#### »Strategy for data acquisition Data visualization, analysis and mapping with geostatistics

**Yvon DESNOYERS** 

desnoyers@geovariances.com



Added value of geostatistics



- How to optimize the investigation costs?
- How to take auxiliary information such as historical inventory and radiation maps consistently into account?
- How to quantify uncertainties in the remediation costs while computing contaminated surfaces or volumes?

»Outlines

#### Sampling strategy and evaluation objectives

Data processing: statistics or geostatistics?

Investigation steps for initial radiological characterisation Sampling optimisation for initial radiological characterisation

Sampling strategy and evaluation objectives

nvestigation steps for initial radiological characterisation Data processing: statistics or geostatistics?

Sampling optimisation for initial radiological characterisation

#### Part 1

»How to select the sampling strategy for an evaluation objective?



#### Three legged stool theory

- Three sound legs: stability and simplicity
- Weakness of one leg: stool fall
- Stable position but uncomfortable: not possible to sleep!



# »Data Quality Objectives

Methodological framework for characterisation



Provide sufficient data to make required decisions within a reasonable uncertainty

Collected only the minimum amount of necessary data



 Avoid losing time and money, collecting useless data, over-production of uncontaminated waste...

### »Evaluation objectives

#### 2D - Dose mapping

- Worker protection and prioritisation of area to be decontaminated
- **Removal of doubt** step (identification of punctual sources, hot spots, labile or fixed contamination...) and **surface mapping** step

#### **3D** - Categorisation of radiological wastes

- Characterisation of contaminated surfaces / volumes
- Setting up the **operational waste zoning** (radiological thresholds, decontamination support, migration profiles...) and **global estimation** (total activity, scale factors...)

#### **OD - Final control**

- Radiological characterisation of the final state
- Demonstration of **compliance with clearance levels** (statistical conformity tests), then estimation of **residual mean activity** for sanitary impact assessment

# »Sampling strategy

#### Minesweeper



Random

Systematic (regular mesh)



000

Cluster (iterative approach) "0" in minesweeper

Judgement (expertise)



- Looking for hot spots
- Integrating neighbourhood
  - Observation scale
  - Spatial coherence
- Probabilistic schemes



## »Sampling strategies

# Probabilistic approaches



- Statistical considerations of the sampling design (uniform probability of selecting a point)
- Therefore, statistical inferences available for \_\_results interpretation

# Preferential approaches

- Point number and locations resulting from particular constraints or specific evaluation objectives
- Generally, need of expertise advices or preliminary knowledge



#### Hybrid approaches



# »Additional comments

#### Essential dialogue between

- Prime contractor (objective)
- Collecting team (sampling)
- Analyst (data processing)



- Always simultaneous objectives
- Importance of preliminary information about the area to be characterized (historical records, physical characteristics, homogeneous areas...)
- Relevance of an adaptive approach (or iterative)

Sampling strategy and evaluation objectives

Investigation steps for initial radiological characterisation statistics or geostatistics?

Data processing:

Sampling optimisation for initial radiological characterisation

#### Part 2

#### »How to analyse and valuate collected data?



- Give value to collected information
- Data interpretation, analysis and processing
- Quantification of results uncertainties
- Answering the initial evaluation objective?
   → Back to the sampling strategy...

### »Data processing

#### **Removal of doubt**

• Direct comparison to a threshold

#### **Characterisation**

- Numerical modelling
- Geostatistics

#### Decontamination

- Monitoring
- Package characterisation

#### Decommissioning

- Statistical tests
- Sanitary impact



#### Phenomenon that can be modelled

- Mathematical formulae (determinism)
- Physical modelling and simulations
- Parameterisation / calibration (eventually by data)



Source: DAPNIA

Fukushima Source: IRSN

## »Geostatistical approach

- Difficulties to describe (model) / predict the phenomenon
- The model is within the data!

Spatial estimation and related uncertainty



# »Geostatistical approach

- Young science but a well-tried one (since 1950's in the mining industry, then in oil & gas field...)
- Geo + Statistics:
   Statistical processing of spatialised data
   but not only...
- Analysis, mapping and estimation tool
  - Suited to delineate the extension of the contamination: waste zoning assessment
  - Special emphasis on uncertainty quantification (contrary to other "classical" interpolators)
     → Enables risk analyses: decision-making tools, cost/benefit

### »Exploratory data analysis

 Consolidation of the database (errors, different campaigns...)



- First spatial findings (base map)
- Statistical distribution (histogram)
- Similar behaviour (correlation cloud)



»In real life...



# »Describing the spatial continuity

#### Main tool of geostatistics: the variogram

#### Description of the variability between 2 points

- on average, the difference between two CLOSE measures is LOW
- on average, the difference between two DISTANT measures is HIGH

$$\gamma(h) = \frac{1}{2} E[Z(x) - Z(x+h)]^2$$



### »Variograms of three examples





### >Variograms of three examples



### »Variograms of three examples



#### »Variograms of three examples



In real life...







#### Trenches

#### Contaminated soils

Groundwater plume

Increasing of spatial continuity

#### »To sum up geostatistics

#### Exploratory data analysis

- Preliminary stage of geostatistics processing
- Data consolidation (cleaning errors and dealing with heterogeneities) and first spatial and statistical analyses (base map, histogram, correlation...)

#### Spatial structure analysis (variography)

- Analysis and modelling of the phenomenon spatial continuity
- Integration of auxiliary variables to improve further estimates (multivariate, external drift...)

#### Interpolation (kriging estimates)

- Based on the variogram model, mapping of the phenomenon
- Kriging smoothing of the reality

#### Risk analysis (uncertainty)

• Local mapping of the uncertainty

nderstand

- Geometric uncertainty
- High variability areas
- Probability of exceeding a threshold: waste classification
- Global estimates of total surfaces, volumes and accumulation (total activity)



# »Classification / Categorisation

#### Use of probability of exceeding a threshold

- Through a non linear estimation
- Integration of estimation uncertainty



# »Illustration case: Fukushima



#### »Illustration case: Fukushima



Spatial structure



Kriging



Error variance



Probability > 5  $\mu$ Sv/h



 $> 1 \ \mu Sv/h$ 



> 0.5 µSv/h

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

### »Illustration case: Fukushima



Probability > 5 µSv/h



# »Illustration case: Real-time

- On-site for streaming data acquisition connected to a GPS and several measuring devices
  - Quick contamination mapping
  - Real-time monitoring of covered areas
  - Additional investigation positioning
- At the office for:
  - Sampling plan preparation
  - In-depth data analysis
  - Risk evaluation







#### »Illustration case: Real-time



# »Statistical approches



- Compliance with final radiological state
  - Statistical computations
    - Estimation of an average value, a proportion, a confidence interval...
  - Hypothesis testing
    - Compare average to a fixed value (regulatory threshold)
    - Compare average to a reference population (background)
  - Underlying hypotheses
  - Determination of the minimum required number of data
  - Uncertainties related to the result

Sampling strategy and evaluation objectives Data processing: statistics or geostatistics?

Investigation steps for initial radiological characterisation

Sampling optimisation for initial radiological characterisation

#### Part 3

# »What are the investigation steps to assess the initial radiological state?

# »Initial radiological characterisation

- Key issue for the success of decommissioning and dismantling projects
  - Radiological inventory and waste management
  - Decontamination technique selection / worker protection
  - Planning and budgets...





# »Several objectives...

#### Collecting and analysing data to:

- Categorise radiological contamination
  - Scaling factors, activity levels, migration depth, total activity...
  - Operational waste zoning, waste route management optimisation
- Define working conditions and worker protection
  - Fixed / labile contamination, hot spots, worker doses...
- Foresee the final state
  - Cleaning objective, ALARA approach



## »Characterisation methodology



# »Characterisation methodology

#### Sequential characterisation / global approach

- Multivariate geostatistical processing of the dataset
- Reinforcement of the first defence level instead of a case by case approach (S3 classification in French NSA guide 14)
- Characterisation, characterisation, characterisation!

#### • Pitfall to avoid

- Over-categorisation (excess of conservatism)
- Bad surprises (unexpected nuclides or activity levels)
- Sampling optimisation

# »Illustration case:50 years old contaminated soil





Historical context



# »Illustration case:50 years old contaminated soil



# »Illustration case:50 years old contaminated soil



- 2000 m<sup>3</sup> of conventional waste
- 2000 m<sup>3</sup> of VLL waste



### »Uranium conversion plant





Sampling strategy and evaluation objectives Data processing: statistics or geostatistics?

Investigation steps for initial radiological characterisation Sampling optimisation for initial radiological characterisation

#### Part 4

#### »How to optimise the investigations during the initial radiological characterisation?

## »Sampling optimisation

#### **Initial mesh**

- Integration of the historical and functional analysis
- Experience feedback on spatial structures
- Geometric objective: Probability of hitting a target

#### Adding extra measurements

- Taking the risk analysis mapping into account
- Experimental approach and automation (objective function)

#### Sample positioning

- Based on 2D maps (correlation)
- Considerations for the vertical resolution

# »Illustration case: Drum legacy site

#### First French final disposal site

- 80,000 drums on a former uranium mining pithead
- Historical analysis based on numerous records...
- Topographical data + aerial photos









## »Illustration case: Drum legacy site



## »Spatial structure synthesis



 A large amount of sites and buildings (history, surfaces, processes, measurements...)

- Systematic presence of a spatial structure
  - Relevance of geostatistics
  - General trends
    - Main range 2-5 m
    - Limited nugget effect





0

Target Size (m)

0

Mesh Size (m)

# »Initial mesh resolution

#### Statistics and variographic robustness

Impact on estimation map and uncertainty quantification



265 points

100 points

50 points

#### • What is the objective?

Hot spots / Trends / Waste zoning...



#### Impact on global risk analysis

- Variability around the more precise scenario
- Risk curve spreading  $\rightarrow$  uncertainty increase



# »Adding extra measurements

#### Reducing uncertainties

- Iterative approach
- Real time adaptation

- Selection of the criterion to be improved
- Kriging variance

   Under-sampled areas, spatial covering

   Confidence interval

   High variability areas

   Ratio between confidence interval and estimate

   Homogeneous areas and transition zones in high variability areas

   Risk of exceeding a threshold

   Uncertain areas according to the threshold
- Visually or with genetic algorithms

# Risk maps for extra points

Confidence interval



 Misclassification risk (false negative)



#### »A better understanding?



#### Added value of geostatistics

- How to optimise the different sampling campaigns?
- How to precisely assess the initial radiological state before starting the decontamination work?
- How to estimate the waste volumes according to the different routes and the related uncertainties?

# Thank you www.geovariances.com