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Outline

I. Prediction


• ENSO real-time “plume” of Nino3.4 forecasts 


• Multimodel seasonal forecasts of precipitation and temperature


• S2S real-time prediction (weeks 1 to 4)


II. Applications


• Climate services


• Uruguay agricultural example


• Translating model output for sectoral decisions: probabilities of exceedance


• Forecast-based financing for early-warning, early action



I. Prediction



Real-time Multi-model ENSO forecasts

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

Since 2002 - Issued 19th of every month

The set of model forecasts are used to assess the probabilities of the three possible ENSO conditions by using the average value of the NINO3.4 
SST anomaly predictions from all models in the plume, equally weighted. 

A standard Gaussian error is imposed over that average forecast, and its width is determined by an estimate of overall expected model skill for the 
season of the year and the lead time. Higher skill results in a relatively narrower error distribution, while low skill results in an error distribution with 
width approaching that of the historical observed distribution. 



ENSO Plume Skill, 2002-11

• Dynamical model skill is higher than for statistical models

• Skill is much higher for forecasts made in boreal fall-winter, than in spring-summer 

• Data is publicly available via IRI’s website: https://iri.columbia.edu/~forecast/ensofcst/Data/

DOI:10.1175/BAMS-
D-11-00111.1 

Stratified by Target Seasons



Seasonal Climate Prediction



Ensemble prediction systems

ECMWF



Real-time Seasonal Climate Forecasts 
Since 1997 - Issued 19th of every month

https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/



Real-time Seasonal Climate Forecasts 
Since 1997 - Issued 15th of every month

The IRI seasonal forecasts of precipitation and temperature issued this month are based on an objective calibration procedure that combines the NCEP-
CFSv2, CanSIPS-IC3, COLA-RSMAS-CCSM4, and GFDL-SPEAR, and NASA-GEOSS2S models. The climatological base period for normal is 1991-2020.



Below 
Normal

Above 
Normal

Historically, the probabilities of above and below are 0.33. 
Shifting the mean by half a standard-deviation and 

reducing the variance by 20% changes the probability of 
below to 0.15 and of above to 0.53.

Historical  
distribution

Forecast  
distribution

What probabilistic forecasts represent

Near-Normal

NORMALIZED RAINFALL

FR
E

Q
U

E
N

C
Y

PDF: Probability Distribution Function



NMME-based Seasonal Forecasts - Since April 2017

https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/



Evolution of IRI Seasonal Forecasts

N. Acharya



NMME Models used in IRI MME

• NCEP-CFSv2

• CanSIPS-IC3

• COLA-RSMAS-CCSM4

• GFDL-SPEAR

• NASA-GEOSS2S

Available on 8th of each month



MME Methodology

IRI MME forecasts are released on the 15th of each month. 



Calibration Methodology

Extended Logistic Regression 

• Applied at each grid point, using forecast ensemble mean 
• Trained using q = 33 & 66%-iles

364 D. S. WILKS

This predictor choice yields slightly better, but, overall,
very similar forecasts, to equations using the untrans-
formed ensemble mean as the single predictor. Adding
the ensemble standard deviation or its square root, alone
or in combination with the ensemble mean, did not
improve either the separate-equation or the unified fore-
casts, a result consistent with the medium-range precip-
itation forecast results reported by Hamill et al. (2004)
and Wilks and Hamill (2007), although ensemble spread
has been found to be a significant logistic regression pre-
dictor for shorter lead times (Hamill et al., 2008; Wilks
and Hamill, 2007). Unification of the logistic regressions
for all forecast quantiles was achieved using the square
root of the forecast quantile as the sole predictor in the
function g(q):

g(q) = b2
√

q (9)

This choice for g(q) was entirely empirical, but yielded
substantially better forecasts than did g(q) = b2 q, and
only marginally less accurate forecasts overall than those
made using g(q) = b2

√
q + b3 q.

Thus, a full set of separate-equation forecasts (Equa-
tion (1)) for a given location and day required fitting as
many as 14 parameters (seven equations with two param-
eters each), whereas the unified approach (Equation (5))
required fitting only three parameters.

4. Results

4.1. Characteristics of the individual and unified
logistic regressions

Before presenting the forecast verification statistics, it
is worthwhile to illustrate the gains in logical consis-
tency and comprehensiveness that derive from using
the unified logistic regression framework. Figure 1(a)

shows Equation (6), evaluated at 6 selected climatologi-
cal quantiles, for the 23 November 2001 forecast made
for Minneapolis, and fitted using the full 25 year train-
ing sample, which pertains to accumulated precipita-
tion the period 28 November-2 December 2001. Here
f (x) = −0.157 − 1.122

√
xens , so that all of the regres-

sion lines are parallel, with slope b1 = −1.122 mm−1/2.
Here also g(q) = +0.836

√
q, and the positive regression

parameter b2 = 0.836 mm−1/2 ensures that the regres-
sion intercepts b0

∗(q) (Equation (7)) produce forecast
probabilities, given any ensemble mean, that are strictly
increasing in q. It is thus impossible for the specified
cumulative probability pertaining to a smaller precipita-
tion accumulation threshold to be larger than that for a
larger threshold.

In contrast, Figure 1(b) shows the six corresponding
individual logistic regressions, fitted separately for the
same six climatological quantiles, using Equation (3)
in each case. Here nothing constrains the six fitted
equations to be mutually consistent, and indeed they
clearly are not. The equations for q0.10 and q0.33 happen
to exhibit similar slopes, as do the equations for q0.50,
q0.67 and q0.95, whereas these two groups of regressions
are inconsistent with each other, and the equation for
q0.90 is clearly inconsistent with all of the others. As a
practical matter these equations would not yield jointly
nonsensical predictions for relatively small values of
xens, but for xens larger than about 3 mm (the point
at which the regression functions for q0.33 and q0.50

cross) the resulting forecast probabilities overall would be
incoherent. Indeed, unless the separate logistic regression
equations are exactly parallel, logically inconsistent sets
of forecasts are inevitable for sufficiently extreme values
of the predictor. Note that the plotted regressions in
Figure 1(a) have been chosen to match the threshold
quantiles for those fitted in Figure 1(b), but results in
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Figure 1. Logistic regressions plotted on the log-odds scale, for 28 November–2 December 2001, fitted using the full 25 year training length,
for Minneapolis. Forecasts from Equation (6), evaluated at selected quantiles, are shown by the parallel lines in Figure 1(a), which cannot yield
logically inconsistent sets of forecasts. Regressions for the same quantiles, fitted separately using Equation (3), are shown in Figure 1(b). Because
these regressions are not constrained to be parallel, logically inconsistent forecasts are inevitable for sufficiently extreme values of the predictor.

Copyright  2009 Royal Meteorological Society Meteorol. Appl. 16: 361–368 (2009)
DOI: 10.1002/met

(x)

Wilks (2009) 



Counting Extended Logistic Regression

RPSS Skill of NMME-based Precipitation Hindcasts  
October–December, from September

N. Acharya



Why multiple models, and how many members does each need?
Forecast skill vs. ensemble size 

BSS: Brier Skill Score for 1-month-lead tropical Jun–Aug precip 1987–99, for single 
model (blue) & 7 models, with members pooled together (red) [Palmer et al., 2004, 

BAMS]

862 JUNE 2004|

ensemble was generated us-
ing additional wind and SST
perturbations in order to
have a better sampling of the
initial condition uncertainty.
As a skill measure, the Brier
skill score for tropical sum-
mer (June to August) pre-
cipitation positive anomalies
for the multimodel en-
semble (red bars) and the
ECMWF model (blue bars)
is shown in Fig. 5a. For each
ensemble size, the corre-
sponding ensemble was
constructed by randomly
selecting the members from
the 63 available in the
multimodel ensemble and
the 54 in the single-model
ensemble. Results show that
the skill score grows faster
with ensemble size for en-
sembles with less than about
30 members, although this
threshold changes with the
region, variable, and event
considered (not shown).
The skill saturates for large
ensembles, as expected
from the conceptual model
described in Kumar and
Hoerling (2000), though a slight increase with size is
still found. Based on a decomposition of the Brier
score (Murphy 1973), results show that the largest
contribution to the multimodel ensemble skill im-
provement is due to increased reliability (smaller val-
ues of the reliability term in the Murphy decomposi-
tion imply greater reliability of the ensemble), as
shown in Fig. 5b. The multimodel ensemble performs
better than the single-model ensemble for every en-
semble size, despite the ECMWF model having par-
ticularly good behavior over the Tropics. The increase
in Brier skill score and reliability is similar for both
the single-model and the multimodel ensembles, so
that their difference remains approximately constant
as the ensemble size increases. This implies that the
multimodel ensemble advantage over a given single-
model ensemble, as shown in Figs. 2–4, is not an ar-
tifact of the usually large ensemble size of the
multimodel, but rather is due to the multimodel ap-
proach itself. Similar results are found for other vari-
ables and regions. This suggests that the multimodel

ensemble provides a better sampling of forecast un-
certainty in the sense that it contains the verification
more often than a given single-model ensemble.

SEASONAL FORECAST APPLICATIONS.
One of the main objectives of DEMETER is a dem-
onstration of the utility of seasonal climate forecasts
through the coupling of quantitative application mod-
els, such as crop yield models, to the global climate
prediction models. However, existing application mod-
els typically require weather input (precipitation, tem-
perature, wind, radiation, etc.) at a substantially higher
spatial resolution than is available from the global mod-
els. We therefore begin this section with a brief discus-
sion of the downscaling techniques used in DEMETER.

Downscaling. In DEMETER, both statistical/empirical
methods and dynamical regional climate models have
been tested and applied for downscaling purposes.
The methods used and some illustrative results are de-
scribed in the following.

FIG. 5. (a) Brier skill score and (b) reliability component of Brier score for the
1-month lead tropical summer (JJA) precipitation 1987–99 for the single
ECMWF control model (blue) and the DEMETER multimodel (red). The event
is “precipitation anomalies above zero.” Results are shown for different en-
semble sizes from 9 to 54 members. Note that lower values of the reliability
term mean better reliability.

* higher is better

• Using multiple diverse 
models improves the 
skill compared to a large 
ensemble from a single 
model 

• 20-30 members per 
model is typical for 
seasonal forecasts, and 
4-8 different climate 
models 

DOI: 10.1175/BAMS-85-6-853 
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Evolution of Real-time forecast skill since 1997

Precipitation Temperature

https://iri.columbia.edu/our-expertise/climate/forecasts/verification/



ENSO-derived Benchmark precipitation probabilities

Lenssen, N. J. L., Goddard, L., Mason, S. (2020). Seasonal Forecast Skill of ENSO 
Teleconnection Maps, Weather and Forecasting, 35(6), 2387-2406.

http://iridl.ldeo.columbia.edu/maproom/ENSO/Climate_Impacts

https://journals.ametsoc.org/view/journals/wefo/35/6/WAF-D-19-0235.1.xml
https://journals.ametsoc.org/view/journals/wefo/35/6/WAF-D-19-0235.1.xml


Skill of IRI Dynamical Forecasts vs Known-ENSO Empirical Benchmark 
Ranked Probability Skill Score (RPSS)  

All 12 seasons, 2004-2016 

• The dynamical forecast 
system does outperform the 
known-ENSO empirical 
benchmark


• Skill is highest during strong 
ENSO events ==> “windows of 
opportunity”1 month lead

0 month lead Lenssen, N. J. L., Goddard, L., Mason, S. (2020). Seasonal Forecast Skill of ENSO 
Teleconnection Maps, Weather and Forecasting, 35(6), 2387-2406.

https://journals.ametsoc.org/view/journals/wefo/35/6/WAF-D-19-0235.1.xml
https://journals.ametsoc.org/view/journals/wefo/35/6/WAF-D-19-0235.1.xml


NMME & European Copernicus Climate Change 
Service Data in IRI Data Library 

http://iridl.ldeo.columbia.edu/SOURCES/.EU/.Copernicus/.CDS/.C3S/http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/



Sub-seasonal climate prediction



Forecast Skill
Weather

Seasonal 
Forecasts 

Toth & Buizza (2018)

ECMWF

Day 10

Day 7

Day 5
Day 3

MJO 
Prediction Incremental improvements =>  

“Quiet revolution”

Stasis?

Rapid progress!



IRI Real-time 
Calibrated 
Probabilistic 
Subseasonal Rainfall 
and Temperature 
Forecasts Based on 
SubX models

http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/index.html

Issued every Friday for 
Week 1, 2, 3 & 4 
Weeks 2-3 and 3-4



IRI SubX Multi-model Forecast 

Extended Logistic Regression 

Vigaud et al. (2017, MWR)

• Since the model forecasts of precipitation at 
the S2S range often contain large biases, a 
regression approach is used to calibrate the 
forecasts. 

• The regression is trained on past forecasts, 
and uses the model’s ensemble mean as a 
predictor (signal). 

• Logistic regression is used to predict the 
probability of exceeding a given quantile, based 
on the signal.



Estimates of Subseasonal vs Seasonal rainfall forecasting skill 
Ranked Probability Skill Score

Weeks 3-4 (15-28 days ahead) Seasonal (2-4 months ahead)

Aug–Dec Starts Aug-Oct Starts

The seasons were chosen to align with the monsoons in East Africa and India.

“Starts” refers to the initial time of the forecasts. Seasonal forecasts were made at the beginning of each 
calendar month. The subseasonal forecasts are made every Friday. Skill is based on hindcasts for a past period.


These maps were obtained from the IRI Maprooms:

Seasonal Forecasts: http://iridl.ldeo.columbia.edu/maproom/Global/Forecasts/index.html

Subseasonal Forecasts: http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/index.html


Weeks 3-4 (15-28 days ahead)

Seasonal (2-4 months ahead)
Apr-Jun Starts

May-Aug Starts

Orange-red colors 
indicates potentially 
useful skill.


The newly-developed 
subseasonal forecasts 
generally indicate 
comparable or better 
skill compared to the 
established seasonal 
ones.


http://iridl.ldeo.columbia.edu/maproom/Global/Forecasts/index.html
http://iridl.ldeo.columbia.edu/maproom/Global/ForecastsS2S/index.html


Real-time week 3+4 
MME probability  
forecast 
for the 13–26 Nov 2021 
period, issued 29 Oct 
2021



ENSO and MJO impacts

• Classical Walker-Cell like tropical 
impacts of La Niña

• Extratropical PNA/PSA Rossby 
wave trains 


• Persistent Phase 4 MJO event during the 

13–26 Nov 2021 period forecast period 
 
• Tropical zonal wavenumber 1 pattern 

• ENSO & MJO patterns reinforce over the 
East Africa-Indian Ocean-West Pacific, and 
cancel over S America 



Week 1 Week 2

Week 3 Week 4

Precipitation 
Forecasts from 
July 6, 2022

Week 3+4

• Sharpness of the 
probabilities is progressively 
lost in most areas after week 1 

• But averaging weeks 3+4 
recovers it, consistent with the 
skill gain 

• Note how Weeks 1 and 2 are 
the weather forecast range, 
expressed as a climate 
forecast

From last week!



http://iridl.ldeo.columbia.edu

S2S and SubX databases in IRI Data Library

http://iridl.ldeo.columbia.edu


Summary of Part I

• ENSO real-time “plume” of Nino3.4 forecasts: ~17 dynamical + ~7 statistical 
currently; probabilities of 3 categories estimated parametrically.  


• Multimodel seasonal forecasts of precipitation and temperature: One-tier EPS 
systems have superceded 2-tier, but real-time skill is flat since the late 1990s. 
NMME and C3S provide key community resources for “R2O”.


• S2S real-time prediction (weeks 1 to 4): New developments driven both by 
advances in MJO prediction capabilities and demands for forecasts across 
time scales; Both ENSO and MJO play key roles and land + stratosphere 
(SSWs, QBO) also important.



II. Applications



“Seamless” Prediction for Decision Making 

Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts  http://www.nap.edu/21873 



 The Climate  
Services 

“Four Pillars”

https://iri.columbia.edu/actoday/



What are 
Climate 
Services? 

A WMO 
View 

https://
gfcs.wmo.int/what-
are-climate-
services



Uruguay Agricultural Example of 
ENSO forecast use 

Slides courtesy of Walter Baethgen, IRI



An example of the sequence of using ENSO / Seasonal Climate Forecasts 
in 2010 for Agriculture in Uruguay

1. Early Warning: ENSO Forecast in July 2010 calling of a high chance of La Niña year 
      - SCF from September 2010 calling for a high chance of low rainfall in OND 
      - Ministry establishes a large communication campaign to alert farmers

2. Drought happens: very low rainfall in OND (critical for livestock, soybeans, maize) 
       IRI helps to establish a monitoring system that is used to declare official emergency 
       based on an objective indicator: soil water available to plants. 
       This triggers financial instruments: low rate credit to buy feed, to extract ground water, etc.

3. December 2010: Minister of Ag. is invited to Parliament.  Using a SCF for JFM he explains that  
      “the drought is not over, and the Ministry will need further funding”  



Before the Drought Started: September 2010Before the Drought Started: July 2010



Uruguay Drought in 2015:

Provided information to 
Ministry of Agriculture 

Soil Water Content every 10 days 
(Translate “Climate into Agronomy”) 

Soil Water Balance per Soil type

End of November:  
Ministry declared 
National Emergency 
-Special Credit for feed 
-Prioritize response

BUT: Decisions are made per county

Oct 2010                              Nov 2010                   .

Dec 2010           Jan 2011                                   .

Sep 2010                       Oct 2010                    .



Uruguay Drought in 2015:

Provided information to 
Ministry of Agriculture 

Soil Water Content every 10 days 
(Translate “Climate into Agronomy”) 

Soil Water Balance per Soil type

BUT: Decisions are made per county

Oct 2010                              Nov 2010                   .

Dec 2010           Jan 2011                                   .

Sep 2010                       Oct 2010                    .

End of November:  
Ministry declared 
National Emergency 
-Special Credit for feed 
-Prioritize response

   Used again in 2015, 2018, 2020, 2021    
(Established as Policy) 



Early December 2010 

The Minister of Ag 
went to the Parliament 
and showed this forecast  
to request additional  
funds, since the  
forecast called for 
increased chance 
of below normal rainfall 

(His message was: “This drought 
Is probably not over”)

More funding was approved



 
Forecast-based financing 
anticipatory action



What do the 33 & 66th percentiles correspond to?



https://iri.columbia.edu/our-expertise/climate/forecasts/#Seasonal_Climate_Forecasts 

Maprooms

https://iri.columbia.edu/our-expertise/climate/forecasts/#Seasonal_Climate_Forecasts


Flexible format 
Probability of exceeding 80th percentile



Flexible Forecast Presentation can Overcome Longstanding Obstacles to 
Using Probabilistic Seasonal Forecasts
Calibration against local data

User 
Complaint Solution

Lack of 
information 
about local 

climate

Present 
downscaled 

forecast 
alongside Tercile 

categories 
define 

arbitrary 

Provide full 
forecast and 
climatologic

al 
probability 
distribution 
at a local 
scale, and 
allow map 
view users 

Tercile 
categories 
prone to 

misinterpretAmbiguity 
about 

forecast 
accuracy, Limited 
relevance 
of average 
seasonal 

Expand 
suite of 
forecast 

climate and 



Rainfall Frequency may be more salient for agriculture.  
Is it seasonally predictable?

Robertson et al., MAUSAM, 70, 2 (April 2019), 277-292 



Forecast-based Financing for Anticipatory Action

Financial Instruments Sector Team, IRI



Anticipatory Action Examples

• Disseminate early warning information for drought risk awareness


• Distribute drought-resistant seeds and training in cultivation technique


• Support local seed production

Financial Instruments Sector Team, IRI



 Three Parts of a Forecast-based Financing (FbF) system

Pre-agreed set of 
actions 

 (Standard Operating Procedures or 
Early Action Protocols) 

Pre-agreed Forecast 
Triggers 

 (objective Triggers)

Financing 
mechanisms to fund 

actions 

Financial Instruments Sector Team, IRI



   FbF Mapping Tool: Madagascar
A mapping tool is used 
in stakeholder workshops 
to develop forecast 
triggers for payouts for 
action.

http://iridl.ldeo.columbia.edu/fbfmaproom2/madagascar

For a chosen frequency 
of triggering, it shows 
the forecast probability for 
the current year, along 
how it would have 
performed in past years.

Forecast Probability  
of a bad year

If the probability of non-
exceedance is 5% or 
more than the set 
frequency trigger on the 
slider the decision maker 
should take action.

Choose trigger value

How well reported bad years are

captured by past forecasts 

District-average forecast

And “hindcasts” for past years 

Financial Instruments Sector Team, IRI



Components of FbF Development

Forecast Development 

Impact Based 
Historical Climate Risk 

Analysis

Linking Forecast to 
Anticipatory Action 

Planning

The FbF projects are multi-year projects that relies on major participation by various 
stakeholders. The projects can be broken down into three components that are 
enhanced over the project’s timespan which involves: 

Locally developed gridded rainfall products. 

Reconcile historical information, where farmer crowdsourced experiences are 
reconciled in workshops where end-users interact through design/data analysis tools, 
working with the humanitarian historical records of disasters and actions taken. 

Reconcile plans to address historical events, at this stage the stakeholders build and 
integrate what plans they would have wanted to be in place. 

And finally, Evaluate what the forecast would have been for historical events to 
determine if it is good enough for an action Once people have agreement on what 
disasters happened in the past, and the actions that they would have wanted to take to 
prepare for them, they can see what the forecast would have been, and see what would 
have happened if they followed the forecast. They can discuss if they would have acted 
correctly, failed to act, or acted in vain in key years, and compare different forecasts 
from different sources and different technologies. 

Financial Instruments Sector Team, IRI



https://dashboards.endmalaria.org/weather-forecast

Malaria is sensitive to climate. 
High rainfall increases the number 
of breeding sites for mosquitoes 
and leads to increases in malaria 
transmission while high 
temperatures increase the chance 
of transmission by shortening the 
duration of parasite growth and 
influencing the development, 
reproduction, survival, and biting 
rate of mosquitoes.

Uses the IRI seasonal forecast 
probability distribution functions, 

based on malaria thresholds. Free of 
charge to non-commercial users.


But not co-developed!



Realizing the Value Chain

S2S Forecasts for farmers in Bihar

Robertson A. W., Acharya, N., Goddard, L., Pattanaik, D. R., 
Sahai, A. K., Singh, K. K., et al. (2019). Subseasonal forecasts of the 2018 Indian summer monsoon 

over Bihar. Journal of Geophysical Research: Atmospheres, 121. https://doi.org/10. 
1029/2019JD031374 



Can climate services increase and improve  
gender and social inclusions?
• Climate services can be a tool for 

addressing gaps in equality and justice—
which is also a matter of survival for many 
frontline communities facing the worst of 
climate impacts. 


• By targeting, serving, and empowering the 
otherwise disadvantaged and marginalized 
groups and communities, there is also 
opportunity for improving their income, 
food security, and livelihoods, which can 
also lead to more savings, economic and 
educational opportunities, and higher 
quality of life.


• Participatory processes is one way to bring 
marginalized groups and communities to 
the table

https://ccafs.cgiar.org/resources/publications/inclusion-gender-equality-monitoring-and-evaluation-climate-services
https://ccafs.cgiar.org/index.php/news/why-ghanas-climate-smart-agriculture-profile-focused-gender

https://ccafs.cgiar.org/resources/publications/inclusion-gender-equality-monitoring-and-evaluation-climate-services
https://ccafs.cgiar.org/index.php/news/why-ghanas-climate-smart-agriculture-profile-focused-gender


Summary of Part II

• Climate Services are a critical tool for assisting adaptation to climate change and 
building resiliency; they help improve climate justice. Four Pillars. Must be co-developed 
with the relevant actors.


• Forecast thresholds expressed in terms of local data make probabilistic climate forecasts 
accessible to end users; development of data products with NMHSs goes hand in hand.


• Weather statistics are often more salient and may be predictable.


• Forecast-based financing is a new framework for bringing probabilistic rainfall forecasts 
into agricultural planning to help pre-empt the impacts of drought and high-impact 
weather. A “Maproom” online tool and workshops serve to bridge the gap between 
forecasts and anticipatory action with some data crunching (hindcasts, observed rainfall, 
surveys of bad years) and some human subjectivity. 


