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Shear? in a contracting spacetime
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Smoothing Example

e The next few slides are from a similar case, except planar
symmetry along two spatial dimensions (so an effect 1+1D
evolution), and now with a scalar field with an ekpyrotic-

like potential
©)=-V,e™
with k=10

e Starting with initial data that is very far from FRLW, as
quantified via Q’s, the normalized contributions to the
energy density:
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Formalism

Solve the Einstein field equations

G =38l

where the stress-energy tensor is sourced by a scalar field with
ekpyrotic potential
V((I)): - oe_kq)

We expand the equations using the orthonormal-frame formalism
with Hubble-normalized variables (Uggla et al, 2003)

- Fhe metric is defined in terms of a set of four linearly independent 1-
orms
¢, which are dual to an orthonormal “tetrad” e,, with e, being

timelike and the 3 e spacelike:

ds* =m o‘0’, n =diag[-LLLI]




Formalism - geometry

Choosing coordinates where there is no vorticity in the time-like vector field
e, , and the spatial frame e, is non-rotating with no shift

we can decompose the commutators of the tetrad as

[e,.e,]=428, -

[e,.e;]= (Za[aé ! + €5 1 n )eY
where N is the lapse aw 7ac 1o i Cl\..\..Cl.CIClLIUII 11 CliC \HUbble) eXpanS]On

rate, and o“® the shear of the time-like congruence n°f and a“ contain
information about the spatial metric.

Hubble normalized (scale invariant) gravitational variables are defined by




Formalism - matter

e Scale invariant matter quantities are defined via

e In terms of these variables the effective “equation of
state” function w of the scalar field is




