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Introduction

* A bit of history : the TOGA decade
* Benefits of a hierachy of models

* GCMs




1990s : the TOGA revolution

* A milestone for early GCMs development

* Improved resolution and physical parameterisations
* ENSO feedbacks
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2000s: the CMIP era

* CMIP3: first ENSO intercomparison

e AchutaRao & Sperber, 2006; van Oldenborgh et al., 2005; Guilyardi 2006;
Capotondi et al., 2006; Wittenberg et al., 2006

* More gradual improvement CMIP3 -> CMIP5 -> CMIP6
* Bellenger et al., 2014; C. Chen et al., 2017, Stevenson et al. 2020

* Essential processes: deep convection and clouds, equatorial wave
dynamics, upwelling, vertical mixing

* Role of resolution and physical parameterisations
* Role of intra-seasonal variability (MJO, WWE...)
* More complete view of ENSO feedbacks



Parameterized air-sea interaction processes
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ENSO feedbacks

El Nif iti
iflo conditions e Atmosphere response to SSTA
North - Bjerknes wind stress feedback ()
Alelica + Heat flux response (Q)
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* Thermocline

Ocean response to T and HF anomalies
» Upwelling ("thermocline feedback”)

« Zonal advection & Ekman feedbacks

+ Wave dynamics

« Energy Dissipation

Non linear processes (“noise”):
* NL ocean dynamical

* Impact of WWE

* TIW stirring



A hierarchy of models

* Simple models (harmonic oscillators, LIM,...)
* Intermediate complexity models (ICM)
* GCMs

 Differents goals and purpose:
* Simple: theory and concepts, teaching tools, insights in sources of predictability
» ICM: Easy to understand, versatile, limited in focus, difficult to relate to obs
e GCM: Full complexity, expensive to develop and maintain, difficult to diagnose and
understand, closer to observations

e Simpler models can be used to diagnose and understand more complex
ones

* E.g. hybrid models, BWJ index




Bridging the gap between theory and GCMs

* Ensembles of opportunity provide a unique testbed for theory

* Disagreement -> model improvement but also theoretical
improvement

* Many examples

The role of the atmosphere in ENSO




Models for ENSO understanding

Exploring the role of the atmosphere in ENSO:
Feedbacks, non-linearity and ENSO extremes



Atmosphere feedbacks during ENSO

SINTEX HadOPA HadCM3 HadCEM
Different resolutions

Multi-model and sensitivity studies show - 2r=mmes

. ECHAM ECHAM | ECHAM m
that AGCM has a dominant role B
(e.g. Schneider 2002, Guilyardi et al. 2004, Kim et al. 2008, Neale m OPAIORCA —

et al. 2008, Sun et al. 2008,...)

Same ocean

Same Same
atmosphere atmosphere
Two types of feedbacks:
Dynamical: Bjerknes feedback Heat flux feedback a
m
Damm— SST increase in the east | m——
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Modified heat fluxes (SHF, LHF)
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Role of atmosphere during ENSO

From a linear atmosphere to the driver of variability

Dynamical positive Bjerknes feedback: m

1 - Classical theory: _
Negative heat flux feedback: a (SHF, LHF)

e.g.: the Bjerknes coupled-stability index for ENSO Isw.J

Mean advection and upwelling

XT) _ o1y (7) + FIi), (damping)

ot
T R (—22y\7> L Hww)  — 0l : atmosphere heat flux
L, L Hy, feedback (local linear)
Zonal advection feedback oT oT
N—i_ ,u’aﬁu<_a> +MW<5H(W)>
Ek ing feedback — _\ = -
man pumping feedbac B <H(w)wa>7 LL,: Bjerknes feedback
Thermocline feedback = g ) or linear “coupling strength”
or H(w)w
ﬁu:ﬁum—i_ﬁuw F=- a 6uh+ H aj.

Jin et al. (2006), Kim et al. (2010)

i Linear stability analysis of recharged oscillator SST equation
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Role of atmosphere during ENSO

From a linear atmosphere to the driver of variability

2 - Dominant role of AGCM in coupled AOGCMs BWJ Index

OGCM only modifies the amplitude 2.50 o3

{Cor=0.79
(Schneider 2002, Guilyardi et al. 2004, 2009, Kim et al. Q 2.00 1 o
2008, Neale et al. 2008, Sun et al. 2008, 2010) 2 3 - .O
o 3

e.g.: apply BWJ Index to the CMIP3 GCMs: E 2.4 ° 2 ®

* BWJ Index correlated with ENSO amplitude ! 2 %l & %

* a major contributor to ENSO amplitude errors - .

Kim and Jin (2010), Guilyardi et al. (2009b) e i (1/,,,)0'00 100

. . . cm3_1_t47 dl_cm2_ ri_cgecm2_3a0

3 - The Southern Oscillation is an atmosphere mode §§::_3¢-i3=63 %g,:fg;fsi’ﬂg Srcer eeam3 0

@csiro_mk3_5 e@miroc3_2_med
@qfdi_cm2_0 @mpi_echam5

* Slab ocean El Nifo, thermally coupled Walker mode (TCW)
* Mechanisms: MM, WES, cloud shortwave feedbacks, extra-tropical forcing
* Ocean role: amplify signal and 2-7 years power spectra in east Pacific

(Kitoh al 1999, Vimont et al. 2003, Chang et al. 2007, Dommenget 2010, Alexander et al. 2010,
Terray 2011, Clement al. 2011)
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Impact of atmosphere convection scheme on ENSO

SSTA standard deviation

Observations IPSL-CM4 model

(0.9 C) - HadiSST1.1

IPSL (KE)
Kerry Emanuel
(1.0C)-inIPCC

ENSO has
disappeared !

What role for oo and WL ?

IPSL/Tiedke (TI)
(0.3 C) — old scheme

P B e Y
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BS index for KE and TI

a(T)

ot

2Ip;

ﬁu = Bum +ﬁus7 F= _<a_>ﬂuh + <
X
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= 20y (T) + Flh],

_— (<u> L) (H )W)

2
Ly L; H,

+ uaﬁu<* g—i> + uaﬁw<

T,

oT

0

T
0z

H(w)>

Dynamic | Thermodynamic Ocean

damping damping (o) feedbacks Bl.index
KE -0.46 -0.45 1.02 0.11
11 -0.61 -1.33 0.52 -1.42
Change (%) 130% $-200% '+ -50%

‘0

Table 1. The BJ Index and its components for KE and TI simulations. The

ocean feedbacks sums the zonal advective feedback, the thermocline

feedback and the Ekman feedback (see Jin et al. 2006 for details). Units are

1/Yr.

Guilyardi et al. (2009b)

— Linear theory: a dominant factor in TI/KE difference




Impact of atmosphere convection scheme on
ENSO - role of aand u

m 3 ENSO amplitude
Obs | ~10/12 -18 0.9
KE KE: error compensation !
Tl

103 N.m2/C W.m-2/C °C

!

Due to shortwave feedback difference second
half of the year (ENSO growth)

— dsw sensitive to atmosphere convection scheme in IPSL-CM4
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Can we suppress ENSO in KE ?

« Perform KE run with increased asw

- Interannual Flux Correction:

- SHFo= SHFscKXE + asw™d (SSTo-SSTscKE)

e aswmod = _15 W.m2

+ Mean state (SC) unchanged
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a) Shortwave gy (Nifio 3)

W.m2/C

El Nifio
m d Amplitude

Obs ~10 -18 0.9
KE
TI
KE mod TI

10-3 N/m2/C W/m2/C °C
ENSO gone as well !
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204 (a) ENSO amplitude vs alpha SW nonlinearity
.o " |[sus . Shortwave feedback
Extreme EI Nifo events related to ‘ in observations
—~ REF
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g 1.0 =h% .pl.
| e
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o) \|c=0.71
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simulate extreme El Niflo events
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Extreme El Nifio predictability as a function of WWE activity

Operational forecasts Model study (CNRM-CM5)

a T T T T T T T T T T b T T T T T T T T T T c T T T T T T T T T T d

— ensemble mean — ensemble mean — ensemble mean J
4 [ - — observation 1 [ = = observation 5 ] 4 §
2
| ~—
e == ! <
8 i - B
\(!J, 2 I~ ,,’ I - 2 w
i | 3
2 ] =
» Mol ! b4
B0t - i | (|03
.4 T T J— o)
o | Wwv=13 11 wwy=14 | Wwv=1.4 — _2§

g Cumulative WWE strength= 6.5 Cumulative WWE strength= 5.6 Cumulative WWE strength= 5.2 »

F A J A (0] D F A J A (0] D F A J A (0] D é ‘ 115 ‘ 2IO
2014 2015 Model year (%)
ECMWEF April 2014 ECMWEF April 2015 Model April
forecast forecast forecast with 100 members
same WWYV and
initial WWE

Influence of Westerly Wind Events stochasticity on El Nifio amplitude: the case of 2014 vs. 2015 - Puy et al. 2017
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Extreme El Nifo predictability as a function of WWE activity

Cumulated WWE activity during growth phase directly influences

ENSO amplitude via eastern displacement of WP edge

c d
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Influence of Westerly Wind Events stochasticity on El Nifio amplitude: the case of 2014 vs. 2015 - Puy et al. 2017
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Evaluation of ENSO in GCMs

* ENSO influence is global: need to get it right

* Early need for ENSO evaluation

* Tropical Pacific mean state
* ENSO key biases and mechanisms

* From statistics to process-based metrics




Annual cycle = background to ENSO

Northern Spring is “El Nifno — like”

Northern Fall is “La Nina — like”

150E 160W 110W

Hovmoeller of annual cycle along the equator (x2):

Wind stress (shading), SST (solid contours),
Precipitation (3 and 8 mm/day dashed)
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ENSO and the mean state

El Nino Conditions Normal Conditions

o~ Convective
Circulation

-— - - -

Thermocline Thermocline

120°E 80w 120°E 80w

Complete disruption of Annual Cycle Amplification of Annual Cycle

discharge recharge

- Evaluation of mean state and annual cycle is a first step

23



Models struggle to simulate mean state and annual cycle

Observations IPSL-CM4 coupled model

“ . 4 NovH [
‘ 1 ; 1 Sep
/’1 1 Jul

ﬁ", { May |32 alco o - = SN z

Mar
Jan
Nov
Sep

Jul
May

Mar
Jan

. ey : N
~ 150E 160W 110W 150E 160W 110W 150E 160W 110W

- Convection in AMIP Tl too strong -> semi-annual cycle
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Key biases — Tropical Pacific mean state

» Too strong Equatorial Cold Tongue (ECT) that extends too far west * Excessive “double” ITCZ

e Warm SST bias near the coast of South America * SPCZtoo zonal

(c) Mean bias: CMIP6

- 60°N

SST bi?s, CMIP§ VS. ERS§Tv5

v 1 - l“("’ 5
160N' ".n . ": __.\—.-. - ._l .
80N‘L'A b ’ /¥ oW B |
0° 1 N/ a5 l 7 o 9
8°s % D B LW 1 I©
R A+ 5, ol SO . [
rl Ll 1 L i 5
Stevenson et al. 2020 - 60°S
. . . . e -2.0 0.0 20
* Biases in the cloud regimes over the eastern and central Pacific i  ——————————— .
7 -5 -8 1 -05 0 05 1 3 5 7
Fasullo 2020

* Equatorial T, that is too strong or too weak
* Equatorial Pacific dry bias

* Overly cyclonic wind stress off-equator (favour ECT) . _ _ N
* Overly intense hydrologic cycle over the tropical Pacific

* Biases in the equatorial thermocline depth, intensity, sharpness, and zonal slope
Guilyardi et al. 2020 25



Key biases in ENSO

 Amplitude errors, which can also affect the skewness, diversity, and
interdecadal modulation

* Errors in spectrum - too sharply peaked, and ENSO period too regular
and biennial

* Too little synchronization of ENSO to the annual cycle, or a
synchronization of ENSO to the wrong season

e Errors in the level of interdecadal modulation
» SSTA patterns and atmosphere response displaced too far west
* Too little skewness of ECT SSTAs toward warm events

Guilyardi et al. 2020 26



Key biases in ENSO mechanisms

* Equatorial T, anomalies that are too weak, too far west, and too
narrow in the meridional direction (reduced zonal wind feedback)

* Too little damping of SSTAs by surface heat fluxes, often due to a
weak cloud shading response (asw problem)

* Insufficient cross-timescale linkage between ENSO, its intraseasonal
precursors, and Pacific decadal modes, linked to biases in the

background climatology

* Error compensations that can lead to right statistics for wrong
physical reasons

Guilyardi et al. 2020 27



Historical simulations

Double-peaked El Niio SSTAs

Composite El Nifio in CMIP5 models

(equatorial SSTA) e
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Fraction of double peaked El Nifio events

Graham et al. (CD 2017) 28



CMIP5 rainfall responses to ENSO

(1) MPI-ESM-LR (2) CSIRO-MK3-6-0

126 ISI‘ |
(4) MPI-ESM-MR (5) IPSL-CMSA- R

120E 150 1

DJF regressions on
NINO3.4 SSTA.

5
1206 |u|

(7) MIROC-ESM-CHEM (8) MIROC- ESM

:Q-\\‘z

Obs show eastward &

P ulalell equatorward shift of deep

T . . .
B convection during El Nifo.

ECT cold SST bias —
many model responses
are too far west along
the equator.

WE 1206 1! ‘vm Il 1200
(19) GFDL-ESM2M

“Horseshoe” shape.

O
(31) cMeC- CM

(33) GISS-E2-R-CC

; I ] [ | |
-3 -25 -2 -5 -1 -05 05 1 15 2 25 3 >

FIG. 1. The precipitation anomalies regressed onto the Nifio-3.4 index during the December-February (DJF) season, in the observation Ham & K ug ( JC 201 5)
(1), multimodel ensemble (MME; 0), and each model (1-34; model numbers are given in Table 1). Note that the unit of the regression is

mmday™'°C™", 29



CMIP5: SSTA zonal propagation linked to mean state

Warmer-ECT
models show less
westward
propagation
of equatorial SSTAs.

May be due to a
weaker westward
SEC, or weaker
dT/dx & dT/dz
curbing zonal &
Ekman feedbacks
relative to the
thermocline
feedback.

Ham & Kug
(JC 2015)

Warmer-ECT Colder-ECT
Obs

models models
5 (a) OBS S— - (b) MME + Regressiorll 5 (c) MME — Regression
9- 0
61 6
3 3
01 01
=3 _3]
64 -61
9] -9

-12 T T T TP -12 T T T T T
120E 150E 180 150W 120W 90W 120E 150E 180 150W 120W 90W

[E— T T I I —
-2 -1 -08 -06 -04 -02 02 04 06 0.8 1 1.2 >

FIG. 6. (a) The observed equatorially averaged (5°S-5°N) ENSO-related SST anomalies from the preceding January (i.e., —12 on the y
axis), to subsequent December (i.e., +12 on the y axis) of the ENSO peak season. Also shown is the regression of the intermodel
differences of the equatorially averaged ENSO-related SST anomalies onto the first EOF PC from the preceding January to subsequent
December of the ENSO peak season, which is (b) added to and (c) subtracted from the MME response of the Nifio-3.4-regressed SST.
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ENSO metrics

* Measure of distance between model and a
reference

* Two main goals:
* Guide model development
* Help “non experts” assess ENSO

* Go beyond the nifno3 SSTA stdev view
* CLIVAR context, WG, several papers

* Learning to use metrics f(Q, context)

* Dealing with unsufficient observations

e Benefits and risks




p'?
CLIVAR ENSO metrics work group CRUAY

* Initiated via the CLIVAR Research Focus Development Team “ENSO in a
changing climate” (2014-2018)

* Now coordinated by CLIVAR Pacific Region Panel (Andrew)

* (too?) many meetings (Paris, Pune, Hobart, San Francisco, Lijiang,
Busan, Quayaquil,...)

* Led to a number of papers
e Great community adventure — now led by Yann and Andrew
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From BJ to BWJ...

The awakening...

/Fei—Fei, do you
know what is a
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Model evaluation workflow
&5,

Climate information Climate experts i /£ /"

FFR?? users

Define science
question

Choose metric(s)
Choose model(s)

Software and (’Qg
data engineers =

Define metrics Science / IT interface

Def. observations Sl S e G

Document metric = run metric
f(science question)

question interface

Program metric Build software to

Run and view I view metric

metric

Analyse results Science governance IT governance

Articulate different actors, different expertise and expectations

User interface(s)
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Document science provenance of metric

* What is the scientific question ?
e What are the related metrics?
e What are the reference “observations” ?

* Introduce concept of Metric collection (MC) to
address specific science question

T ey erea | erres | errd | et

36



First science questions for ENSO metrics

 ENSO performance in historical

* Mean state incl. SC, ENSO characteristic space/time, diversity,
decadal

* Use ensemble or Picontrol to evaluate uncertainty

e ENSO teleconnections in historical
* Metrics a la Scott (25 regions,...), RMS,...

* ENSO processes (right for right reasons)

37



Structure of pilot ENSO package

User chooses metric

. . _ collection and models
Engage with an IT infrastructure (driver), here PMP —

ENSO Metrics Package PMP Driver
/ ’ ____________ = \\ R y T T T -\\\
/
I ENSOCollectionsLib.py I4_\I_> Undlfrstand
| wor

| (vars, obs...)

ENSOComputeMetricsLib.py 4-;—

\ ENSOMetricsLib.py

I
|
|
[
I Define pre-processing |
[
I
I
I

Execute work

(loop on models)

[
I
I
I
I
I
I
I
I
I
I
: | ENSO Support libs I
I

\

dict{} Collect results
\ Documentation of every step in calcul;tion e ]
\ carried through with the results ~ ,~ |\ _ _ _ _ _ __ ____
N o o o e e e e o o e - :_ \

. |
https://github.com/equil/ENSO metrics v ! View results !
Collaboration with PMP/PCMDI Science /IT '~~~ """~~~ " L
Explore how to use in ESMValTool interface \

User analyses results 38
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CMIP6 Model Analysis Workshop, Barcelona, 2019



a) Performance b) Telecon. c) Processes
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ENSO metrics: devising portrait plots

a) Performance b) Telecon. ,c) Processe

ACCESS1-0
ACCESS1-3

* ACCESS-CM2

* ACCESS-ESM1-5
NorESM1-ME

* NorCPM1

* NorESM2-LM

* NorESM2-MM

* SAMO-UNICON
* TaiESM1
* UKESM1-0-LL
(CMIP5)
(CMIP6) -2 0
(reference)
(ERA-Interim)
(NCEP2)
(20CRv2)
* = CMIP6 ef*efefe%&cf* 5 ch SEEF S E5E55ES §"§# 61&%% &
model _ f@f’f’ A8 qf“ . 9‘ o T8 S S e“* \{@"‘
V 4o oo VI «}‘19°;o?@°°@\°°@\°°@°° % ‘{-,0’01 oa@ NS
& w@?’ CEE @ ¢ é‘q"‘; ey CSE, 4* '3{4‘ &
& RO

Planton et al. 2021 BAMS: Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package 41



Building a metric for portrait plot

Map of the SSTA in Zonal mean SSTA averaged
the equatorial Pacific. 5°S-5°N across the Pacific.
Diagnostic 1 msssssslpy | Diagnostic 2
15 3) ref: Tropflux d) Zonal SSTA pattern (“C/*C)
T T T K] T 1.5
4 10
= 0° rh
- 0.5
(4
15°5 Lal’? A\ 1 1 0.0 T T TR Y Ao

Program for Climate Model
Diagnosis and Intercomparison

ePCN\D' https://cmec.linl.gov/results/enso/

¢) GISS-E2-H-CC e) RMSE ((ref, model) f) portrait plot
15°N &y T 0.6 —
0° i
% metric — MMV +20 53
R
15°s L ik . CMips ﬁ
130°E 180° 130°W 80°W CMIP6
0 165 20
-1.6 W sntra M x 0 (R0 urited
Distribution of metric values. If the underlying To compare model
model (and reference values) are scalar rather performance across
than RMSE, then the metric is expressed as a metrics, the portrait
posmve value as in [|(model - ref) x 100/ref]]. plot shows standard-

ized distribution of

Planton et al. 2021 BAMS Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package
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CMIP5-6: 8 significantly improved
1 significantly degraded

Mean metric values relative to CMIP5

95% confidence interval of MMV CMIP5 (46)
(Monte Carlo sampling method) CMIP6 (42)
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a) Mean metric values of a subset of models relative to CMIP
:[95% confidence interval of MMV CcMIP (88)

2 * CMIP

>

(Monte Carlo sampling method) subset (17)

-iiiéziééié%giézmz%ﬁ%
Address numerous questions

* Sub-sample models ////o ,,;\

Using metrics
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Metrics
correlations

Intriguing correlations




How to take into account observations
uncertainties in metrics ?
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Some models are far away from the reference

317 3.2 37 23 2.1‘} 1.37 0.87 6,57 0.5% 0.57 95 SSTZSO 1103 155 701100 751115 105

. i
§?++?“ o ++ o | |o

CMIP6 (mean of all available members)

Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes) Planton et al. (2021)



Large observational uncertainties

37 3.2 3 233 2.1 1.;- 0.87 6.57 0.5 0.57 95 553_280 1103 155 70% 1003 757 1153 105
TR Ml
S " ‘ 1
© - .
RN ) o i ol
O . 3
2 T mefe AN
"c_lJ) - 4 ] < - |

<Blle . -4 <

E i g <

CMIP6 (mean of all available members)
p observational datasets = Mean

Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes) 48



Large observational uncertainties

_—
—
A

4

t

metric values

CMIP6 (mean of all available members)
p observational datasets = Mean

Reference: AVISO (SSH), GPCPv2.3 (PR), OISSTv2 (SST), TropFlux (Taux & heat fluxes) 49



Large model errors, but in some cases

obs. uncertainty or internal variability are as large

[
N
. Y

NE ITCZ bias
mm.day !

SE ITCZ bias
mm.day !

CMIP6 (members mean)
observational datasets

Jithin

100T‘ 100
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obs. u Certai_nty
& model error

oL -
100+ 100

model error %

% of

1N
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QO l

8 . 6=
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~

H—o °
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SST-Taux feedback ENSO as
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o

<100 100
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bootstrap: obs / model / member
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Observations for metrics

* Obs. uncertainties large compared to mod. error in 50% of the metrlcs
« SST bias (cold tongue bias) is the clearest model error
« Large observation uncertainties in precipitation and feedbacks

« Obs4MIPS integrated into ENSO metrics package

” 1.8 > 2.2 > 0.7
= S =
Q
e O i o
(Uo ()] . W o
n U ©
Q o 0
= 0p) 0p)
L & &
0.4 0.8 -0.7 51




Understanding sources of ENSO biase

* How to disentangle sources of models errors
in a highly coupled, non-linear, and multi-time
scales phenomenon such as ENSO ?

* Dedicated simulations with artificially
modified feedbacks or change of physics, but...

e Use of initialised simulations

L y
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Using initialized simulations to diagnose the
growth of systematic biases in GCMs

* Seasonal hindcasts make it possible to distinguish fields that are
affected by errors from the beginning of the simulation (wind
patterns, precipitation, mixed layer depth) and those which respond
to the previous one (SST, thermocline depth and zonal wind in the

west Pacific).

* Seasonal/decadal time scale:

* Tropical Atlantic: B. Huang et al. (2007)

* Tropical Pacific : B. Vanniere et al. (2013, 2014), J. Shonk et al. (2016)
» Decadal/longer time scale:

* Tropical Atlantic: T. Toniazzo & S. Woolnough (2013)

* North Atlantic & AMOC : B. Huang et al. (2015)

+ many other studies, eg Kim et al. 2017 (ENSO growth and BSI), Hermanson et al. 2018 (comparing seasonal
forecast systems), Shonk et al, 2018 (Western Pacific ITCZ drift), Brient et al. 2019 (marine strato cumulus), Ding et
al. 2020...
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“Classical” CGCMs development path

Parameterization Component Coupled model

land

clouds ORCHIDEE
CosP

atmosphere R

stratospheric ‘
chemistry
REPROBUS /

A
4 changes
olar
radia

coupler
natural OASIS
e ocean
emissions

NEMO

dynamics
OPA

Model
development

s
process 5

anthropogenic
emissions

biogeo-
Mo
Step 1 Step 2 Step 3
Parameterization Tuning of component,  Tuning of coupled model to
constrained against field adjustment of large balance global energy budget
campaigns observation scale balance and exchanged fluxes

g \ 4 \ 4

EVALUATION I EVALUATION IEEEN EVALUATION N

> Each step generates biases
> Source in coupled model is difficult to identify because of bias compensation,
feedback amplification and non-linearities

> This development strategy does not allow to predict the coupled model SST biases
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Working backwards

Parameterization Component Coupled model

Incomin,

radiation

land
douds ORCHIDEE

atmosphere — energy
ISl & water
IlA

stratospheric
chemistry
REPROBUS land use

Model

development
process -

emissions

This study @

e.g. T-AMIP

biogeo-
chemistry

(\

“Fast” physics errors Atmosphere and ocean Long term
component errors coupled errors

> Use “reverse engineering” to attribute a particular bias of the coupled
model to a component and back to a specific parameterisation
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Using initialised simulations to understand model errors

Hindcasts = forecast of the
Initialisation procedure Forecast past period

=== Observation
= = Nudged simulation

a, b and ¢ Hindcasts

ensemble

»
»

SST in Nino 3 (°C)

- Ensemble Kalman filter Lead time
- 3Dvar, 4Dvar Perturbation of
- nudging toward SST initial state
Jan 1I987I Jul 1987 Jan 1988 Jul 1988
Adjustment time scale depends on
physical processes involved
Hindcasts:

> Help distinguish time scale and location of error growth
> Help propose hypothesis for error source
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Using seasonal hindcasts: a new strategy to understand GCM

systematic errors
Cold tongue SST error (after 5-7 months) Pacific zonal wind velocity averaged

2. SST, ENSEMBLES - Reynolds (K) P between 2.5°S and 2.5°N (May)

i )I‘;\:’S\'\X\ ’—/ﬂ
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e — 2 & N R N Il 2 2 N 2 2 J
. 3 100 120 140 160 180 160 140 120 100 80 €0
R 5 i
100E 150E 160W 110W 2
Longitude 0
-2
— ECMWF — IFM-Kiel =—— Meteo-France -4

&

ENSEMBLES stream 2 seasonal hindcasts

120 140 160 180 160 140 120 100 ED 60

8

Meteo-France

* \Wind stress errors at equator present
after one week

* Responsible for cold bias at equator
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8

SO N S
T

s

1st week (initialized in May)

Wind velocity (mfs) Wind velocty (mis) Wind velocity (més)  Wind welocity {mis)  Wind velocity (mis)
|

—— 1st month (initialized in May) B0 12 1 180 180 180 0 120 w00 8 &
= 4th montbh (initialized in February) 4
—— 7th month (initialized in November) =
— ERA40 2
-4
Vanniére et al. 2011 100 120 140 160 180 long‘nefde 140 120 100 a0 60
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Using additional simulations to demonstrate the source of error

308
100E 150E 160W 110w 60W

Oceanic simulation forced with
fixed flux : impact of meridional

wind correction \
30N ‘ ‘

20N§ )
10N§
108 et
ZOSE

3035A( , — - ]
100E 150E 160W  110W  60W

-5.0 -4.0 -3.0-2.0 -1.0 0.0 1.0 2;0 3.0 40 50 °C

Vanniere et al. (2014)

90w 45W

Toniazzo and Woolnough (2013)
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Can we devise a systematic experimental approach ?

Vanniére et al (2014) proposed a systematic approach to investigate the root
cause of a SST bias in a climate model

5 steps for ‘solving the case’:

1. Identify the location and seasonality of the SST bias

2. Examine the time scales over which errors develop in different variables
and link them together to build a chain of causality

3. Find whether the origin of the bias is local or remote
4. Determine if an atmospheric field or an oceanic field is at fault

5. Investigate whether the error is caused by the direct effect of that field, or
by coupled feedbacks
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Associated experiments in support of approach

The 5 steps

S1 Location / seasonality

S2 Time scale / chain of causality

S3 Local or remote

S4 Atmospheric / oceanic field
responsible for the bias

S5 Direct effect / amplification by
coupled feedbacks

Vanniere et al. (2014)

Associated
experiments

Historical or control
experiment

Seasonal to decadal
hindcasts

Regionally restored
experiments

Ocean-only forced
experiments

..160w. . S

‘\\\\\\ \‘
N Fluxes \\\

\\\ \\\\\ \

OCean model
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Identifying the origin of SST mean state biases in the tropical
Pacific in IPSLCM5A-LR

Approach is applied to cold tongue bias in
IPSL-CM5A-LR (S1) Equatorial

Mean state

seasonal cycle
IPSLCM5A -LR

Dec BIN\.aA-J8 ...} BARNRE T .- E
Oct ALLIHAN . L) ARRNN . E
Sep [LLELE ¢ AN

@® Warm bias in the east
PaCiﬁC Aug Al | et A ...
Jul B L AN 3
Jun B L ] VA .. 3
May Ef )., N 3
Apr FILICRI LT \R......3
Feb EVIT/RED /.. i W oo 7 - - E

308 .
100E 150E 160W 110W 60W 100E 150E 160W 110W 60W
Longitude Longitude

@ Cold tongue bias

® Warm bias on both
side of the equator

Time

@ Spurious spring
upwelling bias

EETTT T
5.0 40 30 20 -10 00 10 20 30 40 50 °C

Vanniére et al. (2014)
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Cold tongue bias origin

> S2 : Time scale — Cold tongue bias

295 T T T T T T L T 305 BV ! =
L C}JLPRSIJ 5 ] 100E 150E 160W 110W 60W

29.0 | Hindcast ]
285 o ] v It takes 30 vyears for the cold
8280: ] tongue bias to appear at the
= <% ]
@ : : equator
? 2151L ] g

21.0 - ; v Hypothesis : ocean slow dynamics

26.5 ;|\||||‘;\|‘|||\\|H\||‘|\‘,||||\|‘| ...... ?[.H.:

‘ b
1970 1980 1990 2000 2010 2020

> S3 : Geographical origin — Cold tongue bias
CPLPrst_15: Initialised simulation restored toward observed SST in midlatitudes

SUS(Ling ) v' SST corrected in mid-latitudes
E no development of the cold
- tongue bias
‘ Vanniére et al. (2014) 62
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Cold tongue bias origin

> 34 : Ocean only simulation — reproduce cold tongue bias

308 =
100E 150E 160W 110w 60W

Experiment Equatorial cooling trends
of the 300m HTC (J.m-
2 mth-1)

Ocean only simulation (bulk) 300m
heat content

W Nudging toward Hindcast -1.35 106
o he hindcast mid-
g t e In ) Ocean only with SST -1.73 108
108 'zx«’/l\ f L‘:“ ‘ Iat|tUdeS COId b|aS restoring
208 \\\ Ocean only without 0.1 108
308 ‘ SST restoring

100e 150 16w 11ow eow 30 years leadtime

v When the midlatitudes cold SST bias is prescribed in an ocean-only
experiment, the cold tongue bias develops at the equator

v" The cooling trend is similar to that simulated by the control hindcast

Vanniere et al. (2014) 63



Cold tongue bias origin

a. North subtropical b. Equator
cell
2004

Hindcast drift

2000

199 A possible cause of the midlatitude

cold bias propagation is the
advection by subtropical cells

1992

1988

~_MEED (= ¥9° : AL
30N 20N 10N 0 150E 160W 110W 60W
Latitude Longitude

1984

-3.0 -24 -1.8-12 06 00 06 1.2 18 24 30
x108 Jm2

Latitude
- N
(=3 (=3
- =z

o SR T Subtropical cells path according to
100E  150E  160W  110W  6OW IZumO et al_ (2002)

Differs from other sources of the cold tongue bias (Vanniére et al. 2013)
» Bijerknes feedback (Met Office)

* Atmospheric component wind errors (INGV)
» or otherwise proposed in many studies

Vanniére et al. (2014)
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Using initialized simulations to diagnose the growth of systematic
biases in GCMs - summary

 New approaches needed to address SST systematic errors

« Strategy to relate coupled errors to the errors in one component

independently of the coupling:
» 5 step ‘case solving’ approach
* Requires range of dedicated simulations, including initialized
» Proof of concept from several studies (tropical Pacific and Atl.)
» Further benefits/costs to explore:
* Apply during model development phase
» cheap (300 years)
* need to develop a ‘tool box’, i.e. several types of
» Precise types of simulations will depend on ‘case’i.e. SST bias — no
‘'standard’ set
« Can’t be directly applied to SST interannual variability biases (ex: ENSO) but
can be applied to ENSO mechanisms and feedbacks (not shown)
« AMIP/T-AMIP is the starting point in the tropics - SST errors initially due to fast
atmosphere biases
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* ENSO precursors
* Distinguish external forcing from internal variability

* Better comparison with observations during historical period
* How well do models simulate ENSO? How well do we know ENSQO?

Planton et al. 2022, Lee et al. 2021, Maher et al. 2020
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ENSO precursors: the role of recharge

El Nifio con ditions

. ENSO (NDJ Y1): colors

N3 & Wd | r=-0.76(-0.79} -0.73)
N3 & EN+1 r=-0.43( -0.48 ; -0.39)
3.04 Wd & EN+1 r=+0.52(+0.48 ; +0.56)

6 restarts:

« 3 recharged

« 3 discharged

 median value of each box
« opposite two by two

« 70 members / ensemble

30 -15 0.0 1.5 3.0
Nino3 SSTA (oct YO)

a8

Planton et al. JC 2021 -25 —-15 -05 0.5 1.5 2.5
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3 pairs of initial conditions were chosen to create
ensemble experiments

N3 SSTA (°C)

=
U

= O O
Ul U1 Ul

1T
S
T 0.9°C

norm. Octy T300,/A
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3 pairs of initial conditions were chosen to create
ensemble experiments

N3 SSTA (°C)

3.0

=
U

0.0 -

= O O
Ul U1 Ul

-3.0

3.0

norm. Octy T300,/A

0.0

'OJqu Jan; July Jans
time
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3 pairs of initial conditions were chosen to create
ensemble experiments

N3 SSTA (°C)
<
= 3.0
S
(IY_) 1.5'_ 0.0-
o 0.5'_
g -0.51 -3.0
. -1.51 |
3.0
£ I%IJI- 0.6°C
(@)
c 0.0 :
-1.5 -0.5 0.5 1.
norm. Octyg N3 SpTA -3.0

“Jule Jany  July

/O.,r time
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In this experimental setup, the outcome after a recharge is &

less predictable in every pair of experiments

IC: neutral ENSO

/::,::i _____ o 3.0
[ | 1.7°¢ {]
/::,:: ______ o < ]
@ 3.0

34

> 0.9°C

|C: moderate ENSO

>0.7°C

P 3.0 =
- oc {8

& izc {[}J &
@ -3.0

, |IC: extreme ENSO

A 3.0

%4

> 0.6°C
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In this experimental setup, the outcome after a recharge is %
less predictable in every pair of experiments ”

Planton et al. JC 2021

spread of WWE activity

IC: neutral ENSO

D

w

N

=
1

0
NDJ, FMA; MJj; ASO; NDJ;
time

spread of WWE activity larger
after a recharge than a
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In conclusion, we found that the outcome after a recharge is
less predictable due to WWE activity and the wind stress

feedback nonlinearity

the spread of WWE activity the wind stress_feedback
after a recharge is larger, after a regharge Is stronger,
enhancing SSTA spread enhancing SSTA spread
WY v -~ i iir/llt:i;;o

My =K

== Oct

BN, W . - €

4 Sep

N\

two amplification
regimes

L W e

L2 | 1 1
180 140W 100W
Longitude
— (OC)
-5.0 -3.0 -1.0 1.0 3.0 5.0

I I I I
140W 100W

one amplification
Planton et al. JC 2021 regime 74



Geophysical Research Letters”

RESEARCH LETTER Robust Evaluation of ENSO in Climate Models: How

10.3029/2021GLOY0N Many Ensemble Members Are Needed?

e Jiwoo Lee' 7, Yann Y. Planton® 7, Peter J. Gleckler', Kenneth R. Sperber' (7,
+ Toestimate the ensemble size

Eric Guilyardi** ", Andrew T. Wittenberg® ', Michael J. McPhaden? *, and
i i Giuliana Pallotta'
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{ 3 .mf’“: -

Detecting ENSO Variance Changes in a Warmer World ;

* required ensemble size (RES) depends linearly on the ensemble-
variance simulated by the models and increases with the square of
the desired absolute accuracy of ensemble-mean variance.
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The modulation of ENSO in CMIP6 large ensembles is
x* distributed

variance relative variance
O.16a g T g 0'16b"' —T
I CanESM5 p2
§ 0.12 e LTSrLC-EM?A-LR 4 0.12r
§ goos 0.08
S ooal 1 ooaf Atwood et al.’s results
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Planton et al. 2022, submitted

.00 s 0.00
0.0 0.0 0.4 0.8 1.2 1.6 -100  -50 0 50 100

N3.4 SSTA 02 (°C?) relative g2 (%) 77



CMIP6’s interannual variability close to that expected
of x?

EM x° variance
024 T T T T T T T 024 T T T T T T T
a b
- ° o o 1 0.8
ensemble e
variance : 0 4 0.12 i
= internal * o
variability oo l

.06 + coRe® 4 0.06
Qp, e©
I o ] I
(0]
0.00 —t——1 0.00 : :
0.00 0.60 1.2 1.80 2.40 0.00 0.24
mean(o?) (° C?) variance of y? distribution (° C?)

expected variance
Planton et al. 2022, submitted if 2 distributed 78




Strong increase of the required ensemble size with
the desired level of accuracy

ensemble size to obtain

I I
piControl

T T T T T T T
0.15°
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C2 13
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Methodology similar to:
Lee et al. 2021 GRL: Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed? 79
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Challenges and opportunities
iIn ENSO modelling

* Model improvement

* Using ensembles

* Using observations

* Metrics and the street lamp syndrome
* Modelling strategies




CGMs progress over the past 15+ years

. Virtually all CMIP-class CGCMs now have a recognizable ENSO.

- A major target of model development.

. Improved ENSO amplitude, spectrum, and spatial diversity.
- But substantial biases and inter-model differences remain.

. Most models now capture the dominant ENSO mechanisms.
- But often not the right balance, and next-order feedbacks are missed.

. Improvements have been incremental and hard-won.

- Comprehensive models target multiple phemonena & scientific questions.
- Finite resources — force compromises during development/tuning.

. Ocean/atmosphere grid refinements and improved physics have helped a lot.
- Enabled by faster computers.

- Often reduce mean biases, improve ENSO teleconnections & extremes.

- But require careful retuning & additional development.

. Large ensembles (SMILEs) are helping address new questions

- Distinguish external forcing from internal variability
- Role of NL and ISO

: Adapted from Andrew Wittenber
- Better comparison with observations and assess uncertainty pted f g
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Areas primed for progress in the next 5-10 years of CLIVAR (2015 Y i
p prog y (2015) ﬁ‘%’)

4
A

Improve the understanding of different physical processes that influence ENSO
characteristics (frequency, amplitude, diversity,...).

Synthesize existing ENSO evaluation methods in GCMs including bridges to theory
and use of initialised simulations.

Propose ENSO evaluation protocols and develop a strategy for coordinated ENSO
analysis/metrics of CMIP models; develop and maintain an interactive website
(including contribution to CMIPG6).

Sustain observing systems for ENSO research and prediction; and identify new
observations needed to better constrain ENSO processes, both for the current
climate and for past climates.

Improve the understanding of how ENSO might change in the future.

Enhance international collaboration between observationists and modelers for
studies of ENSO

Enhance applications of ENSO analysis and forecast products for targeted user
communities.

Build research capacity by contributing to the development of the next generation of
talents dealing with ENSO science and prediction.
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Models are both fun and demanding

* Our only tools to test understanding and provide forecasts / projections

* Help test and challenge theory

* Need careful evaluation = f(science question, obs)

e Accuracy, i.e. size of ensemble is also f(science question)

* Metrics are an exciting development

* Danger of the street lamp syndrome

 Carefully devise experiments for specific question and understand the
limits

* Engage with other communities (theory, model, obs, impacts...)
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Advance notice for later discussion !



Ethics of advocacy/engagement of climate
scientists in society

* New issue for environmental scientists (e.g. climate science)
 Scientist vs. expert vs. citizen vs. activist ?

* Neutrality, values-based, trust, credibility, legitimacy ?

* Naive, manipulated, irrelevant ?

* Technocracy vs. democracy ?

* Public good vs, private interests, medias, politicians ?

* Which hat to wear? Which advocacy?

. Cf.hCOVII)) and numerous historical examples (Manhattan project, bio-
ethics,...

Research integrity vs. reserch ethics ?



How should climate change scientists engage in policy advocacy ?

Non-engagement with Policy

- Produces research and

Policy Advice
communicates findings without
any relation or indicated - Provides advice, upon request,
relevance to policies. about policy options as per their
area of expertise.

- Produces policy relevant research.

Should be easy to
communicate without
reference to policy,
however, boundaries
remain blurred due to

contextual factors.

There is a (semi)clear

e e e
Pl oldrmad Contextual factors :
Ad ol et - Influences perception
vocacy e - Miss goal on target
spectrum - Miss target (« stealth advocacy »)
. continuum

- Advocates for some form of
action, not a particular policy.

- May be critical of inaction/judge Specific Policy Advocacy
there to be insufficient action.

- Argues for specific policy
action/narrows down options.
- May use reasoning from outside

of their area of expertise.
Unlver5|tyof . . .
@ Read mg Lydia Messling - PhD thesis 2020




