
!"#$%#!$!!

1 IBS Center for Climate Physics, Busan, South Korea
2 Pusan National University, Busan, South Korea 

aneesh.ply@gmail.com



• In India, the summer monsoon period begins in the late May or

early June and lasts up to September, bringing nearly 75% of

country’s annual rainfall.

• The interannual variability of the Indian Summer Monsoon

(ISM) is strongly associated with the El Niño Southern

Oscillation (ENSO).

• In general, El Niño (La Niña) years are associated with above

(below) normal ISM rainfall.

• Most of the severe droughts occur over the Indian region are

during El Niño years while there have been drought years

without El Niño.

ENSO-Indian Summer Monsoon Teleconnection
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ISMR - Nino3 SST• The inverse relationship between El Niño and

ISM weakened in the recent decades,

particularly after 1970s [Kumar et al., 1999].

They argued that the weakening is mainly due

to rise in the Eurasian surface temperature

during winter and summer, and shifting of the

Walker cell towards south-eastward direction.

• Recent studies linked the weakening of the

teleconnection to global warming, AMO,

PDO, co-occurrence of El Nino and IOD

events, shift in the ENSO’s center of action

etc
Fig: displays the time-evolution of 21 year window moving
correlation coefficients (r), between Nino3 SST and ISM rainfall.



The teleconnection strength is

typically increasing on the long

term in view of appropriately

revised ensemble-wise indices.

Bodai et al., 2020, J. Cli

Fig: Moving temporal correlation coefficient (between Nino3 SST and ISM rainfall) for the
MPI-GE in the historical period and RCP8.5 forcing scenario. The thin gray lines show all the
realizations while three realizations are shown in color, providing examples. Thick blue lines
show the ensemble average of the temporal correlation, which are blown up in insets to better
indicate any trend.
Bodai et al., 2020, J. Cli

large, but it is also not very unlikely to have a smaller
variance for many decades followed by a drift (i.e., a
considerable apparent weakening or strengthening of
the teleconnection). We find examples for this among
the 63 ensemble members. Actually, it is recognized in
many studies (Kinter et al. 2002; Ashrit et al. 2003;
Sarkar et al. 2004; Ashrit et al. 2005; Annamalai et al.
2007; Kitoh 2007; Chowdary et al. 2012; Li and Ting
2015) that ‘‘modulations’’ and corresponding apparent
trends in the studied correlation coefficient, when cal-
culated over different time intervals [as done by, e.g.,
Boschat et al. (2012) and R. Li et al. (2015)] or over
moving (sliding) time windows [as done by, e.g., Krishna
Kumar et al. (1999), Ashrit et al. (2001), Kinter et al.
(2002), Ashrit et al. (2003),Ashrit et al. (2005),Annamalai
et al. (2007), Kitoh (2007), Chowdary et al. (2012), and
Li and Ting (2015)], can appear as a result of internal
variability. In particular, Li and Ting (2015) conclude
that the observedweakening of the teleconnection in the
late twentieth century would be due to internal variabil-
ity. Sarkar et al. (2004) go beyond this saying, on the basis
of physical arguments, that ‘‘the effect of ENSO on
Indian precipitation has not decreased but on the con-
trary it has increased in recent times’’ (p. 4), aligning, in
fact, to our finding in the MPI-GE, but claiming that
actual strengthening was dominated by internal vari-
ability seeing a weakening.
Finally, we address the possibility of model errors,

point 3. We start with presenting maps of global SST
trends for the historical period in Fig. 11, comparing the
MPI-ESM and observations. All-year data are used to
fit a straight line whose slope represents the trend. As for
the model, we show both the ensemble average and
standard deviation of the trends.
Like some earlier versions (Collins et al. 2005), the

version of the MPI-ESM used to generate the MPI-GE
seems to have a La Niña–like warming, that is, more

warming in the western than in the eastern equatorial
Pacific. Considering the ensemble-wise variance glob-
ally, the observed warming (and cooling) trends seem to
be consistent with the model. Note that the observed
equatorial Pacific warming, like the ensemble mean in
the MPI-GE, is La Niña–like, and it is in disagreement
with the report of Lian et al. (2018) on a cooling instead,
even if in the eastern equatorial Pacific. We do not
pursue here rigorously (Wilks 2016) the question of the
(in)consistency of these patterns, although it should be
clear that it would be just a matter of dataset size to
detect inconsistency.
We continue with similar maps of JJAS precipitation

climatology over India shown in Fig. 12. It is clear that
themodel has less rain over land, possibly partly because
of its coarser resolution, so that high mountains that
‘‘force’’ precipitation are not resolved. Increasing model
resolution has been plausibly indicated by Anand et al.
(2018) to reduce model biases (see their Fig. 6) also over
the sea. The latter might be a clue that, due to the con-
servation of water, negative precipitation bias over high
mountains and positive biases nearby over the ocean
can be related. Considering the ensemble-wise vari-
ability too, the discrepancy can be indeed considered a
bias, not just a difference by chance or statistical error.
However, the patterns between model and observa-
tions certainly bear a resemblance. The patterns for the
trends, on the other hand, are less similar; see Fig. 13.
Furthermore, themagnitude of some local trends in the
observation exceeds by far anything in any realization
of the model.
While this might be a clue to the origin of the dis-

crepancy between a possible weakening temporal cor-
relation in observations and a typically strengthening
one in the model, we emphasize that a temporal corre-
lation of detrended data is hoped to quantify some re-
lationship between fluctuations rather than forced trends

FIG. 10. Moving temporal correlation coefficient for all converged members of the MPI-GE in the historical
period continued seamlessly with the RCP8.5 forcing scenario, following both (a) KK99 and (b) YT18. The thin
gray lines show all the realizations while three realizations are shown in color, providing examples. Thick blue lines
show the ensemble average of the temporal correlation, which are blown up in insets to better indicate any trend.
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Study the forced response of the

teleconnection between the ENSO and

the Indian Summer Monsoon (ISM) in a

multi-model ensemble of initial

conditional ensembles under historical

forcing and future forcing scenarios.

Model No. of 
Members

Period Scenario

CESM2 100 1850-2100 SSP 3-7.0

MPI-ESM 63 1850-2100 RCP 8.5

MIROC6 50 1850-2100 SSP5-8.5

CanESM5 50 1850-2100 SSP5-8.5

CanESM2 50 1950-2100 RCP 8.5

CSIRO-MK3.6 30 1850-2100 RCP 8.5

GFDL 
ESM2M

30 1950-2100 RCP 8.5

!"#$%&'(

The forced response of the teleconnection, or a characteristic of it, is defined as the time dependence of a
correlation coefficient evaluated over the ensemble.



The Forced Evolution of  Correlation Coefficients: 
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• None of the models shows a significant

weakening of teleconnection at the end

of 20th century.

• This shows that the role of external

forcing is relatively weak in the observed

weakening of ENSO-ISM teleconnection

at the end of 20th century, and internal

variability might have played a crucial

role in it. This result is in agreement with

Li and Ting 2015.

Fig: Top row displays the time-evolution of ensemble-wise correlation coefficients (r), between Nino3 SST and AISMR during 1901-2005 period. 
Magenta curve shows 21-year moving mean and cyan curve shows the yearly values.  Bottom row is same as top, but for Nino 3.4 SST.
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EOF Pattern and Variability of Pacific SST

Fig1: Top row displays the  EOF1 pattern (JJA) of SST over Pacific Ocean during 1900-1950/1950-2000.  Bottom row shows the difference, 2050-2100 minus 1900-1950 or 1950-2000. 

Fig2: Shows the ensemble-wise standard deviation of Nino3 SST during the  JJA season. Magenta curve shows 21-year moving mean and cyan curve shows the yearly values.  

• EOF1 pattern looks similar to

the results in the literature.

Furthermore, the forced

change is very weak in

model and other models

shows significant

variabilities.

• In the second half of 20th

century and first half of 21st

century ENSO variability

increases in most of the

models. While, under strong

future forcing scenarios (late

21st century), typically ENSO

variability starts to decline in

a nonmonotonic, nonlinear

fashion.



The Forced Evolution of  Correlation Coefficients:
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§ Under moderate, historical and early

21st century, forced change of ENSO-

ISM teleconnection is strengthening

or nondecreasing in all the models.

§ In the second half of 21st century, the

teconnection strengthening or non-

decreasing in 5 models and a

weakening is observed in GFDL ESM

2M and MIROC6 models.

Fig: Top row displays the time-evolution of ensemble-wise correlation coefficients (r), between Nino3 SST and AISMR during 1950-2100 period.
Magenta curve shows 21-year moving mean and cyan curve shows the yearly values. Bottom row is same as top, but for Nino 3.4 SST.



FIG: Test statistics of the Mann-Kendall test for the 

stationarity of correlation coefficient. Red and blue 

shades correspond to p < 0.05, i.e., a detection of 

nonstationarity at that significance level. 

§ The strengthening of ENSO-ISM

teleconnection observed in MPIESM,

CanESM5, CanESM2 CSIRO-MK-

360, in the second half end of 21st

century are statistically significant.

While, CESM2 doesn’t show any

significant change.

§ The late 21st century weakening of

teleconnection observed in GFDL

ESM 2M and MIROC6 models are

significant.



teleconnection strength can possibly change because of a shift in
the “center of action” of the ENSO phenomenon, something that
can have a different impact on the teleconnection representations
given by one of indices 1.-4. and the AISMR. Thirdly, including
higher EOF modes can reveal more predictive power of the full
field compared with a simple index alone. In this regard we are
interested in whether the correlations to do with the higher
modes are more susceptible to the anthropogenic forcing. We
will only show results for the second modes. Traditionally, only
the first two or three EOFs are regarded to describe ENSO11, and
we should distinguish between ENSO-related and full Pacific
variability, but EOFs beyond the third will be found to have
negligible importance, we will thus usually drop this distinction.

The pursual of the listed three points of inquiry can be
supported by MCA and CCA. MCA and CCA are similar to the
EOF analysis, but consider two fields, and find paired modes
recursively whose paired PCs are respectively uncorrelated
with the readily determined PCs belonging to the other modes
of the same kind (or “side”) and have the maximal covariance
and correlation, respectively, between them12. Note that these
modes do not capture in general the locally dominant modes of
variability in the given regions (which may be represented e.g.,
by EOFs); this is the situation only in the uninteresting case:
for fields that are not related at all. Instead, they highlight parts
of the variability in the two regions that are interrelated the
most. These are not additive “parts” of the variability for CCA
though; only the MCA modes are independent being spatially
orthogonal, but not the CCA modes. By comparing these
patterns and their changes to those locally defined in the
given regions and thus characterizing ENSO and the IM in
our case, we might possibly obtain some hints about how much
spatial rearrangements of the relevant areas contribute to
changes in the teleconnection strength, but confirmations
by further analyses would be necessary.

Similarly to ENSO, we may carry out an EOF analysis on the
Indian precipitation field, as represented byM gridpoints, to identify
dominant modes of variability from a local point of view, for which
we can use the box of (5°S, 40°N, 65°E, 100°E).However, an arbitrarily
selected box may not provide a good representation. In fact, the
comparison of the time dependence of correlation coefficients
belonging to teleconnection representations or characteristics
involving the scalar AISMR, on the one hand, and involving the
full spatio-temporal monsoon variability, on the other hand, would
make most sense if the domain for the latter were the same as for
AISMR. We make this choice for our main exposition, and provide
the results with the choice of the box given above for comparison in
the Supplementary Material, including those obtained by replacing
AISMR by the box summer precipitation (BOXSR).

CCA yields the correlation coefficients between the paired PCs
by definition; as for theMCA, besides the covariance of the paired
PCs yielded by the definition, the correlation coefficient is

straightforward to compute. The correlations of these PCs are
not analogous to those between the AISMR and the PCs of EOFs
of ENSO. We anticipate that the SMCA and SCCA lead to higher
correlations than the SEOF analysis, stemming from their very
definition. In this regard, as the fourth point of inquiry, we want
to see if higher correlations are more susceptible to anthropogenic
forcing. A comparison of the correlation coefficients yielded by
the MCA or CCA can be made with those between the PCs of the
EOFs of the same order on the two sides. Although, in contrast
with MCA and CCA, PCs mismatched wrt. the EOF order will in
general feature a nonzero r.

On the side whereM >N , the MCAmodes form an orthogonal
basis. The covariance matrix in this basis is diagonal, with entries
conveniently denoted by σ2m, m ! 1,...,M, and, therefore, MCA
modes can also be associated with a fraction of variance explained,
FVE, according to Eq. 1. Because of the nonorthogonality of the
CCA modes, the fraction of variability that each of them explains
would not sum up to 1. Nevertheless, we can still evaluate the FVE
wrt. to the “target” side of the IM in the context of CCA if we
simply retain the areal mean scalar AISMR to represent that side.
This way, we have only a single nontrivial Equatorial Pacific SST/
SLP CCAmode.We consider this as a further representation of the
ENSO- or Equatorial Pacific-IM teleconnection.

From the point of view of predictability, in view of the regression
model

Ψ ! aΦ + ξ, (2)

where Φ, Ψ and ξ represent the ENSO (or ENSO-related) signal,
the IM (or IM-related) signal and random noise, the square of the
correlation coefficient r2 gives in fact the fraction of the variance
of the predictand Ψ that the predictor Φ can deterministically
predict (“explain” in what follows), since

r ! aσΦ
σΨ

. (3)

In the case of multiple predictors, Φ1, . . . ,ΦN , in terms of a multi-
dimensional linear regression model, the square of the coefficient of
multiple correlation or determination (Storch and Zwiers, 1999)

R2 ! rTC−1
ΦΦr,

r![r(Φ1,Ψ), . . . , r(ΦN ,Ψ)]T, CΦΦ![CΦΦ,nn′ ] ![r(Φn,Φn′ )],
can likewise quantify predictability, and a teleconnection
strength (by the same token as with the one-dimensional case).
When the predictors are uncorrelated, C−1

ΦΦ is the identity matrix,
and, so,

R2 ! r2 ! ∑N
n!1

r2(Φn,Ψ). (4)

This concept can be further generalized consideringmultiple scalar
predictands, Ψ1, . . . ,ΨM , when they provide a decomposition of
the spatio-temporal variability of the ultimate predictand. Such a
decomposition of the IM can be given by the orthogonal basis of
the EOFs or theMCAmodes (ifM <N) on the IM side (but not the
CCAmodes) and the corresponding PCs. In contrast, on the side of
the predictor, which is the ENSO or Equatorial Pacific in our case,

11Strictly speaking, each mode should be tested if it can be distinguished from noise
and if it features characteristics associated with ENSO.
12As for the MCA, maximizing the unexplained covariance implies that the PCs are
uncorrelated as reflected by the SVD decomposition.
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teleconnection strength can possibly change because of a shift in
the “center of action” of the ENSO phenomenon, something that
can have a different impact on the teleconnection representations
given by one of indices 1.-4. and the AISMR. Thirdly, including
higher EOF modes can reveal more predictive power of the full
field compared with a simple index alone. In this regard we are
interested in whether the correlations to do with the higher
modes are more susceptible to the anthropogenic forcing. We
will only show results for the second modes. Traditionally, only
the first two or three EOFs are regarded to describe ENSO11, and
we should distinguish between ENSO-related and full Pacific
variability, but EOFs beyond the third will be found to have
negligible importance, we will thus usually drop this distinction.

The pursual of the listed three points of inquiry can be
supported by MCA and CCA. MCA and CCA are similar to the
EOF analysis, but consider two fields, and find paired modes
recursively whose paired PCs are respectively uncorrelated
with the readily determined PCs belonging to the other modes
of the same kind (or “side”) and have the maximal covariance
and correlation, respectively, between them12. Note that these
modes do not capture in general the locally dominant modes of
variability in the given regions (which may be represented e.g.,
by EOFs); this is the situation only in the uninteresting case:
for fields that are not related at all. Instead, they highlight parts
of the variability in the two regions that are interrelated the
most. These are not additive “parts” of the variability for CCA
though; only the MCA modes are independent being spatially
orthogonal, but not the CCA modes. By comparing these
patterns and their changes to those locally defined in the
given regions and thus characterizing ENSO and the IM in
our case, we might possibly obtain some hints about how much
spatial rearrangements of the relevant areas contribute to
changes in the teleconnection strength, but confirmations
by further analyses would be necessary.

Similarly to ENSO, we may carry out an EOF analysis on the
Indian precipitation field, as represented byM gridpoints, to identify
dominant modes of variability from a local point of view, for which
we can use the box of (5°S, 40°N, 65°E, 100°E).However, an arbitrarily
selected box may not provide a good representation. In fact, the
comparison of the time dependence of correlation coefficients
belonging to teleconnection representations or characteristics
involving the scalar AISMR, on the one hand, and involving the
full spatio-temporal monsoon variability, on the other hand, would
make most sense if the domain for the latter were the same as for
AISMR. We make this choice for our main exposition, and provide
the results with the choice of the box given above for comparison in
the Supplementary Material, including those obtained by replacing
AISMR by the box summer precipitation (BOXSR).

CCA yields the correlation coefficients between the paired PCs
by definition; as for theMCA, besides the covariance of the paired
PCs yielded by the definition, the correlation coefficient is

straightforward to compute. The correlations of these PCs are
not analogous to those between the AISMR and the PCs of EOFs
of ENSO. We anticipate that the SMCA and SCCA lead to higher
correlations than the SEOF analysis, stemming from their very
definition. In this regard, as the fourth point of inquiry, we want
to see if higher correlations are more susceptible to anthropogenic
forcing. A comparison of the correlation coefficients yielded by
the MCA or CCA can be made with those between the PCs of the
EOFs of the same order on the two sides. Although, in contrast
with MCA and CCA, PCs mismatched wrt. the EOF order will in
general feature a nonzero r.

On the side whereM >N , the MCAmodes form an orthogonal
basis. The covariance matrix in this basis is diagonal, with entries
conveniently denoted by σ2m, m ! 1,...,M, and, therefore, MCA
modes can also be associated with a fraction of variance explained,
FVE, according to Eq. 1. Because of the nonorthogonality of the
CCA modes, the fraction of variability that each of them explains
would not sum up to 1. Nevertheless, we can still evaluate the FVE
wrt. to the “target” side of the IM in the context of CCA if we
simply retain the areal mean scalar AISMR to represent that side.
This way, we have only a single nontrivial Equatorial Pacific SST/
SLP CCAmode.We consider this as a further representation of the
ENSO- or Equatorial Pacific-IM teleconnection.

From the point of view of predictability, in view of the regression
model

Ψ ! aΦ + ξ, (2)

where Φ, Ψ and ξ represent the ENSO (or ENSO-related) signal,
the IM (or IM-related) signal and random noise, the square of the
correlation coefficient r2 gives in fact the fraction of the variance
of the predictand Ψ that the predictor Φ can deterministically
predict (“explain” in what follows), since

r ! aσΦ
σΨ

. (3)

In the case of multiple predictors, Φ1, . . . ,ΦN , in terms of a multi-
dimensional linear regression model, the square of the coefficient of
multiple correlation or determination (Storch and Zwiers, 1999)

R2 ! rTC−1
ΦΦr,

r![r(Φ1,Ψ), . . . , r(ΦN ,Ψ)]T, CΦΦ![CΦΦ,nn′ ] ![r(Φn,Φn′ )],
can likewise quantify predictability, and a teleconnection
strength (by the same token as with the one-dimensional case).
When the predictors are uncorrelated, C−1

ΦΦ is the identity matrix,
and, so,

R2 ! r2 ! ∑N
n!1

r2(Φn,Ψ). (4)

This concept can be further generalized consideringmultiple scalar
predictands, Ψ1, . . . ,ΨM , when they provide a decomposition of
the spatio-temporal variability of the ultimate predictand. Such a
decomposition of the IM can be given by the orthogonal basis of
the EOFs or theMCAmodes (ifM <N) on the IM side (but not the
CCAmodes) and the corresponding PCs. In contrast, on the side of
the predictor, which is the ENSO or Equatorial Pacific in our case,

11Strictly speaking, each mode should be tested if it can be distinguished from noise
and if it features characteristics associated with ENSO.
12As for the MCA, maximizing the unexplained covariance implies that the PCs are
uncorrelated as reflected by the SVD decomposition.
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of PC1-AISMR and PC2-AISMR in association with EOFs on the
Pacific side. Furthermore, we show in the SupplementaryMaterial
that r of CCA-AISMR and R are one and the same thing. We shall
not consider as a representation any individual r(PCn,PCn) for
EOF, MCA, CCA, but the latter quantities also characterize some
aspect of the teleconnection and will support our analysis.

We will explain some findings about these r’s by comparing spatial
patterns of different modes. Nevertheless, we show in the
Supplementary Material that forced changes of spatial patterns do
not necessarily have robust implications for the change of the
teleconnection strength: r of CCA-AISMR may be dominated by r
of EOF1–AISMR even if the spatial pattern of CCA-AISMR in the
Pacific has a large weight from EOFi, i> 1, thanks to the small
variability that is associated with that given EOFi compared to EOF1.
This also means that we may not want to refer to CCA-AISMR as a
representation of the ENSO–IM teleconnection from the point of view
of the weights of Pacific EOFs in this CCA mode, but only as a
representation of an Equatorial Pacific–IM teleconnection, whereas
wemay do regarding theweight of r’s associatedwith those EOFs. As a
further point of reference, we shall also consider the map displaying
the correlation coefficient of the precipitation at each grid point with
EOF1 or EOF2 on the Pacific side.

2.3 Decomposition of the Forced Change of
the Teleconnection Strength
Once the r(t) signal is established, we can ask about the origin of
the observed time dependence. Instead of trying to find physical
mechanisms, here we pursue only a statistical attribution. We
consider the linear regression model (Eq. 2) which underpins the
correlation coefficient r. In this model, we can attribute changes
in r to three factors, via considering the relationship

.r ! 1!!!!!!!!!!!!!!
1 + ((σξ/a)/σΦ)2√ (6)

These three factors are:

• The ENSO variability σΦ ! std[Φ];
• The ENSO-IM coupling a, being the regression coefficient;
• The noise strength σξ ! std[ξ].

Note that, like r, both σΦ and σξ are defined in terms of the
variability wrt. the ensemble, for every year separately. That is, like
r(t), we have time series σΦ(t) and σξ(t), and also a(t). Attribution
is then based on a simple comparison of these time series. For
instance, we can say that a change in r(t) is due to a change in σΦ(t)
in a time period if no change is seen in a(t) and σξ(t) in the given
time period. Note that we can already say the same if σξ/a shows no
change. In fact, what is outlined in this example has been suggested
to us as a plausible explanation: “perhaps the strengthening of the
ENSO-IM teleconnection is due to an increasing ENSO variability
in this model.” Although apriori this possibility is hard to exclude,
we note that it would be rather specific and could be seen accidental
to the ENSO-IM teleconnection given that ENSO-precipitation
teleconnections can either strengthen or weaken in different
places on Earth (Power and Delage, 2018). This is shown in

Figure 2 of (Haszpra et al., 2020a) for the CESM1-LE; and the
MPI-GE dataset shows a rather similar picture as seen in our
Supplementary Figure S1 in the Supplementary Material.

Concerning the numerical evaluation of the quantities in
question, the first step is to evaluate σΦ directly, i.e., we
compute the standard deviation of Φ over the ensemble. Then
we compute σξ/a by inverting Eq. 6, as r is already available. Note
that with this calculation, the sign of a remains undetermined;
however, it can be easily recovered being the same as that of r.
Anticipating that σξ/a is not constant in time, we can evaluate a by,
first, directly evaluating the IM variability σΨ, and, subsequently,
using the textbook equation Eq. 3. (We could, of course, evaluate a
directly by linear regression, but calculating the standard deviation
is easier, andwe already have r on hand.) In turn, having now also a
on hand, σξ can be obtained by multiplying σξ/a by a.

For a quantitative assessment of which factor dominates the change
in r out of the ENSO-related variability (σΦ) and the combination of
the noise strength and the coupling (σξ/a) in a time period [t1, t2], we
set up a simplified framework. We assume that the ENSO-related
variability increases; in particular, it increases as σΦ(t2) ! βσΦ(t1),
β> 1, and that we also have a decrease σξ(t2)/a(t2) ! ασξ(t1)/a(t1),
α< 1. From Eq. 6 we see that αβ> 1 would mean that the increase in
ENSO-related variability has a larger effect on the increase of r(t) than
the decrease in σξ/a. Given the very noisy time series, the appropriate
approach would be a statistical test attempting to reject the null
hypothesis of αβ ! 1. However, it is not clear to us how this can be
done. As for a preliminary analysis, we simply estimate αβ by
estimating α and β separately before taking their product. E.g., α is
estimated froma least-squares linear fit of the time series of σξ(t)/a(t)
in a time period [t1, t2], obtaining the ordinates at the beginning and
end of the period, σξ(t1)/a(t1) and σξ(t2)/a(t2), respectively. β is
estimated similarly from the time series of σΦ(t). We estimate αβ in
all possible time periods [t1, t2], similarly as done with the MK-test.
Note that the results are not robust in situations when r is near zero
and estimates change signwith time. This is the case typically already
with PC2’s, as well as with the use of BOXSR instead of AISMR, and,
so, we provide results only for unaffected representations/
characteristics. When r is small, so is a, resulting occasionally in
large spikes of σξ(t)/a(t), therefore, we will instead plot the
reciprocal a(t)/σξ(t).

Note that such an attribution proposed here is not
generically applicable to representations or characteristics of the
teleconnection based onMCA and CCA. This is because the signal
σΦ(t) typically cannot be attributed solely to the ENSO/Equatorial
Pacific when the associated mode also changes, which latter is
determined by the mutual relationship of the ENSO and IM, not
just the ENSO alone.

3 THE FORCED RESPONSE OF THE
ENSO-IM TELECONNECTION

3.1 Spatial Aspects
We start by inspecting spatial characteristics of the ENSO and IM
variability by means of SEOFs and by comparing them to those
corresponding to largest covariances and correlations defined
through SMCA and SCCA whereby on the IM side the domain of

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 8 | Article 5997857

Bódai et al., Nonlinear Forced Changes of Teleconnections

of PC1-AISMR and PC2-AISMR in association with EOFs on the
Pacific side. Furthermore, we show in the SupplementaryMaterial
that r of CCA-AISMR and R are one and the same thing. We shall
not consider as a representation any individual r(PCn,PCn) for
EOF, MCA, CCA, but the latter quantities also characterize some
aspect of the teleconnection and will support our analysis.

We will explain some findings about these r’s by comparing spatial
patterns of different modes. Nevertheless, we show in the
Supplementary Material that forced changes of spatial patterns do
not necessarily have robust implications for the change of the
teleconnection strength: r of CCA-AISMR may be dominated by r
of EOF1–AISMR even if the spatial pattern of CCA-AISMR in the
Pacific has a large weight from EOFi, i> 1, thanks to the small
variability that is associated with that given EOFi compared to EOF1.
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representation of the ENSO–IM teleconnection from the point of view
of the weights of Pacific EOFs in this CCA mode, but only as a
representation of an Equatorial Pacific–IM teleconnection, whereas
wemay do regarding theweight of r’s associatedwith those EOFs. As a
further point of reference, we shall also consider the map displaying
the correlation coefficient of the precipitation at each grid point with
EOF1 or EOF2 on the Pacific side.
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the Teleconnection Strength
Once the r(t) signal is established, we can ask about the origin of
the observed time dependence. Instead of trying to find physical
mechanisms, here we pursue only a statistical attribution. We
consider the linear regression model (Eq. 2) which underpins the
correlation coefficient r. In this model, we can attribute changes
in r to three factors, via considering the relationship
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• The ENSO variability σΦ ! std[Φ];
• The ENSO-IM coupling a, being the regression coefficient;
• The noise strength σξ ! std[ξ].

Note that, like r, both σΦ and σξ are defined in terms of the
variability wrt. the ensemble, for every year separately. That is, like
r(t), we have time series σΦ(t) and σξ(t), and also a(t). Attribution
is then based on a simple comparison of these time series. For
instance, we can say that a change in r(t) is due to a change in σΦ(t)
in a time period if no change is seen in a(t) and σξ(t) in the given
time period. Note that we can already say the same if σξ/a shows no
change. In fact, what is outlined in this example has been suggested
to us as a plausible explanation: “perhaps the strengthening of the
ENSO-IM teleconnection is due to an increasing ENSO variability
in this model.” Although apriori this possibility is hard to exclude,
we note that it would be rather specific and could be seen accidental
to the ENSO-IM teleconnection given that ENSO-precipitation
teleconnections can either strengthen or weaken in different
places on Earth (Power and Delage, 2018). This is shown in

Figure 2 of (Haszpra et al., 2020a) for the CESM1-LE; and the
MPI-GE dataset shows a rather similar picture as seen in our
Supplementary Figure S1 in the Supplementary Material.

Concerning the numerical evaluation of the quantities in
question, the first step is to evaluate σΦ directly, i.e., we
compute the standard deviation of Φ over the ensemble. Then
we compute σξ/a by inverting Eq. 6, as r is already available. Note
that with this calculation, the sign of a remains undetermined;
however, it can be easily recovered being the same as that of r.
Anticipating that σξ/a is not constant in time, we can evaluate a by,
first, directly evaluating the IM variability σΨ, and, subsequently,
using the textbook equation Eq. 3. (We could, of course, evaluate a
directly by linear regression, but calculating the standard deviation
is easier, andwe already have r on hand.) In turn, having now also a
on hand, σξ can be obtained by multiplying σξ/a by a.

For a quantitative assessment of which factor dominates the change
in r out of the ENSO-related variability (σΦ) and the combination of
the noise strength and the coupling (σξ/a) in a time period [t1, t2], we
set up a simplified framework. We assume that the ENSO-related
variability increases; in particular, it increases as σΦ(t2) ! βσΦ(t1),
β> 1, and that we also have a decrease σξ(t2)/a(t2) ! ασξ(t1)/a(t1),
α< 1. From Eq. 6 we see that αβ> 1 would mean that the increase in
ENSO-related variability has a larger effect on the increase of r(t) than
the decrease in σξ/a. Given the very noisy time series, the appropriate
approach would be a statistical test attempting to reject the null
hypothesis of αβ ! 1. However, it is not clear to us how this can be
done. As for a preliminary analysis, we simply estimate αβ by
estimating α and β separately before taking their product. E.g., α is
estimated froma least-squares linear fit of the time series of σξ(t)/a(t)
in a time period [t1, t2], obtaining the ordinates at the beginning and
end of the period, σξ(t1)/a(t1) and σξ(t2)/a(t2), respectively. β is
estimated similarly from the time series of σΦ(t). We estimate αβ in
all possible time periods [t1, t2], similarly as done with the MK-test.
Note that the results are not robust in situations when r is near zero
and estimates change signwith time. This is the case typically already
with PC2’s, as well as with the use of BOXSR instead of AISMR, and,
so, we provide results only for unaffected representations/
characteristics. When r is small, so is a, resulting occasionally in
large spikes of σξ(t)/a(t), therefore, we will instead plot the
reciprocal a(t)/σξ(t).

Note that such an attribution proposed here is not
generically applicable to representations or characteristics of the
teleconnection based onMCA and CCA. This is because the signal
σΦ(t) typically cannot be attributed solely to the ENSO/Equatorial
Pacific when the associated mode also changes, which latter is
determined by the mutual relationship of the ENSO and IM, not
just the ENSO alone.

3 THE FORCED RESPONSE OF THE
ENSO-IM TELECONNECTION

3.1 Spatial Aspects
We start by inspecting spatial characteristics of the ENSO and IM
variability by means of SEOFs and by comparing them to those
corresponding to largest covariances and correlations defined
through SMCA and SCCA whereby on the IM side the domain of
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Regression Equation

In a regression analysis framework we identify three

drivers of the teleconnection change:

(i) ENSO variability

(ii) ENSO-ISM coupling strength and

(iii) noise strength.

We attribute any strengthening of the teleconnection to

(i)-(ii), namely, increasing ENSO variability and

ENSO- ISM coupling strength
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MIROC6 § The non-decreasing teleconnection strength

in the early and middle part of 21st century

is due to an increasing ENSO variability as

well as coupling strength.

§ This non-increasing nature of coupling

strength and decreasing ENSO variability,

played a dominant role in the weakening of

the ENSO-ISM teleconnecSon in GFDL ESM

2M and MIROC6 models under strong late

21st century forcing.
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• The spatial pattern of the forced response of ENSO-ISM teleconnection shows an east-west dipole pattern over

north-India, in most of the models. However, there is no inter-model robustness in the south India.

Spatial Pattern of  Correlation Coefficient and its Forced Change



§ The forced response of the teleconnection between the ENSO and the Indian summer monsoon (ISM) evaluated using a

multi-model ensemble of initial conditional ensembles under historical forcing and future (RCP8.5/SSP5-8.5/SSP3-7.0)

forcing scenarios.

§ The role of external forcing is relatively weak in the observed weakening of ENSO-ISM teleconnection at the end of 20th

century, internal variability might have played a crucial role in it.

§ In the early and middle part of the 21st century that the teleconnection is strengthening or nondecreasing. This considerable

robustness is owing to an increasing ENSO variability as well as coupling strength.

§ In the end of the 21st century, there is no inter-model robustness in the projected teleconnection. This is mainly due to the

ENSO variability change is not projected robustly across models: either the start of the ENSO variance decline is not

captured robustly, or the rates of the decline of ENSO variance competing this time with an increase of the coupling strength.
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EOF PaHern and Variability of ISM Rainfall

• The spatial pattern of the

forced response of ISM

rainfall shows an east-west

dipole pattern over north-

India, in most of the

models (except CanESM2

and GFDL ESM 2M).

• Under future forcing

scenarios, the ensemble-

wise variance of ISM

rainfall increases in

MPIESM, CanESM5,

Csiro MK 3.6 and CESM2

models. Hardly any forced

change is observed in the

other three models.

Fig1: Top row displays the  EOF1 pattern (JJAS) of ISM rainfall during 1900-1950 or1950-2000.  Bottom row shows the EOF1 pattern difference, 2050-2100 minus 1900-1950 or 1950-2000. 

Fig2: Shows the ensemble-wise standard deviation of ISM rainfall during the JJAS season. Magenta curve shows 21-year moving mean and cyan curve shows the yearly values. 


