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Shear3 in a contracting spacetime

• Vacuum


• Periodic in (x,y), 
planar symmetry in 
z


• Overall blow-up of 
shear factored out


• A time coordinate 
chosen so that t→ 
∞ is the singularity



Smoothing Example 
• The next few slides are from a similar case, except planar 

symmetry along two spatial dimensions (so an effect 1+1D 
evolution), and now with a scalar field with an ekpyrotic-
like potential  
 
 
 
with k=10


• Starting with initial data that is very far from FRLW, as 
quantified via Ω’s, the normalized contributions to the 
energy density: 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Ω at early times 

In these coordinates the 
singularity occurs at t=∞

■ Yellow --- Ωm 

■ Blue --- Ωk

■ Pink --- Ωs 
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Zoom-in of Ω at late times

0

1

Note that spikes are not 
being smoothed out – 

that they seem to 
“disappear” after some 

time is an artifact of 
having converted the 

data to a  lo-res uniform 
mesh for visualization 

purposes

■ Yellow --- Ωm 

■ Blue --- Ωk

■ Pink --- Ωs 



Hubble-normalized lapse ℵ
• In CMC slicing, as used in evolution, the proper volume 

element S of t=constant slices at late times scales as S∝ e-3ℵt



Effective equation of state parameter w



State space orbits
• Each frame of the animation 

shows 
	   
Σ-= (Σ11-Σ22)/2/√3  
 
as a function of 
 
Σ+=1/2 (Σ11+Σ22) 
 
along an x=constant wordline, 
scanning from x=0 to x=2π.  

• A point on the circle is Kasner 
(unstable), the center is flat 
FRLW (stable), points within an 
inner circle of radius 1/√3  
(not shown) are the mixed 
Kasner-like scalar field 
spacetimes (unstable).


• A trajectory flowing to the 
center thus represents 
evolution to a locally smooth, 
isotropic geometry



Formalism
• Solve the Einstein field equations  

 
 
 
 
 
where the stress-energy tensor is sourced by a scalar field with 
ekpyrotic potential 
 
 
 

• We expand the equations using the orthonormal-frame formalism 
with Hubble-normalized variables (Uggla et al, 2003) 


– the metric is defined in terms of a set of four linearly independent 1-
forms  
ωa , which are dual to an orthonormal “tetrad” ea, with e0 being 
timelike and the 3 eα spacelike:
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Formalism - geometry
• Choosing coordinates where there is no vorticity in the time-like vector field 
e0 , and the spatial frame ea is non-rotating with no shift 
 
 
 
 
we can decompose the commutators of the tetrad as  
 
 
 
 
 
 
where Ν is the lapse; duα/dt is the acceleration, H the (Hubble) expansion 
rate, and σαβ the shear of the time-like congruence; nαβ and aα contain 
information about the spatial metric.


• Hubble normalized (scale invariant) gravitational variables are defined by
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Formalism - matter

• Scale invariant matter quantities are defined via 
 
 
 
 
 
 
 

• In terms of these variables the effective “equation of 
state” function w  of the scalar field is
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