Understanding the Human Place in Ecosystems from the Archaeological Record

Assistant Professor, Socio-Environmental Modeling
Department of Environment and Society
Quinney College of Natural Resources, Utah State University

ASU-SFI Biosocial Complex Systems Fellow The Santa Fe Institute

Stefani A. Crabtree, Ph.D. stefani.crabtree@usu.edu

@stefanicrabtree

Qui suis-je?

- * Ph.D. in Anthropology (Washington State University) and Ph.D. in Environmental Science (Université de Franche-Comté)
- * Combine fieldwork (ethnographic and archaeology) with computational modeling and analysis
- * Currently prof of social-environmental modeling in Department of Environment and Society at Utah State University and Fellow at Santa Fe Institute

Towards a Science of Archaeoecology

- * Forthcoming paper in Trends in Ecology and Evolution proposes the field of Archaeoecology
- * Combining archaeology with ecological and paleoecological approaches
- * Archaeoecology can help us look at completed experiments with sustainability in the past

Humans in Food Webs

THE FIRST FOOD WEB

Lorenzo Camerano, 1880

A MODERN FOOD WEB

Stefani Crabtree, 2017

[&]quot;On the equilibrium of living beings by means of reciprocal destruction"

[&]quot;Dell'equilibrio dei viventi merce' la reciproca distruzione"

Humans in Food Webs

- * If food webs can tell us the structure of an ecosystem, why not include humans?
- * We know we can exert large pressures on an ecosystem
- * Could we see these archaeologically to understand when ecosystems with humans are stable and when they unravel?

Food Webs of People

- * How I built these food webs
 - * Begin with the human aspect interviews with elders, follow studies, ethnographies to get idea of what people ate
 - * Compile known taxa radiating out from the human portion
 - * Connect to every taxa I can identify in the study areas

Online Field Guide to The Reptiles and Amphibians of Arizona

REPTILES and AMPHIBIANS of A R I Z O N A

Choose an Archaeology Program

Travel with Us

Site Reports & Databases

Publishing the results of our fieldwork and laboratory analyses is fundamental to meeting our professional and ethical obligations as archaeologists (see Archaeological Ethics and Law).

The Martu

- * Until 1964 Indigenous Martu lived a traditional existence in the Western Desert of Australia
- * In 1964 the government removed them to cattle stations and missions
- * Between the 1960s and the 1980s several animals went extinct

The Martu

Food Webs of Martu

- * Paradoxically, it seems *people* were keeping animals in this vulnerable region alive
- People in Australia since~60kya, in Western Desert since~30kya
- Long-term coevolution between people and ecosystems

Food Webs of Martu

- Work by several colleagues
 suggests certain animals prefer
 certain fire recovery stages
- If you remove Indigenous burning you get less diverse ecosystems
- * Can we model the pre-1964 and modern food webs?

Modeling the Recent Past

Modeling the Recent Past

- * While we see a change in the food web, is this normal?
- * I employed Niche Models to examine how changes are statistically meaningful
- * Simulates food webs with similar number of links and edges to look at what "random" extinctions would look like
- * Helps determine structure and stability

Niche Modeling of Martu Food Webs

Modeling the Recent Past

- * Martu are "knitters" of ecosystems
- * They dampen predators, like large snakes and goanna
- * They make patchy environments
- * Their presence kept that food web together

Published: 08 February 2019

Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia

Stefani A. Crabtree , Douglas W. Bird & Rebecca Bliege Bird

Human Ecology 47, 165–177 (2019) | Cite this article1488 Accesses | 18 Citations | 55 Altmetric | Metrics

Indigenous

Court of Summary Jurisdiction (2013). Aboriginal
Areas Protection Authority v OM (Manganese)
Ltd (2013) NTMC 019, Court of Summary
Jurisdiction, Darwin.

CRA (Coastal Risk Australia) (2021). Coastal Risk Australia, CRA, https://coastalrisk.com.au/home.

Crabtree SA, Bird DW & Bird RB (2019). Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Human Ecology 46:165–177.

Creek A (n.d.). Heathy people, healthy Country, healthy culture, Kalan Enterprises, http://www.kalan.org.au/.

CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2014). *Biodiversity:* science and solutions for Australia, Morton S, Sheppard A & Lonsdale M (eds), CSIRO, Canberra.

education/programs/young-indigenouswomens-stem-academy/about-the-academy.

CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2021d). Indigenous ecosystem services for the northern Great Barrier Reef, CSIRO, Canberra, https://www.csiro.au/en/research/indigenous-science/managing-country/gbr-ecosystem-services.

CSIRO (2021e). Indigenous STEM Education
Project, CSIRO, Canberra, https://www.csiro.
au/en/education/Programs/Indigenous-STEMEducation-Project.

Cumpston Z (2020a). Cities are Country: illuminating
Aboriginal perspectives of biodiversity in
urban environments, research synthesis.
Report prepared by the Clean Air and Urban
Landscapes Hub, Melbourne.

- When the Wetherill brothers came upon Mesa Verde in the late 1800s they saw completely abandoned stone dwellings.
- Where did they go? Why did they leave?
- The "Great Drought?" Hostile invaders?
- My approach: looking at food webs through the 700 year occupation to examine how the ecosystem changed over time to help inform discussions of abandonment

Cascading Consequences

- * Clearing the landscape of trees for arable farmland decreases habitat for other animals and increases soil erosion.
- * People would have to go farther afield for wild resources.

Cascading Consequences

- * Populations reached 27,000 in our region by the early 1200s (Schwindt et al. 2016).
- * The ability to switch prey reliably would only be present in low density populations.
- * But what could uses beyond food tell us?

Reconstructing Ancestral Pueblo food webs in the southwestern United States

Stefani A. Crabtree ^a △ , Lydia J.S. Vaughn ^b, Nathan T. Crabtree ^c

Human Interactions with Other Species our next step: Human-centered interaction networks through space and time in relation to constraints & opportunities of ecology, environment & culture

Beyond food webs

* Using network analysis to look at 'importance' of taxa, how many things they are used in, if their uses change, etc

Maize: Main ingredient for bread Chenopodium: Purple dye for bread

Helianthus: A hood over piki stone to lock in moisture

Juniperus scopulorum: Fuel to cook; ash as ingredient for bread

A Conceptual Mathematical Model

- * Can we perceive our environments and act accordingly?
- * Newly accepted paper to Global Environmental Change uses a conceptual formal model to look at this.

$$In_w = (((In_t(\lambda))\eta_p)\eta_a)$$

or:

$$In_t(\lambda) = In_a$$

 $(In_a)\eta_p = In_u$
 $(In_u)\eta_a = In_w$

where:

 In_t = total information

 In_a = available information

 In_u = usable information

 In_w = wielded information

 λ = losses of information due to perceptual limitations ($\lambda_{1...n}$)

 $\eta_p = \cos t$ of processing available information to become usable information

 $\eta_a = \cos t$ of actioning usable information to become wielded information

To sum up

- * Humans impact ecosystems, but it isn't uniformly bad
- * We can look to 'experiments with the past' to understand what has worked and what has failed
- * Archaeoecology and modeling methods can be useful for understanding the human place in ecosystems

Thanks...

- * ICTP for the invitation
- * NSF grants Nos BCS-0119981 and CNH-0816400
- * The Australian Research Council
- * The Coalition for Archaeological Synthesis
- * The Chateaubriand Fellowship Program and The Agence Nationale de Recherche (ANR)

