HPGe Detectors Efficiency Calibration (ISOCS)

by S. Tarján

International Atomic Energy Agency

Content

- Nuclear emergency
- Sources of radioactivity
- Exploration methods
 - Aerial
 - Surface
 - Quantitative
 - +Qualitative
 - Gamma dose rate

Nuclear emergency

- Accident of the
 - Power reactor (fission and activation products)
 - Other nuclear facilities (any kind of radionuclides)
- Radiation incident, accident (transport, orphan sources)
- <u>Satellite re-entry</u>
 - Pu-238 (567 W/kg), Sr-90/Y-90, Tc-99
 - Fast reactor (HEU with Na coolant, 16-18) [NASA]
- Application of nuclear weapon (fission and activation products)
- <u>Terror attack</u> (similar to the nuclear weapon or single isotope)

NORM / TENORM

- Natural radioactive series and ⁴⁰K
 - ²³⁸U, ²³⁵U, ²³²Th
 - In secular equilibrium
 - U surplus
 - Ra surplus
- Mining activity
- Naturally occurring anomaly
- Technological origin contamination

One interesting inventory estimation (by the Colorado University):

	Natural Radioactivity by th	e Square Mile, 1 Foot Deep	
Nuclide	Activity used in calculation	Mass of Nuclide	Activity found in the volume of soil
Uranium	0.7 pCi/g (25 Bq/kg)	2,200 kg	0.8 curies (31 GBq)
Thorium	1.1 pCi/g (40 Bq/kg)	12,000 kg	1.4 curies (52 GBq)
Potassium 40	11 pCi/g (400 Bq/kg)	2000 kg	13 curies (500 GBq)
Radium	1.3 pCi/g (48 Bq/kg)	1.7 g	1.7 curies (63 GBq)
Radon	0.17 pCi/g (10 kBq/m ³) soil	11 micro g	0.2 curies (7.4 GBq)
		Total:	>17 curies (>653 GBq)

1 sq mile in 1 foot deep \approx 1.24x10⁹ kg soil

₉₀ Th	²³² Th 1,4.10 ^{10y}		²²⁸ Th 1,91 y	The ²³	² Th decay s	eries	
₈₉ Ac		²²⁸ Ac 6,15 h					
					α-decay		
88 Ra	²²⁸ Ra 5,75 y		²²⁴ Ra 3,63 d				
₈₇ Fr							
					β-decay		
86Rn			²²⁰ Rn 55,8 s				
85 At							
			V				
₈₄ Po			²¹⁶ Po 0,156 s		²¹² Po 3.10 ⁻⁷ s		
₈₃ Bi				²¹² Bi 60,5 m			
			V	36%			
82 Pb			²¹² Pb 10,6 h		²⁰⁸ Pb stable		
				Y			
₈₁ Tl				²⁰⁸ Tl 3,06 m			

²³⁸U

₉₂ U	4,47.10 ⁹ y		0 2,45.10 ⁵ y							
			1		The	²³⁸ U d	ecay s	eries		
₉₁ Pa		²³⁴ Pa 1,17 m 6,7 h								
	V	1								
₉₀ Th	²³⁴ Th 24,1 d		230 Th 7,5.10 ⁴ y							
89Ac										
							α-decay			
88Ra			²²⁶ Ra 1600 y							
₈₇ Fr										
							β-decay			
86 ^{Rn}			²²² Rn 3,8 d							
₈₅ At				²¹⁸ At 2 s						
84Po			²¹⁸ Po 3,09 m			²¹⁴ Po 1,6.10 ⁻⁴ ms				²¹⁰ Po 138,4 d
			99%		99%				99%	
₈₃ Bi				²¹⁴ Bi 19,9 m				²¹⁰ Bi 5 d		
82Pb			²¹⁴ Pb 26,8 m			²¹⁰ Pb 22,23 y				²⁰⁶ Pb stable
81 T 1				²¹⁰ Tl 1,32 m				²⁰⁶ Tl 4,23 m		

²³⁴U

Nuclear parameters for evaluation of measurement results

🥖 🎇 LNHB	× +				- 0 ×
(i www.nucleide.org			C Q electric power in satellites	np-237 → 🏠 🗎 🕻	7 🖡 🍙 🔗 🔳
LNHB LNHB		Accueil LNHB Sommaire LNHB Dosimétrie	Radioactivité DNHB DNHB		LNHB LNHB
LNHB LNHB	INHE INHE INH	Laboratoire National Henri			
LNHB LNHB	INHB INHB INHB Lat	oratoire National Hen	ri Becquerel		
Atomic & Nuclear Data	INHB INHB INH		UN UN B		
Coincidence counting	Le Laboratoire National Henri Becquerel est le laboratoire nati	onal de métrologie dans le domaine des rayonnements ior	nisants. HB		
Cryogenic detectors	L'objectif fondamental de la métrologie est d'assurer la cohére Sur le plan international, il s'agit d'assurer la cohérence entre	nce des mesures, aussi bien sur le plan national que sur les étalons nationaux de référence des différents pays, co	le plan international. hérence qui fonde leur caractère de références prima	ires. LNHB LNHB	
Photon and alpha spectrometry	Par le biais d'étalons de transfert ou d'étalonnage, ces référer La cohérence métrologique est ainsi fondée sur la double dim	ces nationales sont utilisées pour raccorder dans chaque ension, internationale et nationale de la chaîne d'étalonna;	pays les instruments de mesure des utilisateurs. ge, qui constitue la structure fondamentale de la méti	ologie.	
Groupes de travail/Working Groups					
Prestations en dosimétrie		Dosimétrie	Radioactivité		
Programme Tests Interlaboratoires	INHB INHB INHB IN	HB LNHB LNHB LNHB	UNHB LNHB LNHB	LNHB LNHB	LNHB LNHB
Publications	Coordonnées ⁸ UN ^{HB} UN ^{HB}				
Actualités / News	Téléphone +33.(0)1.69.08.41.04				
Liens / Links	Télécopie +33.(0)1.69.08.26.19				
Logiciels / Software	C.E.A. Saclay - 91191 Gif-sur-Yvette Cedex Messagerie électronique	- France UNHB UNHB UNHB			
LNHB LNHB	Administrateur Web				
LNHB LNHB	LNHB LNHB LNHB LN		LNHB LNHB LNHB	LNHB LNHB	LNHB LNHB

HU 🎯 📴 🚾 🍓 🖯 🙏 🧬 🝋 💻 💆 🕸 🎢 d× 13:50 💭

www.nucleide.org

In situ "characterisation" process

Aerial exploration

- Spatial distribution large scale overview
- Weak quality information
- Acceptable quantity information (more or less)
- Gamma dose rate conversion to the surface (1m height)
- Metrological aspect: traceability cannot be established

Results of the aerial scanning

- 40 m elevation
- Gamma intensity map
- No any nuclide specific information

Surface exploration

- Two detector systems
 - sensitive but short time constant (for searching) 3"x3"NaI, LaBr, plastic (gross gamma information)
 - gamma dose rate measurement (non paralysable equipment)
- GPS, GIS
- (Sampling tools)

AEA

Metrological aspect: traceability can be established partly

In situ gamma-ray spectrometry

General task:

Identification of isotopes Inventory estimation

- HPGe detector system
 - fast electronics
 - 25-40 % relative efficiency
 - 180-3600 sec counting time
 - 1 m above the surface
- Prerequisite
 - calibrated detector
 - check list (system parts, battery, GPS, documentation tools)
 handheld radiation monitors
 (surface contamination monitor, gamma dose rate monitor, personal dosimeter)
 - decontamination tools

Map and task description

In situ gamma-ray spectrometry (2)

Metrological aspects (traceability):Detector efficiencyAngular correction factor Φ/A model calculation only

In some cases, method validation can be achieved!

Large surface mosaic source for flat geometry

EA

Most frequently used detectors

- For in-situ gamma-ray spectrometry
 - NaI(TI) scintillation detector
 - LaBr₃(Ce) scintillation detector
 - CZT (for high count rate)
 - HPGe detector

Surface exploration

- Plastic scintillator (large volume, on vehicle)
- NaI(TI), LaBr₃(Ce) scintillation detector
- Gas ionising detectors (GM tube, gas-proportional detector)

NaI(TI)- HPGe detector

NaI(Tl)

• +

- Excellent quantum efficiency
- Relatively simple electronics
- Working without cooling
- Moderate price
- Low background
- Low resolution (7.5% at 661.67keV)
- Sensitive for the high voltage drift
- Thermic drift
- Nonlinearity in energy scale

• HPGe

- Excellent energy resolution
- Linear energy scale (10⁻⁸)
- Suitable for isotope identification
- Low background
- Less efficiency
- Mechanical sensitivity
- The price is not user friendly
- Cooling required (LN₂ or electronic)

n-type HPGe detector

LaBr₃(Ce) detector

- Good energy resolution
 - 2.8% at 661.67keV
- Efficiency (better than NaI(TI))
- Moderate price

+

Fast decay time

Background

- The naturally occuring ¹³⁸La radioactive (T_{1/2}=103.6 *10⁹)
- +²²⁷Ac as a contamination
- (0.5% Ce)

- Considerable background
- Thermic drift
- Nonlinearity in energy scale (10⁻⁵)

• Cadmium-Zink-Tellurid

- Good energy resolution
 - 1.3% (8.7 keV) at 661.67keV
- Room temperature operation
- High effective Z number
- Efficiency is good, however the size is limited

- Long decay (fall) time
- (rise time is 600 ns, fall time 700 micros)
- Sensitive for the orientation
- Price is about 2000 USD/cm³

AEA

Theoretical model for photon flux calculation

Calculation of unscattered photon flux for different radionuclide depth distributions

Exponential

$$\Phi = \frac{1}{2} S_0 \left\{ E_1(\mu_a h) - e^{\frac{\mu_a h}{\mu L}} E_1 \left[\left(1 + \frac{1}{\mu L} \right) \mu_a h \right] \right\}$$

Uniform

$$\Phi = \frac{1}{2} S_{\nu} \frac{\mu_a}{\mu} \left[\frac{1}{\mu_a h} e^{-\mu_a h} - E_1(\mu_a h) \right]$$

Plane

$$\Phi = \frac{1}{2} S_0 E_1(\mu_a h)$$

The function $E_1(x)$ is the 1st order exponential integral

$$E_1(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt$$

Series expansion $E_1(x) = -\gamma - \ln x - \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n n!}$ $\gamma = 0.5772156649...$

Conditions

Soil characteristic and composition:

O: 57.5% AI: 8.5% Si: 26.2% Fe: 5.6% Ca, Mg, etc.: 2%

Density: 1.06-1.6 kg/dm³

Dry content

Vertical distribution in case of different relaxation length

The meaning of the relaxation length, L

			L, cm 1 cm 2 cm 3 cm 5 cm 0.632 0.393 0.283 0.181 0.233 0.239 0.204 0.149			
Vertical distribution		1 cm	2 cm	3 cm	5 cm	
	1 cm	0.632	0.393	0.283	0.181	
	2 cm	0.233	0.239	0.204	0.149	
	3 cm	0.085	0.145	0.145	0.121	
	4 cm	0.032	0.088	0.104	0.1	
Depth	5 cm	0.011	0.053	0.075	0.081	
	10 cm	0.007	0.082	0.153	0.233	
	15 cm			0.036	0.085	
	20 cm				0.032	
	25 cm				0.011	

International Atomic Energy Agency

The effect of the detector position and soil density ¹³⁷Cs, I=3cm

	Soil density	• 1 05 ka/dm³	
	95 cm	100 cm	105 cm
Efficiency	1.34E-04	1.33E-04	1.32E-04
a Balm ²	1771	1777	1786
	Soil density	/: 1.6 kg/dm ³	
A By A E A		2317	

Effect of the relaxation length a, Bq/m²

L, cm	1,05 kg/dm ³	1,6 kg/dm ³
1	1005	552
2	1276	1571
3	1777	2317
5	2302	3128

Vertical distribution of Cs-137 (%), at the site of in-situ measurement

Results calculated by two different wertical distribution

(using a HPGe detector modell for semi infinitve flat and real vertical distribution)

Possibilities

- Manual calibration and calculations
 - Time consuming
 - Required several high activity calibration sources
 - Difficult to use it if the conditions are changed
- Software solutions
 - ISOCS or equivalent software necessary
 - a characterized detector is required (expensive)
 - Flexible
 - Fast

Measurement and spectra evaluation

Energy calibration Background measurement (if necessary, detector bkg) Isotope identification (working library) Activity calculation using the appropriate efficiency curve for the given vertical distribution (man made pollutant, Cs-137, Cs-134) using the efficiency curve for the homogeneous distribution (NORM: U, Th, K)

e Search	Options	Help								- 1
Nuclide Name:	Te-132x		Half-Lif	e: 3 201	333	c	Y @n			
Full Name:				10.20	555	C	н			- 18
			Uncert	ainty: ± 0.09			СМ			- 18
Туре:	fission	-		True -			5	Clear		- 11
Energy Lines	-						<u></u>		7	- il
Energy:	Γ		keV	Abundance:	Г	%	Key Line			- 10
Uncertainty	:± [keV	Uncertainty: ±		Ah	I No Wt Mi s	ean Class		- 18
	1.						·			- 18
Name		Туре		Half Life	Ene	rgy . keV	Abundance	e·%		
					Ø	910.30	0.918	0		
						954.55	17.600	٥		
		250 0	2			1398.57	7.000	0		
TE-132		11991	Lon	3.230D			10 475			
					6	20.32	15.4/5	0		
					0	20.01	12 710	0		
					6	49 72	15 100	0		
					a	111 76	1 850	0		
					a	116.30	1,970	0		
					*	228.16	88.120	0		
Те-132ж		fiss	ion	3.208D						
						256.76	1.000	0		
CS-134		fissi	ion	2.066Y						
					0	31.80	0.830	D		
					e	475.35	1.500	0		
						563.22	8.380	0		
						569.31	15.390	D		-

Genie2k and ISOCS

To be installed "INSPECTOR" version The hardlock is not required The spectra collection works only with portable CANBERRA analysers GeometryComposer It is a standard accesorry of the software package It can works with the Genie2k on interactive way when the ISOCS utility is installed The detector characterisation dataset should be installed also There is a "demo" detector database 🙂 Libraries Interactive peak fit