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Introduction

• A bit of history : the TOGA decade
• Benefits of a hierachy of models
• GCMs



1990s : the TOGA revolution

• A milestone for early GCMs development
• Improved resolution and physical parameterisations
• ENSO feedbacks

The TOGA Decade: Reviewing the Progress of El 
Niño Research and Prediction
Journal of Geophysical Research, 1998

David Anderson, Ed.
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2000s: the CMIP era

• CMIP3: first ENSO intercomparison
• AchutaRao & Sperber, 2006; van Oldenborgh et al., 2005; Guilyardi 2006; 

Capotondi et al., 2006; Wittenberg et al., 2006
• More gradual improvement CMIP3 -> CMIP5 -> CMIP6

• Bellenger et al., 2014; C. Chen et al., 2017; Stevenson et al. 2020
• Essential processes: deep convection and clouds, equatorial wave 

dynamics, upwelling, vertical mixing
• Role of resolution and physical parameterisations
• Role of intra-seasonal variability (MJO, WWE…)
• More complete view of ENSO feedbacks
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Parameterized air-sea interaction processes

Jayne Doucette,
WHOI Graphics
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ENSO feedbacks

Ocean response to τ and HF anomalies
• Upwelling ("thermocline feedback”)
• Zonal advection & Ekman feedbacks
• Wave dynamics  
• Energy Dissipation

Atmosphere response to SSTA
• Bjerknes wind stress feedback (µ)
• Heat flux response (a)

Non linear processes (“noise”): 
• NL ocean dynamical
• Impact of WWE
• TIW stirring
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A hierarchy of models

• Simple models (harmonic oscillators, LIM,…)
• Intermediate complexity models (ICM)
• GCMs
• Differents goals and purpose:

• Simple: theory and concepts, teaching tools, insights in sources of predictability
• ICM: Easy to understand, versatile, limited in focus, difficult to relate to obs
• GCM: Full complexity, expensive to develop and maintain, difficult to diagnose and 

understand, closer to observations
• Simpler models can be used to diagnose and understand more complex 

ones
• E.g. hybrid models, BWJ index
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Bridging the gap between theory and GCMs

• Ensembles of opportunity provide a unique testbed for theory
• Disagreement -> model improvement but also theoretical 

improvement
• Many examples

The role of the atmosphere in ENSO
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Models for ENSO understanding

Exploring the role of the atmosphere in ENSO:
Feedbacks, non-linearity and ENSO extremes



Atmosphere feedbacks during ENSO

Dynamical: Bjerknes feedback 
m

East-west SST gradient

Trade winds

Equatorial upwelling in the east

Heat flux feedback a

SST increase in the east

Modified heat fluxes (SHF, LHF)

Multi-model and sensitivity studies show 
that AGCM has a dominant role
(e.g. Schneider 2002, Guilyardi et al. 2004, Kim et al. 2008, Neale 
et al. 2008, Sun et al. 2008,...)

Guilyardi et al. (2004)

Two types of feedbacks:
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Role of atmosphere during ENSO

Dynamical positive Bjerknes feedback: m
Negative heat flux feedback: a (SHF, LHF)

1 - Classical theory:

From a linear atmosphere to the driver of variability

e.g.: the Bjerknes coupled-stability index for ENSO IBWJ

α : atmosphere heat flux 
feedback (local linear)

μa: Bjerknes feedback
or linear “coupling strength”

Mean advection and upwelling 
(damping)

Zonal advection feedback

Ekman pumping feedback

Thermocline feedback

Jin et al. (2006), Kim et al. (2010)
Linear stability analysis of recharged oscillator SST equation
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2 - Dominant role of AGCM in coupled AOGCMs
OGCM only modifies the amplitude

(Schneider 2002, Guilyardi et al. 2004, 2009, Kim et al. 
2008, Neale et al. 2008, Sun et al. 2008, 2010)

3 - The Southern Oscillation is an atmosphere mode
• Slab ocean El Niño, thermally coupled Walker mode (TCW)
• Mechanisms: MM, WES, cloud shortwave feedbacks, extra-tropical forcing
• Ocean role: amplify signal and 2-7 years power spectra in east Pacific

e.g.: apply BWJ Index to the CMIP3 GCMs:
• BWJ Index correlated with ENSO amplitude !
• a major contributor to ENSO amplitude errors

From a linear atmosphere to the driver of variability

EN
SO

 a
m

pl
itu

de

BWJ Index

Kim and Jin (2010), Guilyardi et al. (2009b)

(Kitoh al 1999, Vimont et al. 2003, Chang et al. 2007, Dommenget 2010, Alexander et al. 2010, 
Terray 2011, Clement al. 2011)
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IPSL/Tiedke (TI)
(0.3 C) – old scheme

IPSL (KE)
Kerry Emanuel
(1.0 C) - in IPCC

Impact of atmosphere convection scheme on ENSO  

Observations
(0.9 C) - HadiSST1.1

ENSO has 
disappeared !

Guilyardi et al. (2009b)

What role for α and μ ?

IPSL-CM4 model

14



15

BS index for KE and TI 

Linear theory: α dominant factor in TI/KE difference

Guilyardi et al. (2009b)

15



~10/12 -18 0.9

4 -5 1.0

4 -20 0.3

m a ENSO amplitude

KE

TI

Obs

10-3 N.m-2/C W.m-2/C oC

Impact of atmosphere convection scheme on 
ENSO – role of α and μ

Due to shortwave feedback difference second 
half of the year (ENSO growth)

aSW sensitive to atmosphere convection scheme in IPSL-CM4

KE:  error compensation !
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Can we suppress ENSO in KE ?

~10 -18 0.9

4 -5 1.0

4 -20 0.3

5 -21 0.4

m a
El Niño

Amplitude

KE

TI

Obs

10-3 N/m2/C W/m2/C oC

KE mod TI

• Perform KE run with increased aSW

• Interannual Flux Correction:
• SHFO= SHFSCKE + aSWmod (SSTO-SSTSCKE)

• aSWmod = -15 W.m-2

• Mean state (SC) unchanged

ENSO gone as well !

KE

TI

KE 
mod TI
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Extreme El Niño events related to 
atmosphere non-linearity

Two regimes in east Pacific

Only models with MIXed regime can
simulate extreme El Niño events

Only one third of models have a 
MIXed regime

This non-linearity is a key  process-
based metric
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ECMWF April 2014 
forecast

ECMWF April 2015 
forecast

Model April 
forecast with 

same WWV and 
initial WWE

Influence of Westerly Wind Events stochas6city on El Niño amplitude: the case of 2014 vs. 2015 - Puy et al. 2017

Operational forecasts Model study (CNRM-CM5)

Extreme El Niño predictability as a function of WWE activity

100 members
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Extreme El Niño predictability as a function of WWE activity

Cumulated WWE activity during growth phase directly influences 
ENSO amplitude via eastern displacement of WP edge

Influence of Westerly Wind Events stochas6city on El Niño amplitude: the case of 2014 vs. 2015 - Puy et al. 2017
20



Evaluation of ENSO in GCMs

• ENSO influence is global: need to get it right
• Early need for ENSO evaluation

• Tropical Pacific mean state
• ENSO key biases and mechanisms

• From statistics to process-based metrics



ENSO as an anomaly to a mean state

Hovmoeller of annual cycle along the equator (x2):
Wind stress (shading), SST (solid contours), 
Precipitation (3 and 8 mm/day dashed)

Annual cycle = background to ENSO

Northern Spring is “El Niño – like”

Northern Fall is “La Niña – like”
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ENSO and the mean state

Complete disruption of Annual Cycle AmplificaZon of Annual Cycle

Evaluation of mean state and annual cycle is a first step

23
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Models struggle to simulate mean state and annual cycle

• Convection in AMIP TI too strong -> semi-annual cycle

24

Observations IPSL-CM4 coupled model



Key biases – Tropical Pacific mean state

Stevenson et al. 2020

• Too strong Equatorial Cold Tongue (ECT) that extends too far west 

• Warm SST bias near the coast of South America 

• Equatorial Pacific dry bias

• Excessive “double” ITCZ 

• SPCZ too zonal

• Overly intense hydrologic cycle over the tropical Pacific 

• Equatorial τx that is too strong or too weak 

• Overly cyclonic wind stress off-equator (favour ECT)

• Biases in the equatorial thermocline depth, intensity, sharpness, and zonal slope

Fasullo 2020

• Biases in the cloud regimes over the eastern and central Pacific 

25Guilyardi et al. 2020



Key biases in ENSO

• Amplitude errors, which can also affect the skewness, diversity, and 
interdecadal modulation 

• Errors in spectrum - too sharply peaked, and ENSO period too regular 
and biennial

• Too little synchronization of ENSO to the annual cycle, or a 
synchronization of ENSO to the wrong season 

• Errors in the level of interdecadal modulation 
• SSTA patterns and atmosphere response displaced too far west 
• Too little skewness of ECT SSTAs toward warm events 

26Guilyardi et al. 2020



Key biases in ENSO mechanisms

• Equatorial τx anomalies that are too weak, too far west, and too 
narrow in the meridional direction (reduced zonal wind feedback)

• Too little damping of SSTAs by surface heat fluxes, often due to a 
weak cloud shading response (aSW problem)

• Insufficient cross-timescale linkage between ENSO, its intraseasonal 
precursors, and Pacific decadal modes, linked to biases in the 
background climatology

• Error compensations that can lead to right statistics for wrong 
physical reasons

27Guilyardi et al. 2020



Double-peaked El Niño SSTAs

If warm pool is too far west, we get
more double-peaked El Niños with
western peaks that are farther west.

Composite El Niño in CMIP5 models
(equatorial SSTA)

obs warm pool edge

East Pacific El N
iño
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Present-day simulations show
fewer double-peaked El Niños

than pre-industrial.

Graham et al. (CD 2017) 28



Ham & Kug (JC 2015)

CMIP5 rainfall responses to ENSO

DJF regressions on
NINO3.4 SSTA.

Obs show eastward & 
equatorward shift of deep 
convection during El Niño.

ECT cold SST bias → 
many model responses
are too far west along

the equator.

“Horseshoe” shape.

Obs
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Ham & Kug
(JC 2015)

CMIP5: SSTA zonal propagation linked to mean state

Warmer-ECT
models show less 

westward 
propagation

of equatorial SSTAs.

May be due to a 
weaker westward 

SEC, or weaker
dT/dx & dT/dz

curbing zonal & 
Ekman feedbacks

relative to the 
thermocline 
feedback.

Colder-ECT
models

Warmer-ECT
modelsObs
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ENSO metrics
• Measure of distance between model and a 

reference

• Two main goals:
• Guide model development
• Help “non experts” assess ENSO 

• Go beyond the niño3 SSTA stdev view

• CLIVAR context, WG, several papers

• Learning to use metrics f(Q, context)

• Dealing with unsufficient observations

• Benefits and risks



CLIVAR ENSO metrics work group

• IniYated via the CLIVAR Research Focus Development Team “ENSO in a 
changing climate” (2014-2018)

• Now coordinated by CLIVAR Pacific Region Panel (Andrew)
• (too?) many meeYngs (Paris, Pune, Hobart, San Francisco, Lijiang, 

Busan, Quayaquil,…)
• Led to a number of papers
• Great community adventure – now led by Yann and Andrew

32



…oh my 
god !

The awakening…
Fei-Fei, do you 
know what is a 

?

From BJ to BWJ…





Model evaluation workflow
Climate informa-on

users
Climate experts Software and

data engineers

User interface(s)

Document metric = 
f(science quesZon)

Define metrics

Def. observations

Program metric

Science governance

Build software to 
run metric

Build software to 
view metric

IT governance

Define science 
quesZon

Analyse results

Choose metric(s)
Choose model(s)

Run and view 
metric

ArOculate different actors, different experOse and expectaOons 

Science / IT interface

Sc
ie

nc
e 

   
qu

es
tio

n 
in

te
rfa

ce
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Document science provenance of metric
• What is the scientific question ?
• What are the related metrics?
• What are the reference “observations” ?

• Introduce concept of Metric collection (MC) to 
address specific science question

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5…

Collection Q1

Collection Q2

Collection Q3

…

36



First science questions for ENSO metrics

• ENSO performance in historical
• Mean state incl. SC, ENSO characteristic space/time, diversity, 

decadal
• Use ensemble or Picontrol to evaluate uncertainty

• ENSO teleconnections in historical
• Metrics a la Scott (25 regions,…), RMS,…

• ENSO processes (right for right reasons)

37



Structure of pilot ENSO package

ENSOCollectionsLib.py

ENSOComputeMetricsLib.py

ENSOMetricsLib.py

ENSO Support libs

PMP Driver

Understand
work 
(vars, obs…)

Execute work

Collect results

ENSO Metrics Package

Define pre-processing

Documentation of every step in calculation 
carried through with the results

User chooses metric 
collec:on and models

User analyses results

View results

(loop on models)

dict{}

Engage with an IT infrastructure (driver), here PMP

h<ps://github.com/eguil/ENSO_metrics
Collabora:on with PMP/PCMDI
Explore how to use in ESMValTool

Science / IT 
interface

38
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Some happy ENSO metrics team members

CMIP6 Model Analysis Workshop, Barcelona, 2019



ENSO metrics: devising portrait plots

40



ENSO metrics: devising portrait plots

Planton et al. 2021 BAMS: Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package 41



Building a metric for portrait plot

https://cmec.llnl.gov/results/enso/

Planton et al. 2021 BAMS: Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package 42



CMIP5➜6: 8 significantly improved
1 significantly degraded

Planton et al. 2021 BAMS: Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package

⊕ ⊝⊕ ⊕⊕ ⊕⊕⊕⊕

43



Using metrics

Address numerous questions
• Sub-sample models

44



Metrics 
correlations

Intriguing correlations
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How to take into account observa1ons 
uncertain1es in metrics ?
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Some models are far away from the reference

Planton et al. (2021)Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes)



Large observational uncertainties

Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes) 48



Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes)

Large observational uncertainties

49



obs. uncertainty
& model error

model error

model error & 
internal var.

model error &
obs. uncertainty

Large model errors, but in some cases
obs. uncertainty or internal variability are as large

bootstrap: obs / model / member
50



Observations for metrics
• Obs. uncertainties large compared to mod. error in 50% of the metrics

• SST bias (cold tongue bias) is the clearest model error

• Large observation uncertainties in precipitation and feedbacks

• Obs4MIPS integrated into ENSO metrics package

51



Understanding sources of ENSO biases
• How to disentangle sources of models errors 

in a highly coupled, non-linear, and multi-time 
scales phenomenon such as ENSO ?

• Dedicated simulations with artificially 
modified feedbacks or change of physics, but…

• Use of initialised simulations



Using initialized simulations to diagnose the 
growth of systematic biases in GCMs
• Seasonal hindcasts make it possible to disYnguish fields that are 

affected by errors from the beginning of the simulaYon (wind 
pakerns, precipitaYon, mixed layer depth) and those which respond 
to the previous one (SST, thermocline depth and zonal wind in the 
west Pacific).  

• Seasonal/decadal Jme scale:
• Tropical Atlan4c: B. Huang et al. (2007)
• Tropical Pacific : B. Vannière et al. (2013, 2014), J. Shonk et al. (2016)

• Decadal/longer Jme scale:
• Tropical Atlan4c: T. Toniazzo & S. Woolnough (2013)
• North Atlan4c & AMOC : B. Huang et al. (2015)

+ many other studies, eg Kim et al. 2017 (ENSO growth and BSI), Hermanson et al. 2018 (comparing seasonal 
forecast systems), Shonk et al, 2018 (Western Pacific ITCZ drift), Brient et al. 2019 (marine strato cumulus), Ding et 
al. 2020…
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➥ Each step generates biases 
➥ Source in coupled model is difficult to identify because of bias compensation, 

feedback amplification and non-linearities

Step 1
Parameterization 
constrained against field 
campaigns observation

Step 2
Tuning of component, 
adjustment of large 
scale balance  

Step 3
Tuning of coupled model to 
balance global energy budget 
and exchanged fluxes 

“Classical” CGCMs development path 

EVALUATION

➥ This development strategy does not allow to predict the coupled model SST biases

Model 
development 
process

Parameterization Component Coupled model

EVALUATION EVALUATION
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Working backwards
Parameterization Component Coupled model

e.g. T-AMIP

➥Use “reverse engineering” to attribute a particular bias of the coupled 
model to a component and back to a specific parameterisation

This study

Model 
development 
process

“Fast” physics errors Long term 
coupled errors

Atmosphere and ocean 
component errors

55



Using initialised simulations to understand model errors 

Initialisation procedure

- Ensemble Kalman filter
- 3Dvar, 4Dvar
- nudging toward SST

Lead time 

Forecast

en
se

m
bl

e

Hindcasts = forecast of the 
past period

Perturbation of 
initial state

obs

model

Adjustment time scale depends on 
physical processes involved

➥ Help distinguish time scale and location of error growth
➥ Help propose hypothesis for error source

Hindcasts: 

56



Using seasonal hindcasts: a new strategy to understand GCM 
systematic errors

Vannière et al. 2011

• Wind stress errors at equator present 
after one week

• Responsible for cold bias at equator

ENSEMBLES stream 2 seasonal hindcasts

Cold tongue SST error (after 5-7 months)
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Using additional simulations to demonstrate the source of  error

Oceanic simulation forced with 
fixed flux : impact of meridional 
wind correction

Toniazzo and Woolnough (2013)

Coupled simulation with wind correction

Vannière et al. (2014)
58



Vannière et al (2014) proposed a systematic approach to investigate the root 
cause of a SST bias in a climate model 

5 steps for ‘solving the case’:

1. Identify the location and seasonality of the SST bias
2. Examine the time scales over which errors develop in different variables 

and link them together to build a chain of causality

3. Find whether the origin of the bias is local or remote
4. Determine if an atmospheric field or an oceanic field is at fault
5. Investigate whether the error is caused by the direct effect of that field, or 

by coupled feedbacks

Can we devise a systematic experimental approach ?
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The 5 steps

Associated experiments in support of  approach

Historical or control 
experiment

Seasonal to decadal 
hindcasts 

Regionally restored 
experiments

Ocean-only forced 
experiments

Associated 
experiments

S1 Location / seasonality

S2 Time scale / chain of causality

S3 Local or remote

S4 Atmospheric / oceanic field 
responsible for the bias 

S5 Direct effect / amplification by 
coupled feedbacks

leadtime

Ocean model

Vannière et al. (2014)

Fluxes
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� Warm bias in the east 
Pacific

� Cold tongue bias 
� Warm bias on both 
side of the equator

� Spurious spring 
upwelling bias

Identifying the origin of  SST mean state biases in the tropical 
Pacific in IPSLCM5A-LR

Ti
m

e 

Equatorial 
seasonal cycleMean state

-LR

Vannière et al. (2014)

Approach is applied to cold tongue bias in 
IPSL-CM5A-LR (S1) 
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> S2 : Time scale  →  Cold tongue bias

ü It takes 30 years for the cold
tongue bias to appear at the
equator

ü Hypothesis : ocean slow dynamics

ü SST corrected in mid-latitudes 
� no development of the cold 

tongue bias

CPLPrst_15: Initialised simulation restored toward observed SST in midlatitudes

Hindcast

Historical

20-yr leadtime

Cold tongue bias origin

> S3 : Geographical origin →  Cold tongue bias

SST 
nudging

Vannière et al. (2014) 62



Nudging toward 
the hindcast mid-
latitudes cold bias

Experiment Equatorial cooling trends 
of the 300m HTC (J.m-

2.mth-1)

Hindcast -1.35 106

Ocean only with SST 
restoring

-1.73 106

Ocean only without 
SST restoring

0.1 106

ü When the midlatitudes cold SST bias is prescribed in an ocean-only
experiment, the cold tongue bias develops at the equator

ü The cooling trend is similar to that simulated by the control hindcast

Ocean only simulation (bulk) 300m 
heat content

> S4 : Ocean only simulation  → reproduce cold tongue bias

Vannière et al. (2014)

30 years leadtime

63
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Subtropical cells path according to 
Izumo et al. (2002)

A possible cause of the midlatitude 
cold bias propagation is the 
advection by subtropical cells

Hindcast drift

Differs from other sources of the cold tongue bias (Vannière et al. 2013) 
• Bjerknes feedback (Met Office) 
• Atmospheric component wind errors (INGV)
• or otherwise proposed in many studies

Vannière et al. (2014) 64

Cold tongue bias origin



• New approaches needed to address SST systematic errors
• Strategy to relate coupled errors to the errors in one component

independently of the coupling:
• 5 step ‘case solving’ approach
• Requires range of dedicated simulations, including initialized
• Proof of concept from several studies (tropical Pacific and Atl.) 
• Further benefits/costs to explore:

• Apply during model development phase
• cheap (300 years) 
• need to develop a ‘tool box’, i.e. several types of

• Precise types of simulations will depend on ‘case’ i.e. SST bias – no 
‘standard’ set

• Can’t be directly applied to SST interannual variability biases (ex: ENSO) but 
can be applied to ENSO mechanisms and feedbacks (not shown)

• AMIP/T-AMIP is the starting point in the tropics - SST errors initially due to fast 
atmosphere biases

65

Using initialized simulations to diagnose the growth of systematic 
biases in GCMs  - summary



66

Mean seasonal cycle at Eq.

• AMIP KE performs rather well
• Convection in AMIP TI too strong

• Biases amplified in coupled mode
• Semi-annual cycle in TI
• Equinoctial Central American 
monsoon too strong in TI (Braconnot et al. 
2007)

• Wind stress (shading)
• SST (solid contours)
• Precipitation (3 and 8 mm/day dashed)
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Large ensembles – a new horizon for ENSO 

• ENSO precursors
• Distinguish external forcing from internal variability
• Better comparison with observations during historical period
• How well do models simulate ENSO? How well do we know ENSO?

Planton et al. 2022, Lee et al. 2021, Maher et al. 2020
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6 restarts:
• 3 recharged
• 3 discharged
• median value of each box
• opposite two by two
• 70 members / ensemble

ENSO precursors: the role of recharge

Planton et al. JC 2021
68



3 pairs of initial conditions were chosen 
to create ensemble experiments

0.9°C
1.7°C

0.9°C
1.7°C

3 pairs of initial conditions were chosen to create 
ensemble experiments
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0.7°C
1.2°C

3 pairs of initial conditions were chosen to create 
ensemble experiments
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3 pairs of initial conditions were chosen 
to create ensemble experiments

0.6°C
0.9°C

3 pairs of initial conditions were chosen to create 
ensemble experiments

0.6°C
0.9°C

71



In our experimental setup, the outcome 
after a recharge is less predictable in 
every pair of experiments

0.9°C1.7°C

0.7°C1.2°C

0.6°C
0.9°C

IC: neutral ENSO

IC: moderate ENSO

IC: extreme ENSO

In this experimental setup, the outcome after a recharge is 
less predictable in every pair of experiments

0.9°C1.7°C

0.7°C1.2°C

0.6°C0.9°C

IC: neutral ENSO

IC: moderate ENSO

IC: extreme ENSO
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In our experimental setup, the spread of 
WWE activity after a recharge is larger in 
every pair of experiments

spread of WWE activity larger
after a recharge than a discharge
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IC: neutral ENSO

spread of WWE activity larger
after a recharge than a discharge
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W

E 
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IC: neutral ENSO

In this experimental setup, the outcome after a recharge is 
less predictable in every pair of experiments

Planton et al. JC 2021
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In conclusion, we found that the outcome after a recharge is 
less predictable due to WWE activity and the wind stress 
feedback nonlinearity

the spread of WWE activity
after a recharge is larger,
enhancing SSTA spread

2014 2015

SSTA

Ta
ux

A

the wind stress feedback
after a recharge is stronger,

enhancing SSTA spread

one amplification 
regime

two amplification 
regimes

Planton et al. JC 2021 74
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Detecting ENSO Variance Changes in a Warmer World 

• required ensemble size (RES) depends linearly on the ensemble-
variance simulated by the models and increases with the square of 
the desired absolute accuracy of ensemble-mean variance. 

Atwood et al. 2017, Planton et al. 2022, submitted
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Atwood et al.’s results 
reproductible with 
CMIP6 piControl and 
large ensembles of 
historical

The modulation of ENSO in CMIP6 large ensembles is 
𝝌𝟐 distributed

Planton et al. 2022, submitted
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ensemble
variance
= internal 
variability

expected variance
if 𝛘2 distributed

CMIP6’s interannual variability close to that expected 
of 𝛘2

Planton et al. 2022, submitted
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Strong increase of the required ensemble size with 
the desired level of accuracy

ensemble size to obtain 
given accuracy at the 
95% confidence level

Methodology similar to:
Lee et al. 2021 GRL: Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed?

~13 members for EM +/- 0.10°C2

~51 members for EM +/- 0.05°C2

Planton et al. 2022, submitted
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Challenges and opportunities 
in ENSO modelling

• Model improvement
• Using ensembles
• Using observations
• Metrics and the street lamp syndrome
• Modelling strategies



CGMs progress over the past 15+ years

1. Virtually all CMIP-class CGCMs now have a recognizable ENSO.
- A major target of model development.

5. Ocean/atmosphere grid refinements and improved physics have helped a lot.
- Enabled by faster computers.
- Often reduce mean biases, improve ENSO teleconnections & extremes.
- But require careful retuning & additional development.

2. Improved ENSO amplitude, spectrum, and spatial diversity.
- But substantial biases and inter-model differences remain.

3. Most models now capture the dominant ENSO mechanisms.
- But often not the right balance, and next-order feedbacks are missed.

4. Improvements have been incremental and hard-won.
- Comprehensive models target multiple phemonena & scientific questions.
- Finite resources → force compromises during development/tuning.

6. Large ensembles (SMILEs) are helping address new questions
- Distinguish external forcing from internal variability
- Role of NL and ISO
- Better comparison with observations and assess uncertainty

Adapted from Andrew Wittenberg
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• Improve the understanding of different physical processes that influence ENSO 
characteristics (frequency, amplitude, diversity,…).

• Synthesize existing ENSO evaluation methods in GCMs including bridges to theory 
and use of initialised simulations.

• Propose ENSO evaluation protocols and develop a strategy for coordinated ENSO 
analysis/metrics of CMIP models; develop and maintain an interactive website 
(including contribution to CMIP6).

• Sustain observing systems for ENSO research and prediction; and identify new 
observations needed to better constrain ENSO processes, both for the current 
climate and for past climates.

• Improve the understanding of how ENSO might change in the future.
• Enhance international collaboration between observationists and modelers for 

studies of ENSO
• Enhance applications of ENSO analysis and forecast products for targeted user 

communities.
• Build research capacity by contributing to the development of the next generation of 

talents dealing with ENSO science and prediction.

Areas primed for progress in the next 5-10 years of CLIVAR (2015)  
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Models are both fun and demanding

• Our only tools to test understanding and provide forecasts / projections
• Help test and challenge theory
• Need careful evaluation = f(science question, obs)
• Accuracy, i.e. size of ensemble is also f(science question)
• Metrics are an exciting development
• Danger of the street lamp syndrome
• Carefully devise experiments for specific question and understand the 

limits
• Engage with other communities (theory, model, obs, impacts…)
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Advance notice for later discussion !



Ethics of advocacy/engagement of climate 
scientists in society
• New issue for environmental scientists (e.g. climate science)
• Scientist vs. expert vs. citizen vs. activist ? 
• Neutrality, values-based, trust, credibility, legitimacy ?
• Naive, manipulated, irrelevant ?
• Technocracy vs. democracy ?
• Public good vs, private interests, medias, politicians ?
• Which hat to wear? Which advocacy? 
• Cf. COVID and numerous historical examples (Manhattan project, bio-

ethics,…)

Research integrity vs. reserch ethics ?



Lydia Messling - PhD thesis 2020

How should climate change scien-sts engage in policy advocacy ?

Advocacy 
spectrum

Contextual factors :
- Influences perception
- Miss goal on target
- Miss target (« stealth advocacy »)

continuum


