Topological phase transition between the gap and the gapless superconducting states

A.A. Varlamov^{*1}, Yuriy Yerin¹, and Caterina Petrillo¹

¹CNR-SPIN, CNR-SPIN, via del Fosso del Cavaliere 100, 00133 Rome, Italy

²Dipartimento di Fisica e Geologia, Universita` degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy

It is demonstrated that the quantum phase transition between the gap and gapless superconducting states in the Abrikosov-Gor'kov theory of superconducting alloy with

paramagnetic impurities is of the Lifshitz type, i.e. of the $2^{1}/_{2}$ order. This phase transition has a topological nature and is characterized by the corresponding change of the topological invariant, namely the Euler characteristic. We study the stability of such a transition with respect to the spatial fluctuations of the magnetic impurities critical concentration n_s and show that the requirement for validity of its mean field description is unobtrusive: $\nabla \ln(n_s) \ll \xi^{-1}$ (here ξ is the superconducting coherence length). Finally, we show that, similarly to the Lifshitz point, the $2^{1}/_{2}$ order phase transition should be accompanied by the corresponding singularities, for instance, the superconducting thermoelectric effect has a giant peak exceeding the normal value of the Seebeck coefficient by the ratio of the Fermi energy and the superconducting gap.

Topological evolution of the quasiparticle density of states.