cosmological constant problems

2.1.4 The issue of H0

2.2 Dynamical dark energy

2.2.1 Scalar field quintessence

2.2.2 Tracker models

2.2.3 Scalar field perturbations

2.2.4 k-essence and speed of propagation

3 Modified gravity

3.1 Introduction to modified gravity

3.1.1 Why modifying gravity

3.1.2 How modifying gravity

3.2 Tests of gravity

Gravity works extremely well on a wide range of scales.

3.2.1 Solar-System size scales

To parametrize deviations from GR we use the Post-Newtonian parameters

g00 = �1 + 2
GM

r
, gij = �ij

✓
1 + 2�

GM

r

◆
, (3.1)

� = 1 is the GR value, � = 0 is the Newtonian value while in modified gravity � 6= 1 and
typically � 6= 0.

Bending of light

✓ = 2(1 + �)
M�
r

=
1 + �

2
✓GR (3.2)

and
� � 1 = (�1.7± 4.5)⇥ 10�4 (3.3)

4• Shapiro time-delay
Shapiro time delay From Cassini spacecraft 2003:

�t = 2(1 + �)GM�
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4
rprl

r0

◆
+ 1

�
(3.4)

and
� � 1 = (2.1± 2.3)⇥ 10�5 (3.5)

Variation of G From Lunar laser ranging

|Ġ/G| . 4± 9⇥ 10�13 yr�1 (3.6)

From Mars ephemeris
|Ġ/G| . 0.1± 1.6 (3.7)

Pulsar timing Hulse-Taylor binary pulsar: orbital decay due to gravitational wave
emission agrees with GR prediction (measured over 40 years).

LIGO/Virgo (strong-field test) Waveform observed by LIGO/Virgo collaboration
and predicted by PN expansion methods and numerical relativity agree with GR.

3.2.2 Cosmological scales

3.3 F(R) gravity

S =

Z
d
4
x
p
�g [F (R) + Lm(gµ⌫ , I)] (3.8)

Why not other terms? Generic terms containing Rµ⌫ and Rµ⌫⇢�, such as R2
µ⌫ yield higher

derivatives. As we will see later these are bad.
Variation of the action with respect to the metric gives

F
0(R)Rµ⌫ �

1

2
F (R)gµ⌫ �rµr⌫F

0(R) + gµ⌫⇤F
0
R = Tµ⌫ . (3.9)

Thanks to the modified left-hand side, the Universe can accelerate by itself.
A popular choice (Carroll, Duvvuri, Trodden and Turner) is

F (R) = R� µ
4

R
, (3.10)

so that R = 0 is not a solution. In this case we can check that R = C = const. and
Rµ⌫ = 1

4Cgµ⌫ , i.e. de Sitter, is a solution of the field equations above. One finds

C = ±
p
3µ2

. (3.11)

Since for a flat Friedmann solution R = 6(H2 + ä/a), we have that the Universe is expo-
nentially expanding with H

2 ⇠ µ
2.

A better choice is the Hu-Sawicki model,

F (R) = R� µ
2 c1(R/µ)n

c2(R/µ)n + 1
(3.12)
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Chapter 2:  

Modern tests 

2.1 Shapiro delay 

The light travel time delay, or Shapiro delay, is sometimes called the fourth classical test of 

GR and was first introduced by Shapiro in 1964. This delay in the arrival time of light passing 

nearby a massive object is the casual result of general relativistic time dilation, due to a 

significant gravitational potential. Shapiro realised, the speed of light is dependent on the 

gravitational potential along its travel path, according to GR, and could be tested with a close 

conjunction of the Sun (Shapiro, 1964). These tests were measured in the weak-field regime. 
 

The physical definition of rp, re and r0, during a test scenario are represented by Figure 8. 

 
 

Figure 8 The radar reflection of photons from the Earth to a planet and back. The left image is the 
actual path, exaggerated. The right image is the Euclidean form. Illustration E. Asmodelle. 

 

 

To define Shapiro delay, assume the Earth and the planet are stationary, while the total time 

for the round trip of the radar signal is ∆t, in coordinate time. The value of t must be represented 

in terms of r along the entire pathway, while r0 is the closest approach to the Sun or its radius. 

The travel time from Earth to the reflecting planet and back to Earth is given in Equation 19, 

where k is the Schwarzschild metric parameter: k = GMŸ /c2. Also re is the orbital radius of the 

Earth and rp is the orbital radius of the reflecting planet17 (Shapiro, 1964; Lambourne, 2010). 

        Eq. 19 

                                                            
17 Of course, corrections for the movement of the planets and the refraction by the Solar corona, must be taken into account. 
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Slip parameter

Φ = ΦE + βϕ = − (1 + 2α2) GM
r

Ψ = ΨE − βϕ = − (1 − 2α2) GM
r

• Fifth force

There is a fifth force due to ��. In the quasi-static limit eq. (3.31) for a point like source
with mass M becomes

r2
�� =

↵

MPl
M�

(3)
, (3.37)

with solution

�� = �2↵MPl
GM

r
= 2↵MPl�E . (3.38)

So particles move as if e↵ectively displaced by the potential

� = �E +
↵

MPl
�� = �E(1 + 2↵2) . (3.39)

One can get the first equality in this relation by expanding the metric relation (3.21),
confirming that � is the metric potential in Jordan frame.

Jordan frame Due to the non-minimal coupling between gravity and the scalar, in
Jordan frame � does not satisfy the usual Poisson equation but

r2�� ↵

MPl
r2

�� = 4⇡GM�
(3)(~x) , (3.40)

where for simplicity we approximate matter by a massive point-like body of mass M .
Neglecting the scalar field potential the scalar field equation (3.27) becomes

0 = ⇤�+ f
0
R ' r2

�� ' r2
�� (3.41)

In the quasi-static limit and

� = �GM

r

�
1 + 2↵2

�
. (3.42)

G is enhanced by
�
1 + ↵

2
�
due to the modification of gravity. Equivalently,

3.4.3 Light bending

The fifth force is not the only e↵ect of modified gravity. Expanding the metric relation
(3.21) we find

 =  E � ↵

MPl
�� . (3.43)

Since �E =  E from the standard Einstein equations,

 = �GM

r
(1� ↵

2) (3.44)

so that

� � 1 = � 4↵2

1 + 2↵2
. (3.45)

Cassini implies |↵| . 5 · 10�2 which is in the interesting range.
Discuss the case of JBD.
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Fifth force and anomalous light bending

• Lunar laser ranging: accurate measurement of lunar period 
and mean distance
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3.2.2 Cosmological scales

3.3 F(R) gravity

S =

Z
d
4
x
p
�g [F (R) + Lm(gµ⌫ , I)] (3.8)

Why not other terms? Generic terms containing Rµ⌫ and Rµ⌫⇢�, such as R2
µ⌫ yield higher

derivatives. As we will see later these are bad.
Variation of the action with respect to the metric gives

F
0(R)Rµ⌫ �

1

2
F (R)gµ⌫ �rµr⌫F

0(R) + gµ⌫⇤F
0
R = Tµ⌫ . (3.9)

Thanks to the modified left-hand side, the Universe can accelerate by itself.
A popular choice (Carroll, Duvvuri, Trodden and Turner) is

F (R) = R� µ
4

R
, (3.10)

so that R = 0 is not a solution. In this case we can check that R = C = const. and
Rµ⌫ = 1

4Cgµ⌫ , i.e. de Sitter, is a solution of the field equations above. One finds

C = ±
p
3µ2

. (3.11)

Since for a flat Friedmann solution R = 6(H2 + ä/a), we have that the Universe is expo-
nentially expanding with H

2 ⇠ µ
2.

A better choice is the Hu-Sawicki model,

F (R) = R� µ
2 c1(R/µ)n

c2(R/µ)n + 1
(3.12)
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Figure 1: Lensing potential on scale k = 0.01/Mpc as a function of redshift (left panel) in

code units of CLASS and CMB temperature - WISE galaxy cross-correlation (right panel)

for ⇤CDM and the Galileon models. The shaded region in the left panel indicates the WISE

redshift selection function dN/dzd⌦ given in Eq. (2.5) with adjusted o↵set and normaliza-

tion for display. The black solid line shows the prediction of ⇤CDM while the coloured

dashed/solid lines indicate examples of Galileon models with growing/decaying potentials

within the redshift range of the WISE selection function. Cubic models are shown in orange

(⌫Gal3), quartic in purple (⌫Gal4) and quintic (⌫Gal5) in green. The temperature-galaxy

data are the Q-band measurements from [30].

lutions of the lensing potential that yield a positive ISW e↵ect. This is illustrated in Figure 1.

The left panel shows the redshift evolution of the lensing potential for ⇤CDM and represen-

tative Galileon models, as labelled. The shaded region depicts the redshift distribution of

the WISE galaxies we use in this paper. For the Galileon curves shown the dashed ones

correspond to cases with growing lensing potentials. The right panel shows the resulting C
Tg

`

spectrum which is negative and, hence, at odds with the WISE ISW data (grey points). On

the other hand there are choices of the Galileon parameters that yield decreasing potentials

(solid lines). An interesting point to note for these curves is that, although the potential can

grow in some redshift ranges (e.g. z ⇠ 0.5 � 1) it is decaying in the redshift range spanned

by the WISE galaxies. This therefore yields a positive C
Tg

`
, as shown in the right panel. A

main question that we address below is then: is the positiveness of the ISW e↵ect in Galileon

cosmologies compatible with CMB and BAO data? We will see below that yes: there are

regions in the parameter space that yield an acceptable fit to the CMB, BAO and ISW data

considered in this paper10.

4 Methodology

In this section we outline the main steps taken in our analysis. The first step consists in

placing constraints on the parameter space of the Galileon model using data from the CMB

and BAO. This serves to pin down the parts of the parameter space that merit the subsequent

10There are some recent BAO scale determinations that are in tension wit Galileon gravity which we discuss
in Section 5.4.
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instead of getting swallower as in LCDM



20 40 60 80 100
�

�0.3

�0.2

�0.1

0.0

0.1

0.2

�
(�

+
1)

C
T

g

`
/
2�

[µ
K

]

�CDM

�Gal3

�Gal4

�Gal5

WISE Data

from Ref. [30]

Figure 1: Lensing potential on scale k = 0.01/Mpc as a function of redshift (left panel) in

code units of CLASS and CMB temperature - WISE galaxy cross-correlation (right panel)

for ⇤CDM and the Galileon models. The shaded region in the left panel indicates the WISE

redshift selection function dN/dzd⌦ given in Eq. (2.5) with adjusted o↵set and normaliza-

tion for display. The black solid line shows the prediction of ⇤CDM while the coloured

dashed/solid lines indicate examples of Galileon models with growing/decaying potentials

within the redshift range of the WISE selection function. Cubic models are shown in orange

(⌫Gal3), quartic in purple (⌫Gal4) and quintic (⌫Gal5) in green. The temperature-galaxy

data are the Q-band measurements from [30].

lutions of the lensing potential that yield a positive ISW e↵ect. This is illustrated in Figure 1.

The left panel shows the redshift evolution of the lensing potential for ⇤CDM and represen-

tative Galileon models, as labelled. The shaded region depicts the redshift distribution of

the WISE galaxies we use in this paper. For the Galileon curves shown the dashed ones

correspond to cases with growing lensing potentials. The right panel shows the resulting C
Tg

`

spectrum which is negative and, hence, at odds with the WISE ISW data (grey points). On

the other hand there are choices of the Galileon parameters that yield decreasing potentials

(solid lines). An interesting point to note for these curves is that, although the potential can

grow in some redshift ranges (e.g. z ⇠ 0.5 � 1) it is decaying in the redshift range spanned

by the WISE galaxies. This therefore yields a positive C
Tg

`
, as shown in the right panel. A

main question that we address below is then: is the positiveness of the ISW e↵ect in Galileon

cosmologies compatible with CMB and BAO data? We will see below that yes: there are

regions in the parameter space that yield an acceptable fit to the CMB, BAO and ISW data

considered in this paper10.

4 Methodology

In this section we outline the main steps taken in our analysis. The first step consists in

placing constraints on the parameter space of the Galileon model using data from the CMB

and BAO. This serves to pin down the parts of the parameter space that merit the subsequent

10There are some recent BAO scale determinations that are in tension wit Galileon gravity which we discuss
in Section 5.4.

– 10 –

Renk et al. ‘17

Figure 1

The Vainshtein radius rV is fixed by the mass of the object and the value of the mass
scale ⇤. We will see soon that ⇤ ⇠ 10�13 eV ⇠ (1000 km)�1. For ↵ ⇠ O(1) and using
M� ⇠ 2 · 1033g and MPl ⇠ 5 · 10�5g we have

rV ⇠ 100

✓
M

M�

◆1/3

(3.57)

• r
Earth
V ⇠ 0.1 pc

• r
�
V ⇠ 100 pc

• r
Milky Way
V ⇠ 1 Mpc

The tightest constraint to the Vainshtein screening comes from lunar laser ranging
observations. Inside the Vainshtein radius the scalar field mediated force is small but not
negligible and gives a correction to the gravitational potential,

��

�
⇠

↵
2

2

✓
r

rV

◆3/2

. (3.58)

The current constraint is
��

�
. 2.4 ⇥ 10�11

. (3.59)

Plugging in the numbers, for M = MEarth and r = 3.84 ⇥ 107km for the Earth-Moon
distance, we find

⇤ & (3.60)

3.6 Higher-order derivatives

3.6.1 Self-acceleration of the cubic Galileon

We consider the theory (3.50) (without matter to simplify the analysis),

S =

Z
d
4
x


M

2
PlR

2
�

c2

2
(@�)2 �

c3

⇤3
(@�)2⇤�

�
(3.61)
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We can easily generalize the model

G2(�, X)
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In principle, self-acceleration and screening. Much wider range of parameter space: 
more difficult to constrain

Cubic galileon

Model ruled out by integrated Sachs-Wolfe/
galaxy correlation (Wide-field Infrared Survey 
Explorer). The gravitational potentials deepen 
instead of getting swallower as in LCDM
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Without gravity, MPl → ∞ (and Λ3 const.), Horndeski theories reduce to Galileons. Galileons 
are the skeletons of modified gravity

Horndeski theories
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c
 7⇥ 10�16
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Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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Gravitational waves
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Lorentz invariance is spontaneously broken. Gravitational waves acquire 
non trivial speed of propagation. (Think of light travelling in a material.)
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Lorentz invariance is spontaneously broken. Gravitational waves acquire 
non trivial speed of propagation. (Think of light travelling in a material.)
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Theory may break down and tensor speed may go back to luminal on short scales
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Frequency dependence?

EFT of cosmological scales may not apply to LIGO-Virgo scales [de Rham, Melville ’18]

Can we use GW observations to constrain these theories?



Conclusions Lecture 5
• Modifications of gravity can be probed by cosmological observations: redshift-

space distortion, weak lensing. However, they are tightly constrained by Solar 
System tests. How can we modify gravity on cosmological scales and 
simultaneously pass SS tests?  

• We have studied the screening mechanism displayed by a cubic Galileon. 
Nonlinearities of the scalar field induced by overdensities (like the Earth or the 
Sun) suppress the fifth force. 

• A covariant Galileon naturally displays self-acceleration: observed acceleration 
explained by modified gravity, without a CC. Ruled out by ISW-gal correlation, 
but one can enlarge the parameter space.

• Galileons: set of Lagrangian with the same characteristics: important 
nonlinearities that contribute to screening and self-acceleration but second-
order EOM (only one propagating dof). Non-renormalization theorem: 
quantum corrections are small at low energy.

• Horndeski theories: covariantized version of the Galileons: most general 
scalar-tensor theories with second-order EOM. Used as a testbeds for modified 
gravity in cosmology. A large set of them possibly ruled out by GW170817. 


