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as T3. We present the theoretical background for, and sum-
marize our progress towards experimentally realizing such 
a novel atom interferometer.

1 Introduction

Phases play an extraordinary role in quantum theory. On 
one hand, they represent the central ingredient of wave 
mechanics à la Schrödinger, and on the other, they build a 
bridge to classical mechanics à la Hamilton–Jacobi [4]. For 
these reasons they constitute a crucial ingredient of mat-
ter-wave interferometers [5–7] which nowadays represent 
standard tools for precision measurements. In this article, 
we propose a new type of atom interferometer whose phase 
scales with the cube of the time T the atom spends in the 
interferometer.

1.1  In a nutshell

In 1927, Kennard [2, 3] showed that a particle exposed 
for a time T to a linear potential accumulates a phase pro-
portional to T3. Since then the Kennard phase has been 
rediscovered by many authors [8–10], especially in the 

Abstract The quantum mechanical propagator of a mas-
sive particle in a linear gravitational potential derived 
already in 1927 by Kennard [2, 3] contains a phase that 
scales with the third power of the time T during which the 
particle experiences the corresponding force. Since in con-
ventional atom interferometers the internal atomic states 
are all exposed to the same acceleration a, this T3-phase 
cancels out and the interferometer phase scales as T2. In 
contrast, by applying an external magnetic field we prepare 
two different accelerations a

1
 and a

2
 for two internal states 

of the atom, which translate themselves into two different 
cubic phases and the resulting interferometer phase scales 
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context [11] of atom interferometry. However, no sugges-
tion for its measurement in this field has been given.

It is interesting that recently an experiment [12] on an 
atom interferometer displaying a cubic phase [13] was 
reported. Our proposal is different in three aspects: (i) We 
obtain a closed interferometer with four rather than three 
pulses, and no momentum transfer from the laser beams 
to the atoms is required. (ii) In contrast to Ref. [12] our 
interferometer relies solely on the application of time-
independent forces, and (iii) the interferometer of Ref. 
[12] leads to a phase shift that is quadratic and cubic in 
T, whereas the one in our device is solely cubic in T, and 
is proportional to the difference of the squares of these 
two constant accelerations.

Our scheme is reminiscent of the Ramsey–Bordé inter-
ferometer [14, 15] and other four-pulse configurations 
frequently employed as gradiometers and gyrometers 
[16–28]. However, we emphasize that in our setup there 
is no exchange of photon momenta.

In atom interferometry cubic phases are not rare. They 
appear for example as corrections due to gravity gradients 
[29–31], but also in the butterfly interferometer which 
is sensitive to rotation [27, 28]. However, again these 
devices rely on the exchange of the photon momentum.

There exist many different techniques to calculate the 
phase shift in an atom interferometer ranging from the 
semi-classical action [11] associated with the Feynman 
path integral [8], via the intriguing formalism of Chris-
tian Bordé based on a five-dimensional theory [7, 32] to 
the use of analogies to neutron optics [33, 34]. Through-
out this article, we pursue a representation-free approach 
based on unitary time evolution operators [28, 35–38] and 
outline our interferometer, evaluate the resulting phase 
shift and review the present status of the experiment.

1.2  At the interface of quantum and gravity

During an impromptu seminar at the NATO Advanced 
Summer Institute at Bad Windsheim in 1981, Eugene 
Paul Wigner expressed his discomfort with general 
relativity [39] in view of quantum mechanics [40]. He 
emphasized that the notion of a space-time trajectory 
which is a crucial element of gravity is incompatible with 
the uncertainty relation of quantum mechanics. Guided 
by the work of Niels Bohr and Leon Rosenfeld on the 
limitations of the electromagnetic field [41, 42] due to 
quantum fluctuations he argued that quantum theory puts 
severe restrictions on the measurement of the metric ten-
sor representing the gravitational field.

Wigner’s thoughts expressed in this seminar were a con-
sequence of his work several decades earlier. Indeed, 
already in 1958 together with Helmut Salecker he had 

constructed a clock [43] based on the reflection of light sig-
nals from two mirrors and had analyzed the restrictions of 
the uncertainty relation on the weight of the mirrors.1

In this context, it is also worth mentioning that H. Sal-
ecker at the Conference on the Role of Gravitation in 
Physics in Chapel Hill in 1957 triggered [45] a discussion 
on the equivalence principle by a gedanken experiment 
involving a stream of particles being scattered off a diffrac-
tion grating. Greenberger [46] a decade later considered a 
similar arrangement and even argued that mass in quantum 
mechanics should be an operator.

The celebrated Colella–Overhauser–Werner (COW) 
experiment [47] performed in 1975 propelled these and 
many other thoughts about the interface of quantum and 
gravity to the real world. Indeed, based on the de Broglie 
wave nature of neutrons [33] the COW experiment could 
measure for the first time the phase shift between two arms 
of a neutron interferometer induced by the gravitational 
potential of the earth [47–49].

The development of new sources of cold atoms [6] as 
well as molecules [50], and in particular, the realization of 
Bose–Einstein condensates [51, 52] has ushered in a new 
era of experiments to probe quantum mechanics and grav-
ity. Indeed, novel tests of the equivalence principle based 
on matter-wave interferometry of different isotopes of the 
same atom [1] such as 85Rb and 87Rb or even different spe-
cies [53] such as 39K and 87Rb could be performed. Even 
the detection of gravitational waves based on atom interfer-
ometry is pursued today [54]. Recently, Ref. [55] suggested 
that gravitational decoherence gives rise to a universal 
decoherence. Moreover, the atom laser [56] utilizes grav-
ity to form an Airy mode. Furthermore, it is mind-boggling 
that nowadays measurements of atomic transitions [57, 58] 
are sensitive to the redshift of the gravitational field.

An extremely interesting development in this realm 
is again taking place in the field of neutron optics due to 
the experimental realization of the quantum bouncer [59, 
60]. Here neutrons exposed to the gravitational field of 
the earth are reflected from a surface and oscillate up and 
down. In particular, they experience a potential consisting 
of the linear ramp and an infinitely steep wall. It is amazing 
that a measurement of the transitions between the resulting 
discrete energy levels can put upper bounds [61] on dark 
energy and dark matter scenarios.

1 John Archibald Wheeler frequently emphasized in conversations 
about this topic and in print [44] that these estimates were too con-
servative. However, to the best of our knowledge they have never 
been improved.
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1.3  Drive for enhanced sensitivity

Hopefully these examples convey the excitement in this 
field of quantum optics and gravity. Notwithstanding the 
fact that we still do not have a complete understanding of 
quantum gravity [62] we have come a long way since the 
early Salecker–Wigner discussions but many questions 
remain. Indeed, goals such as gravitational wave detection 
or a compact gravimeter [63] based on atom optics drive 
the strive for higher sensitivity of these devices.

The Kasevich–Chu atom interferometer [64, 65] is anal-
ogous to the neutron interferometer employed by the COW 
experiment. The Bragg diffraction of the neutron from 
three crystal planes of a silicon slab are replaced by Raman 
diffraction of the atom from three standing light crystals. 
As a result, the phase shift introduced by the gravitational 
potential is quadratic in the time 2T the particle spends in 
the interferometer.

Needless to say a different scaling of the phase shift, for 
example with T3, would be desirable. In the present article, 
we propose such an interferometer and describe our pro-
gress towards realizing it.

Our device rests on three principles: (i) We take advan-
tage of the cubic dependence of the phase in the propagator 
in a linear potential. (ii) We employ two different internal 
states of the atom which experience different time-inde-
pendent accelerations, and (iii) we close the interferometer 
in position and velocity by a sequence of four laser pulses.

1.4  Outline

Our article is organized as follows. Section  2 serves as a 
motivation. Here we recall that the propagator of a particle 
in a linear potential contains a phase which is cubic in time.

In Sect.  3 we introduce our interferometer capable 
of measuring the cubic phase accumulated by a particle 
during its motion in a linear potential provided by a con-
stant gravitational field and a magnetic field gradient. 
The three-level atom probing these fields has two ground 
states associated with two different magnetic moments and 
experiences a sequence of four Raman pulses. To close 
the interferometer in position and velocity, we choose the 
separation of T − 2T − T  between the pulses. The resulting 
probability for the atom to exit the interferometer in one of 
the two ground states is the familiar oscillatory function. 
However, in contrast to standard interferometers its argu-
ment now depends solely on the phase cubic in T and the 
discrete third derivative of the laser phase.

We dedicate Sect. 4 to a comparison of our scheme to 
the Kasevich–Chu interferometer [36, 64–67] and dis-
tinguish the cubic phase shift from the ones caused by 
a gravity gradient or the Continuous-Acceleration Bloch 

(CAB) technique [12]. In Sect.  5 we discuss a possible 
experimental implementation of our proposal. We con-
clude in Sect.  6 by briefly summarizing our results and 
providing an outlook.

To keep our article self-contained but focused on the 
central ideas, we include lengthy calculations in five 
appendices. In Appendix A we show that the Kennard 
phase depends on the initial wave function. However, we 
emphasize that in our arrangement the resulting interfer-
ometer phase which is cubic in time is independent of the 
initial state of the center-of-mass motion. In Appendix 
B we recall the technique of creating coherent superpo-
sitions of the two atomic ground states and interchang-
ing their populations using Raman pulses. We then turn 
in Appendix C to a description of our interferometer as 
a sequence of unitary operators and derive an expression 
for the phase of our T3-interferometer. In Appendix D 
we derive the conditions to close our interferometer and 
obtain in Appendix E an explicit formula for the resulting 
phase. It is interesting that this result also follows from 
the formalism of Refs. [37, 38].

2  From global to interferometer phase

The propagator of a quantum particle experiencing a lin-
ear potential is determined by a phase factor governed 
by the corresponding classical action. Since the relevant 
classical motion involves time in the coordinate and 
velocity in a quadratic and a linear way, both the kinetic 
as well as potential energies bring in time quadratically. 
As a result, the action being the integral over time must 
contain a term proportional to the cube of time. This 
cubic phase which is independent of the coordinate is at 
the center of our interest in the present section.

We first recall the essential features of the propagator 
for the wave function in a linear potential. Here we focus 
especially on this cubic phase. Moreover, in Appendix 
A we show that due to the Huygens principle for matter 
waves the integration over the initial coordinate leads to 
a dependence of this phase on the initial wave function.

Although we find this property interesting we empha-
size that it is of no importance to the present discus-
sion. Indeed, due to the Born rule we cannot measure the 
global phase factor of a single quantum system. However, 
an interferometric measurement of the difference of two 
different global phase factors of two systems is possible. 
Especially, for a closed interferometer in which the phase 
shift does not depend on the initial state also the cubic 
phase is independent [37, 38] of the initial wave function. 
We dedicate the second part of this section to this topic.
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2.1  Emergence of T3‑phase in the propagator

We start our analysis by discussing the propagator of a par-
ticle in a linear potential. Here we emphasize especially the 
emergence of the phase factor cubic in time.

We consider a particle of mass m moving in a linear poten-
tial V(z) ≡ −Fz corresponding to a constant force � ≡ F�z 
directed along the z-axis with the unit vector �z. This problem 
occurs for (1) a particle, which experiences a constant gravi-
tational acceleration g with F ≡ −mg as indicated in Fig. 1a, 
and (2) a charge −e in an ideal capacitor with the constant 
electric field E, for which F ≡ −eE as shown in Fig.  1b. 
Throughout this article we focus on the example of a linear 
gravitational potential.

The wave function

representing the probability amplitude to find the particle at 
the final position zf at time tf is determined by the propaga-
tor [2, 3, 8]

where �(zi, ti) is the value of the wave function at the initial 
position zi and time ti, and ẑ and p̂z denote the position and 
momentum operators, respectively.

The propagator G defined by Eq. (2) can be cast [8] in 
terms of the classical action

(1)�(zf, tf) =

+∞

∫
−∞

G(zf, tf|zi, ti)�(zi, ti)dzi

(2)

G(zf, tf|zi, ti) ≡
⟨
zf
|||| exp

[
−
i

�

(
p̂2
z

2m
− Fẑ

)
(tf − ti)

]||||zi
⟩
,

along the classical trajectory given by

and

Here we have used the Lagrangian

of a particle in a linear potential.
Indeed, the representation

with the normalization

brings out most clearly that G contains the phase

which is independent of the initial and final positions zi and 
zf, and scales with the third power of the time difference

that is the time during which the particle experiences the 
constant force F.

2.2  How to observe the T3‑phase?

The propagator G defined in Eq. (7) contains a global phase 
� given by Eq. (9) which is cubic in time, proportional to 
the square of the constant force F, and inversely propor-
tional to the mass m of the particle. However, due to the 
integration over the initial position in the Huygens integral, 
Eq. (1), this phase depends, as exemplified in Appendix A, 
on the initial wave function. We now briefly outline our 
strategy for measuring this phase and emphasize that for 
our closed interferometer the resulting phase is independent 
of the initial state.

Obviously a setup providing us only with the probability 
density |�(zf, tf)|2 is insensitive to any global phase like the 
T3-phase. Therefore, we need to involve an interferometric 

(3)
Scl(zf, tf|zi, ti) ≡

tf

�
ti

L
(
zcl(t), żcl(t)

)
dt

=
m

2

(zf − zi)
2

tf − ti
+

F

2

(
zf + zi

)
(tf − ti) −

F2

24m
(tf − ti)

3

(4)zcl(t) ≡ zi +
zf − zi

tf − ti
(t − ti) +

F

2m
(t − ti)(t − tf)

(5)żcl(t) ≡ d

dt
zcl(t) =

zf − zi

tf − ti
+

F

m

(
t −

ti + tf

2

)
.

(6)L(z, ż) ≡ m

2
ż2 + Fz

(7)G(zf, tf|zi, ti) = N(tf − ti) exp
[
i

ℏ
Scl(zf, tf|zi, ti)

]

(8)N(�) ≡
√

m

2i�ℏ�

(9)�(�) ≡ −
1

24

F2

ℏm
�3,

(10)� ≡ tf − ti,

(a) (b)

Fig. 1  Two physical systems with a linear potential V(z) ≡ −Fz cor-
responding to a constant force � = F�z directed along the z-axis: a a 
particle of mass m which experiences the constant gravitational accel-
eration g with F ≡ −mg, and b a charge −e in an ideal capacitor with 
the constant and homogeneous electric field E with F ≡ −eE
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measurement either with a path-dependent strength of the 
constant force, or a path-dependent mass of the particle.

Throughout this article we focus on the first alternative 
although we can imagine possibilities2 to utilize the 
dependence of the mass on the internal state. Key elements 
of our technique are: (i) an atom with two internal states 
associated with two different magnetic moments, and (ii) 
an external time-independent magnetic field with a con-
stant gradient along one direction. Due to the Zeeman 
effect, the atom experiences a constant force determined by 
its internal state. It is the same force that acts on a classical 
magnetic dipole in a non-uniform magnetic field.

3  Atom interferometer with four light pulses

In this section, we introduce the two crucial elements 
of our T3-interferometer: (i) the population dynamics of 
the two resonant states of the atom driven by the Raman 
laser pulses, and (ii) the Zeeman shift of the atomic levels 
induced by the external time-independent magnetic field 
with a constant gradient along one direction. The descrip-
tion of our interferometer is based on the representation-
free approach described in Refs. [28, 35, 36].

2 According to Ref. [68] mass and proper time are conjugate vari-
ables and two internal states of the atom correspond [7, 32] to two 
different masses giving rise to an additional phase shift [54] for the 
atom prepared in a superposition state. Although this effect is minute 
the improved scaling of the Kennard phase might help to identify this 
effect.

3.1  Population dynamics

We are now in the position to present our atom interfer-
ometer capable of measuring the cubic phase. The general 
scheme depicted in Fig.  2 consists of two distinct “build-
ing blocks”: (i) four Raman pulses, that is two �

2
- and two 

�-pulses, which form a �
2
− � − � −

�

2
 sequence, and (ii) 

three regions of the atomic center-of-mass motion with 
constant accelerations a1 and a2.

We consider a three-level atom consisting of the ground 
state �g1⟩, the state �g2⟩, and the excited state �e⟩. Here �g1⟩ 
and �g2⟩ are chosen such that the mean values of their mag-
netic moment are different, which leads to a state-depend-
ent acceleration and magnetically induced phase shifts [69, 
70]. The center-of-mass motion of the atom is assumed to 
be along the z-axis, which is the direction of the constant 
gravitational acceleration.

Thus, we arrive at the Hamiltonian

of the three-level atom, where

and

are the identity operators corresponding to the Hilbert 
space of the internal atomic states, and the center-of-mass 

(11)
Ĥat ≡ 13 ⊗

p̂2
z

2m
+ �e⟩⟨e�⊗ �

Ee1z − maeẑ
�

+ �g1⟩⟨g1�⊗
�
Eg1

1z − ma1ẑ
�

+ �g2⟩⟨g2�⊗
�
Eg2

1z − ma2ẑ
�
,

13 ≡ �e⟩⟨e� + �g1⟩⟨g1� + �g2⟩⟨g2�

1z ≡ �
+∞

−∞

dz �z⟩⟨z�

Fig. 2  Space-time diagram of the T3-interferometer for a three-
level atom consisting of the states �g1⟩, �g2⟩, and �e⟩, and interact-
ing with four short Raman laser pulses at t = t0, t = t1 ≡ t0 + T , 

t = t2 ≡ t0 + 3T  and t = t3 ≡ t0 + 4T . The laser frequencies �1 
and �2 are assumed to only drive the transitions �g1⟩ ⟷ �e⟩ and 
�g2⟩ ⟷ �e⟩,  respectively
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motion along the z-axis, respectively. Here Ee, Eg1
, and Eg2

 
are the energies of the atom in the internal states �e⟩, �g1⟩, 
and �g2⟩, respectively, with ae being the constant accelera-
tion corresponding to the excited state.

Each block of our T3-interferometer is described in 
terms of an appropriate unitary operator. As discussed in 
more detail in Appendix B, the atom–light interaction is 
accounted for by the evolution operator

where �L(t) ≡ �2 − �1 is the difference of the phases �1 
and �2 of the two lasers used for the Raman transition and 
� denotes the total pulse area. Moreover, we have assumed 
that each Raman pulse consists of two co-propagating laser 
beams with almost identical wavelengths which makes 
Ûp given by Eq. (12) independent of z. Hence, there is no 
momentum transfer from the light to the atom.

On the other hand, the operator

with a = a1 or a = a2 provides us with the center-of-mass 
motion.

In Appendices C and D we analyze the interferometer 
of Fig.  2 as a sequence of these unitary operators and 
find the expression

for the probability of observing the atoms in the state �g2⟩ 
after the action of the four Raman pulses. According to 
Appendix E, the interferometer phase �i reads

and in Appendix C we derive the formula

for the contribution due to the phases �L of the four laser 
pulses.

We emphasize that this result is independent of the 
initial state of the center-of-mass motion. This property 
of the interferometer phase is in sharp contrast to the 
dependence of global phase of Appendix A correspond-
ing to a single degree of freedom, and is a consequence 
[28, 37, 38] of the fact that our interferometer is closed 
in both position and velocity.

(12)
Ûp(𝜃) ≡ � �g1⟩⟨g1� + �g2⟩⟨g2�

�
cos

�
𝜃

2

�

− i
�
ei𝜙L �g1⟩⟨g2� + e−i𝜙L �g2⟩⟨g1�

�
sin

�
𝜃

2

�
,

(13)Ûa(tf, ti) ≡ exp

[
−
i

�

(
p̂2
z

2m
− maẑ

)
(tf − ti)

]

(14)Pg2
=

1

2

[
1 + cos

(
�i + �L

)]

(15)�i ≡ m

ℏ
(a2

1
− a2

2
)T3,

(16)
�L ≡ �L(t0) − 2�L(t0 + T) + 2�L(t0 + 3T) − �L(t0 + 4T)

3.2  Zeeman effect: control of external degrees 
of freedom

Next, we turn to a possible realization of our interferometer 
scheme, and in particular, of the accelerations a1 and a2. To 
make contact with the experiment discussed in Sect.  5, we 
consider a special case.

For this purpose we focus on the interaction of the atom 
with a time-independent magnetic field having locally the 
form3 

which results in the linear Zeeman shifts

and

of the energies of �g1⟩ and �g2⟩. Here �B, gF1
, gF2

, mF1
, and 

mF2
 denote the Bohr magneton, the Landé g-factors of �g1⟩ 

and �g2⟩, and the magnetic quantum numbers associated 
with the z-component of the angular momentum corre-
sponding to �g1⟩ and �g2⟩.

The homogeneous magnetic field B0 leads to an energy 
shift of the magnetive sensitive states and together with the 
constant gravitational field we arrive at the expressions

and

for the accelerations of the atomic center-of-mass corre-
sponding to �g1⟩ and �g2⟩, respectively.

In our experiment, we use the D2 transition of 85Rb 
and choose �g1⟩ and �g2⟩ from the F = 2 and F = 3 
hyperfine state manifolds. For the atomic transition 
�F1 = 2,mF1

= 1⟩ → �F2 = 3,mF2
= 1⟩ the interferometer 

phase given by Eq. (15) reduces to

3 Throughout the article, we use the notation ∇
z
B
z
≡ �B

z

�z
(� = 0) for 

the derivative of the z-component of the magnetic field � = �(�) 
along the z-direction at the origin � = 0. This derivative is assumed 
to be small compared to B

0
, such that L|∇

z
B
z
| ≪ |B

0
|, where L is the 

total length of the interferometer. Moreover, we note that the form of 
the magnetic field given by Eq. (17) is an approximate one. Indeed, 
according to the Maxwell equation ∇ ⋅ � = 0, which is valid every-
where, a non-zero value of ∇

z
B
z
 induces non-zero values of ∇

x
B
x
 

and ∇
y
B
y
, such that ∇

x
B
x
+ ∇

y
B
y
= −∇

z
B
z
, where B

x
 and B

y
 are the 

components of � along the x- and y-axis. However, in the limit of 
L|∇

z
B
z
| ≪ |B

0
| the magnetic field � given by Eq. (17) is approxi-

mately directed along the z-axis.

(17)�(�) ≅
(
B0 + z∇zBz

)
�z

(18)ΔEZ
g1
= �BgF1

mF1

(
B0 + z∇zBz

)

(19)ΔEZ
g2
= �BgF2

mF2

(
B0 + z∇zBz

)

(20)a1 ≡ −g −
�B

m
gF1

mF1
∇zBz

(21)a2 ≡ −g −
�B

m
gF2

mF2
∇zBz

(22)�i =
4

3

�B

ℏ
∇zBzgT

3 ,
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where we have used the fact [71] that gF2
= −gF1

= 1∕3.

4  Discussion

In the preceding section, we have derived an expression for 
the probability of finding the atom in the state �g2⟩ at one exit 
of our interferometer. In the present section, we compare and 
contrast our device with the Kasevich–Chu interferometer, 
and make contact with other cubic phases such as the ones 
caused by a gravity gradient, or arising in the CAB technique.

4.1  Comparison with Kasevich–Chu interferometer

We first recall the expressions corresponding to Eqs. (14), 
(15) and (16) and then discuss the similarities and differences 
between these two devices. A brief analysis of the respective 
scale factors concludes this comparison.

4.1.1  General considerations

In the Kasevich–Chu interferometer, the probability corre-
sponding to Eq. (14) reads [11, 29, 36, 64, 65, 67]

with the interferometer phase

and the total laser phase

We note four major differences between our scheme and 
that of Kasevich–Chu: (i) The four rather than the three 
Raman pulses create the sum of the two terms appearing in 
the square brackets of Pg2

 given by Eq. (14) rather than the 
difference in P(KC)

g2
 defined by Eq. (23). In the absence of 

any potentials the different pulse sequences correspond to a 
2�-rotation on the Bloch sphere in the case of the Kase-
vich–Chu interferometer, and a 3�-rotation for our T3-inter-
ferometer giving rise to the opposite signs. (ii) The phase �i 
induced by the linear potentials and given by Eq. (15) 
depends on the separation T of the pulses in a cubic rather 
than quadratic way as in �(KC)

i
 expressed by Eq. (24). (iii) 

Co-propagating laser beams together with a constant mag-
netic field gradient lead to a proportionality of �i to ∇zBz as 
reflected by Eq. (22), while in the case of Kasevich–Chu 
the use of counter-propagating laser beams results in a 
momentum transfer of ±ℏ(k1 + k2) which reflects itself in 
�
(KC)

i
. (iv) The total laser phase �L defined by Eq. (16) is a 

discrete third derivative rather than the second one for �(KC)

L
 

given by Eq. (25). Indeed, this feature becomes obvious 

(23)P(KC)
g2

=
1

2

[
1 − cos

(
�
(KC)

i
+ �

(KC)

L

)]

(24)�
(KC)

i
≡ (k1 + k2)gT

2

(25)�
(KC)

L
≡ �L(t0) − 2�L(t0 + T) + �L(t0 + 2T).

when we consider the limit of T → 0, for which 
𝜑L ≅ −2�⃛�L(t0)T

3 while [36, 67] 𝜑(KC)

L
≅ �̈�L(t0)T

2, with 
�⃛�L(t0) and �̈�L(t0) being the third and second continuous 
derivatives of the phase �L = �L(t) of the Raman pulse, 
respectively.

4.1.2  Scale factors and limitations

Next, we turn to a comparison between the scale factors of 
the two interferometers. We first note that the phases �i, 
Eq. (22), and �(KC)

i
, Eq. (24), are both (i) linear proportional 

to the gravitational acceleration g, (ii) independent of the 
atomic mass m, and (iii) determined only by classical quan-
tities, that is Eqs. (22) and (24) do not include the Planck 
constant ℏ. For the latter statement we keep in mind that the 
Bohr magneton �B is linearly dependent on ℏ.

However, we emphasize that the difference in the scale 
factors due to the appearance of the gradient of the mag-
netic field in the phase �i, Eq. (22), rather than the sum of 
the wave vectors in �(KC)

i
, Eq. (24), is crucial for the scale 

factor stability. Indeed, in our experiment discussed in 
more detail in Sect. 5 we have found that the stability of the 
magnetic field as measured by the frequency difference of 
the two transitions �F1 = 2,mF1

= 0⟩ → �F2 = 3,mF2
= 0⟩ 

and �F1 = 2,mF1
= 0⟩ → �F2 = 3,mF2

= 1⟩ did not vary 
more than 0.1 % without sophisticated electronic feedback 
or magnetic shielding. In contrast, the scale factor stability 
of the Kasevich–Chu interferometer can be estimated to be 
1 part in 1010 due to the use of the wave vector of the light. 
Hence, in this respect the Kasevich–Chu interferometer is 
superior compared to our device.

Although our interferometer scales with T3 rather than 
with T2 as the Kasevich–Chu interferometer, �i is larger 
than �(KC)

i
 only for T > 0.23 s with ∇zBz = 600 μT/m and 

k1 + k2 ≈ 1.6 × 107m−1 [72]. Moreover, it is important to 
note that nowadays a beamsplitter with large momentum 
transfer [73, 74] allows to increase �(KC)

i
 by a few orders of 

magnitudes.
In the presence of a magnetic field gradient 

∇zBz = 600 μT/m as measured in our experiment, we have 
one complete oscillation of the excited state population Pg2

, 
Eq. (14), for T ≳ 2.1 ms. However, if the signal-to-noise 
ratio allows it one could see the different dependence on T 
even for short times as demonstrated in Ref. [12].

4.2  Other origins of cubic phases

We now compare and contrast the T3-phase in our interfer-
ometer induced by the propagator of a particle in a linear 
potential to other phases cubic in time. Here we focus on 
two different situations: (i) the presence of a gravity gradi-
ent, or (ii) the application of the CAB technique.
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4.2.1  Gravity gradient

In the presence of a gravity gradient Γ a phase cubic in 
time appears [28–31, 37] in the Kasevich–Chu interfer-
ometer as a consequence of a single quadratic potential

rather than two linear potentials. In particular, it results 
from an expansion of the atomic center-of-mass motion 
in the limit of a weak gravity gradient, that is ΓT2 ≪ 1. 
Indeed, a gravity gradient leads to a position-dependent 
acceleration, while the two linear potentials in our interfer-
ometer lead to a state-dependent acceleration.

Furthermore, we emphasize that the Kasevich–Chu 
interferometer is no longer closed in position and veloc-
ity in the presence of a gravity gradient. This deficiency 
leads to a loss of contrast [37] and a dependence of the 
phase shift on the initial state.

The interferometer can be closed (at least approxi-
mately) by additional laser pulses [17] or by suitably 
adjusting the laser wavelength of the intermediate pulse 

(26)VΓ(z) ≡ mgz +
1

2
mΓz2

[75]. However, this procedure also eliminates the cubic 
contributions to the phase shift, in contrast to the situa-
tion considered here.

4.2.2  Continuous-acceleration-Bloch technique

Our T3-interferometer shares the underlying idea of CAB 
[12, 13], that is applying different accelerations along 
each interferometer arm. However, instead of achieving 
these accelerations via state-dependent linear potentials, 
a beam splitter based on Bragg diffraction is used to load 
one of the two exit ports into an optical lattice, which is 
accelerated subsequently by the use of Bloch oscillations.

While in our scheme we can close the interferom-
eter easily in position and velocity by simply choosing 
the correct timing between the pulses, the CAB scheme 
requires a sophisticated control of the time-dependent 
acceleration of the optical lattice. Moreover, we empha-
size that in contrast to the T3-interferometer, in the CAB 
scheme not only a phase proportional to T3, but also one 
proportional to T2 emerges.

Fig. 3  Experimental setup for the T3-interferometer. Our 85Rb atoms 
emerge from a two-dimensional magneto-optical trap (2D MOT), 
pass through an aperture into the 3D MOT as indicated by the red 
line, and are then launched into a glass tower in a moving molasses 
configuration. The mirrors M1 and M2 reflect the +z and −z beams of 
the 3D MOT, respectively, as well as the two co-propagating Raman 
beams with the parallel circular polarizations, used for the control of 

the internal atomic states. We employ two coils in an anti-Helmholtz 
configuration with currents I1 and I2 to create a magnetic field with 
constant gradient in the z-direction along the glass tower. A solenoid 
not depicted here surrounds the tower to provide an additional nom-
inally uniform magnetic field. The lens L1 collects the fluorescence 
from the tossed atoms at the top of the tower and focuses this light 
onto a photomultiplier (PMT)
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5  Towards an experimental realization

In this section, we discuss a possible experimental imple-
mentation of our proposal for a T3-interferometer based 
on our current laboratory apparatus depicted in Fig. 3. We 
first summarize the key features of our setup, describe our 
method to deduce the magnetic fields from the observed 
Raman spectra, and conclude by briefly analyzing the 
present limitation of our device due to decoherence.

5.1  Experimental setup

We use the D2 transition of 85Rb and choose �g1⟩ and �g2⟩ 
from the F = 2 and F = 3 hyperfine state manifolds with 
a frequency separation of approximately 3 GHz [76]. 
The atoms are loaded into a three-dimensional magneto-
optical trap (3D MOT) emerging from a two-dimensional 
trap (2D MOT) as shown in Fig.  3. The 3D MOT con-
sists of standard cooling and repump beams as well as 
magnetic coils. We rely on an all-glass chamber as our 
vacuum system.

After 1 s of loading to obtain a sufficient signal-to-
noise ratio, the atoms are launched upwards along the 
z-axis in a moving optical molasses configuration with a 
velocity of approximately 3 m/s such that they strike the 
top of a 10 cm tall glass tower. It takes the atoms between 
20 and 40 ms to reach this point depending on the launch 
velocity which can be adjusted by the voltage of the 
launch signal. We emphasize that the top of the tower 
does not coincide with the apex of the trajectory.

After launch, the atoms are freely moving in the dark 
and we are able to apply a single or several Raman pulses 
involving two co-propagating laser beams along the 

z-axis with the same circular polarization. During their 
motion the atoms interact with a magnetic field which 
varies linearly along the z-axis due to coils in an anti-
Helmholtz configuration which are not the ones used to 
trap the atoms. Moreover, they feel the field of a solenoid 
of finite length not depicted in Fig.  3 surrounding the 
glass tower. The ability to change the current indepen-
dently in each of the gradient coils and the solenoid pro-
vides us with the control of the location of the zero cross-
ing of the magnetic field, or an effective way to adjust the 
bias field.

On the top of the tower a photomultiplier tube (PMT) 
detector performs a projective measurement of the popula-
tion in the state �g2⟩ by collecting the fluorescence emitted 
by the atoms caused by the vertical trapping beams, that is 
the +z and −z beams, which are switched back on for the 
measurement. Observing the atomic population always at 
the top of the tower provides us with a convenient way of 
varying the position where the Raman pulse is applied to 
the atoms along their flight path.

5.2  Raman spectrum

With this setup we can map out the magnetic field along 
the atom trajectory by measuring Raman spectra of the type 
shown in Fig.  4. For this purpose we first use an optical 
pumping stage to transfer all atoms to the ground state �g1⟩, 
that is the state with F = 2. Then we apply a Raman light 
pulse whose intensity and duration are chosen to be close 
to a zero-detuning �-pulse. We have found that this condi-
tion is satisfied for a pulse duration of 25–100 μs, using our 
typical total Raman power of approximately 80 mW in a 
beam of diameter 2.5 cm and a single photon detuning of 
1–2 GHz. Finally, we observe the number of atoms trans-
ferred from �g1⟩ to �g2⟩, that is the state with F = 3.

Fig. 4  Typical Raman spec-
trum containing the transitions 
between the states of the F = 2 
and F = 3 manifolds for an 
arbitrarily aligned magnetic 
field in their dependence on the 
two-photon detuning Δ̃ defined 
by Eq. (27) with respect to 
the clock transition, for which 
resonance occurs at Δ̃ = 0. We 
observe 11 resonances cor-
responding to 5 or 6 transitions 
with ΔmF = 0 or ΔmF = ±1,

respectively. Transitions with 
ΔmF = ±2 are heavily sup-
pressed [76, 77]
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In this manner, we obtain Raman spectra such as the one 
presented in Fig. 4, that is the population of �g2⟩ versus the 
two-photon detuning

of the Raman pulse of the frequencies �1 
and �2 with respect to the “clock” transition 
�F1 = 2,mF1

= 0⟩ → �F2 = 3,mF2
= 0⟩, for which the reso-

nance occurs at Δ̃ = 0. Here EF,mF
 denotes the energy of the 

hyperfine state.
For a magnetic field pointing in an arbitrary direction, the 

observed Raman spectrum displays up to 11 peaks, that is 
5 peaks for ΔmF = 0 transitions and 6 peaks for ΔmF = ±1 
transitions, where ΔmF ≡ mF,2 − mF,1 is the change of the 
magnetic quantum number. For a magnetic field directed 
along the z-axis as required for the T3-experiment, transitions 
with ΔmF = ±1 are suppressed in our experimental setup 
[76, 77].

5.3  Magnetic field measurement

The position of the relative two-photon resonance in the 
Raman spectrum corresponding to the magnetically sensitive 
transition �F1,mF1

⟩ → �F2,mF2
⟩ is determined by the first-

order Zeeman shift

in frequency, where B(z) is the value of the magnetic field 
at the center-of-mass coordinate z of the atom cloud during 
the interaction with the Raman pulse.

Using the +2 transition, that is 
�F1 = 2,mF1

= 1⟩ → �F2 = 3,mF2
= 1⟩, as indicated in 

(27)Δ̃ ≡ E3,0 − E2,0

�
+ 𝜔2 − 𝜔1

(28)Δ̃
F2,mF2

F1,mF1

≡ 𝜇B

2𝜋�

(
gF2

mF2
− gF1

mF1

)
B(z)

Fig. 4, we determine from the Zeeman shift, Eq. (28), the 
magnetic field4 

where we have used the fact [71] that mF2
= mF1

= 1 and 
gF2

= −gF1
= 1∕3. It is the opposite signs of gF2

 and gF1
 that 

result in the non-degenerate spectrum.
By measuring the resonance frequencies correspond-

ing to the clock and first (or second) peak in the Raman 
spectrum, we automatically correct for any possible drift in 
the AC Stark shift caused by a drift in the intensity or fre-
quency of the Raman fields.

We map out the magnetic field experienced by the atoms 
as a function of their location within the tower, by repeated 
launching them and applying a Raman pulse at different 
times after their launch. The corresponding location z of 
the atom cloud is determined beforehand by time-of-flight 
photography.

Figure  5 presents the measured magnetic field with a 
gradient of approximately 600 μT/m generated by a current 
of 90 mA in the gradient coils and 40 mA in the solenoid.

5.4  Imperfect pulses and decoherence

Our proposal for a T3-interferometer presented in the pre-
ceding sections assumes that the Raman pulses applied 
to the atoms are perfect �

2
- and �-pulses. By definition, 

such pulses can occur only when the Raman fields are in 
a two-photon resonance. Since this resonance shifts as the 
atoms travel up the tower, a rapid detuning of the relative 

4 Only relative positions and magnitudes of the different peaks in the 
Raman spectrum allow us to determine the different components of 
the magnetic field [76].

(29)B(z) = 0.11Δ̃3,1
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Fig. 5  Measurement of the magnetic field gradient along the verti-
cal direction in the glass tower. A linear regression of our data points 
deduced from the Raman spectra with the help of Eq. (29) yields the 
magnetic field B(z) = (83.5–587 m−1 z) μT along the tower and cor-
responds to a magnetic field gradient of approximately 600 μT/m. 

The inset shows the residuals of the linear fit. For this measurement 
we have used the frequency difference between the clock and the +2 
transition induced by the Zeeman effect. The magnetic field is gener-
ated by currents of 90 mA for the gradient coils and 40 mA for the 
solenoid
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frequency of the Raman fields is necessary. Fortunately, we 
have been able to achieve this task using a combination of 
a high-frequency acousto-optic modulator and digital fre-
quency synthesizer, thereby keeping the atoms in resonance 
during their flight [78].

Unfortunately, a more severe restriction is decoherence 
and at the moment we identify three culprits: (i) magnetic 
field noise, (ii) a non-linear dependence of the magnetic 
field on z, and (iii) non-zero components of the magnetic 
field along the x- and y-axis.

The upper bound of the magnetic field noise in our 
setup has been observed to be 50 nT leading to a noise in 
the magnetic field gradient of about 1 μT/m. The non-linear 
terms in the dependence of the magnetic field on z lead to 
an open geometry of our T3-interferometer, and therefore to 
a loss of contrast [37].

Enforced by the Maxwell equations, the non-zero com-
ponents of the magnetic field in the x- and y-direction result 
in (i) a three-dimensional rather than a one-dimensional 
center-of-mass motion of the atom, and (ii) incoherent 
dynamics of the atomic states involved.

We are currently working on finding an optimal arrange-
ment for the magnetic field and perform numerical simula-
tions of our T3-interferometer.

6  Summary and outlook

In the present article, we have proposed an atom inter-
ferometer that is sensitive to the quantum mechanical T3-
phase emerging in the propagator of a particle in a linear 
potential. For this purpose we have considered an atom 
with two magnetic sensitive internal states being exposed 
to a constant gravitational field as well as a magnetic field 
with a constant gradient. By applying a sequence of four 
co-propagating Raman pulses, the atom interferometer can 
be closed in position and velocity. The resulting interfer-
ometer phase �i displays the cubic scaling in T but also 
depends on the gravitational acceleration and the magnetic 
field gradient.

We have compared and contrasted this cubic term to 
the one appearing in the phase of the Kasevich–Chu inter-
ferometer in the presence of a gravity gradient, and to the 
one obtained using the CAB technique. Furthermore, we 
have outlined a possible experimental realization of our 
interferometer.

Cubic phases appear frequently in quantum physics 
and give rise to mind-boggling effects. For example, the 
energy wave function of a linear potential is given by the 
Airy function [79] whose standard integral representa-
tion involves a cubic phase. This term emerges from the 

eigenvalue equation in momentum space due to the inte-
gration of the kinetic energy which is quadratic in the 
momentum.

When we suddenly turn-off the potential the so-created 
Airy wave packet accelerates and its probability density 
keeps its shape [80] during the free propagation. Deeper 
insight [66] into this surprising phenomenon springs from 
Wigner phase space [81] and the fact that the Wigner func-
tion of the Airy wave packet is again an Airy function.

Closely related to the cubic phase in the Airy integral 
and the dispersionless free propagation of the Airy wave 
packet is the oscillatory probability density created by a 
point source [9] located in a linear potential and continu-
ously emitting particles into all three space directions with 
an identical speed. These oscillations appearing in the 
plane orthogonal to the gravitational force are a conse-
quence of the interference between two classical trajecto-
ries of different inclinations. The knowledge of the two dis-
tinct paths encoded in the different arrival times is erased 
by the continuous stream of particles. Again the origin of 
this particular interference pattern can be traced back to the 
cubic phase in the Green’s function.

Due to the analogy between the constant gravitational 
field and the constant electric field between two plates of 
a capacitor discussed in the beginning of this article one 
might wonder if it is possible to construct a similar charged 
particle fountain. Indeed, in the case of electrons in a uni-
form electric field such type of fountain has already been 
realized in photoionization and photodetachment micro-
scopes [82–84].

It would be fascinating to illuminate the similarities and 
differences between these three examples of cubic phases 
and our T3-interferometer. Unfortunately, this task goes 
beyond the scope of the present article and has to be post-
poned to future publications.
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Appendix A: Dependence of T3‑phase on initial 
wave function

According to Sect.  2.1 the cubic phase � in the propaga-
tor of a quantum particle moving in a linear potential mani-
fests itself in every wave function exposed to this situation. 
Indeed, since � is independent of the initial coordinate zi 
it can be factored out of the Huygens integral for matter 
waves, Eq. (1).

Nevertheless, the integration of the remaining parts of 
the propagator in combination with the initial wave func-
tion can change the dependence of the phase of the final 
wave function on the propagation time � = tf − ti. To bring 
out this fact most clearly we consider the normalized initial 
wave function

in the form of a real-valued Gaussian of width Δz0 and 
note that wave functions of this kind can be easily realized 
nowadays in an experiment with cold atoms in a harmonic 
potential trap.

When we substitute this expression into the Huygens 
integral of matter waves, Eq. (1), and use the expressions, 
Eqs. (3) and (7), for the propagator we arrive at the final 
wave function

with the time-dependent width

and phase

Here

denotes the spreading time of the wave packet.
We combine the terms in Eq. (33), which are deter-

mined by the strength F of the force and independent of 
the final position zf, and find the total phase

(30)�(zi, ti) ≡ 1�√
�Δz0

�1∕2
exp

�
−

z2
i

2Δz2
0

�

(31)

�(zf, tf) =
1�√

�Δz(�)
�1∕2 exp

⎧⎪⎨⎪⎩
−

�
zf −

F

2m
�2
�2

2[Δz(�)]2
+ i�

⎫⎪⎬⎪⎭

(32)Δz(�) ≡ Δz0

√
1 +

�2

�2
s

(33)

�(�) ≡ Fzf�

ℏ
+

�

�s

(
zf −

F

2m
�2
)2

2[Δz(�)]2
−

F2�3

6ℏm
−

1

2
arctan

(
�

�s

)
.

(34)�s ≡ mΔz2
0

ℏ

Here we have introduced the time-dependent numerical 
factor

depending on the dimensionless ratio � of time difference 
�, Eq. (10), and spreading time �s, which according to Eq. 
(34) is proportional to square of the initial width Δz0.

For a plane wave we find Δz0 → ∞, and thus �s → ∞ 
leading us to

However, for an infinitely narrow Gaussian with Δz0 → 0, 
and thus �s → 0, we obtain

So far we have restricted ourselves to the extreme limits of 
�. Only in the domains where � is approximately constant 
do we find a pure cubic phase dependence on �. Indeed, 
between the extremes the time dependence is more compli-
cated as expressed in Fig. 6.

Appendix B: Raman pulses: superpositions 
and exchanges

In this Appendix, we describe the population dynamics 
[36, 64, 65] of the two resonant atomic states driven by the 

(35)�̃�(𝜏) ≡ −𝛼

(
𝜏

𝜏s

)
F2

�m
𝜏3.

(36)�(�) ≡ 1

24

�2 + 4

�2 + 1

(37)�(� → 0) =
1

6
.

(38)�(� → ∞) =
1

24
.

Fig. 6  Dependence of the numerical factor � = �(�) defined by Eq. 
(36) on the dimensionless ratio � of the time difference � and spread-
ing time �s given by Eqs. (10) and (34), respectively. For � → 0 and 
� → ∞ the factor � is almost constant and given by 1 / 6 and 1 / 24 
(dashed line), respectively. However, for values of � between these 
extremes � changes rapidly and thus in this transition domain the 
phase �̃� = �̃�(𝜏), Eq. (35), is not strictly cubic.
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Raman laser pulses. For this purpose we consider the inter-
action between a three-level atom and two laser pulses of 
the form

and

where  j, kj, �j, and �j with j = 1, 2 denote the time-
dependent envelope, frequency, wave vector, and phase of 
the jth field, respectively.

The laser frequencies �1 and �2 are assumed to only 
drive the transitions �g1⟩ ⟷ �e⟩ and �g2⟩ ⟷ �e⟩, respec-
tively. Moreover, we assume that the laser pulses are so 
short that the atom does not move significantly during the 
interaction. Therefore, the position of the center-of-mass of 
the atom is considered to be fixed during the laser pulses.

Within the rotating-wave approximation [81] and in the 
limit of far-detuned laser pulses with identical detunings, 
that is when the Rabi frequencies Ωj(t) ≡ �gje

⋅  j(t)∕ℏ of 

the transitions �gj⟩ ⟷ �e⟩ are much smaller than the detun-
ing Δj ≡ �j − �egj

 of the two laser pulses, |Δj| ≫ |Ωj|, and 

Δ ≡ Δ1 = Δ2, we can eliminate the excited state �e⟩ and 
neglect the Stark shifts |Ωj(t)|2∕(4Δ). The resulting effec-
tive Hamiltonian [36]

describes the transitions between the states �g1⟩ and �g2⟩ due 
to the Raman pulses. Here �gje

≡ ⟨gj���e⟩ and 

�egj
≡ (Ee − Egj

)∕ℏ are the dipole moment matrix element 

and the frequency of the transition �gj⟩ ⟷ �e⟩, respec-
tively, with Δk ≡ k2 − k1 and the slowly varying laser phase 
�L(t) ≡ �2 − �1.

To avoid a momentum transfer during the Raman transi-
tions, we assume that the laser pulses propagate in the same 
directions along the z-axis, Eq. (39), and that the difference 
Δk of the two wave vectors is small compared to the size �z 
of the atomic wave packet, that is |Δk|𝛿z ≪ 1. In this case 
the dependence on z in Eq. (40) can be neglected and we 
arrive at

The interaction of the atom with the two far-detuned 
Raman pulses, corresponding to Eq. (39), during the time 
interval ti < t < tf, and with Ωj(ti) = Ωj(tf) = 0, is given by 
the evolution operator [36]

�1(z, t) ≡ 1(t) cos
(
k1z − �1t + �1

)

(39)�2(z, t) ≡ 2(t) cos
(
k2z − �2t + �2

)
,

(40)
Ĥp = �

Ω1(t)Ω2(t)

4Δ

�
ei[Δkz+𝜙L]�g1⟩⟨g2�

+ e−i[Δkz+𝜙L]�g2⟩⟨g1�
�

(41)Ĥp ≅ �
Ω1(t)Ω2(t)

4Δ

�
ei𝜙L �g1⟩⟨g2� + e−i𝜙L �g2⟩⟨g1�

�
.

which can be expressed as

where

denotes the total pulse area.
The case � =

�

2
, which is a �

2
-pulse, gives rise [67] to the 

coherent superpositions

and

In contrast, the case � = �, known as a �-pulse describes an 
exchange

and

of the level populations.

Appendix C: Interferometer: sequence of unitary 
operators

Unitary operators describe both the interaction of the atom 
with the four Raman pulses and the time evolution associ-
ated with the center-of-mass motion. In the present Appen-
dix, we derive the complete quantum state of the atom con-
sisting of the internal states as well as the center-of-mass in 
the two exit ports of our interferometer following the pro-
cedure outlined in Refs. [28, 36, 67].

The dynamics in our interferometer consists of the fol-
lowing steps:

(42)

Ûp ≡ 1 +
(
−
i

�

) tf

�
ti

dtĤp(t)

+
(
−
i

�

)2
tf

�
ti

dt

t

�
ti

dt�Ĥp(t)Ĥp(t
�) +… ,

(43)
Ûp(𝜃) =

� �g1⟩⟨g1� + �g2⟩⟨g2�
�
cos

�
𝜃

2

�

− i
�
ei𝜙L �g1⟩⟨g2� + e−i𝜙L �g2⟩⟨g1�

�
sin

�
𝜃

2

�
,

(44)� ≡ 1

2Δ

tf

�
ti

dtΩ1(t)Ω2(t)

Ûp

�
𝜋

4

�
�g1⟩ = 1√

2

��g1⟩ − ie−i𝜙L �g2⟩
�

(45)Ûp

�
𝜋

4

�
�g2⟩ = 1√

2

��g2⟩ − iei𝜙L �g1⟩
�
.

Ûp

�
𝜋

2

�
�g1⟩ = −ie−i𝜙L �g2⟩

(46)Ûp

�
𝜋

2

�
�g2⟩ = −iei𝜙L �g1⟩
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1. Before the first �
2
-pulse, at t = t0 − �, the initial state 

 consists of the center-of-mass motion ��0⟩ and the 
internal state �g1⟩. Here and throughout this Appendix � 
is an infinitesimally small and positive number.

2. After the first �
2
-pulse at t = t0 + �, the state reads 

 where we have used Eq. (45).
3. Before the first �-pulse at t = t1 − �, we find 

4. After the first �-pulse at t = t1 + �, we obtain 

5. Before the second �-pulse at t = t2 − �, the state takes 
the form 

6. After the second �-pulse at t = t2 + �, we arrive at the 
state 

(47)�Ψ(t0 − �)⟩ ≡ �g1⟩��0⟩

(48)

�Ψ(t0 + 𝜀)⟩ = Ûp

�
𝜋

4

�
�Ψ(t0 − 𝜀)⟩

=

�
1√
2
�g1⟩ − i√

2
e−i𝜙L(t0)�g2⟩

�
�𝜓0⟩,

(49)

�Ψ(t1 − 𝜀)⟩ = Ûa

�
t1, t0

��Ψ(t0 + 𝜀)⟩
=

1√
2
�g1⟩Ûa1

(t1, t0)�𝜓0⟩

−
i√
2
e−i𝜙L(t0)�g2⟩Ûa2

(t1, t0)�𝜓0⟩.

(50)

�Ψ(t1 + 𝜀)⟩ = Ûp

�
𝜋

2

�
�Ψ(t1 − 𝜀)⟩

= −
i√
2
e−i𝜙L(t1)�g2⟩Ûa1

(t1, t0)�𝜓0⟩

−
1√
2
e−i[𝜙L(t0)−𝜙L(t1)]�g1⟩Ûa2

(t1, t0)�𝜓0⟩.

(51)

�Ψ(t
2
− 𝜀)⟩ = Ûa(t2, t1)�Ψ(t1 + 𝜀)⟩

= −
i√
2

e−i𝜙L
(t
1
)�g

2
⟩Ûa

2
(t
2
, t
1
)Ûa

1
(t
1
, t
0
)�𝜓

0
⟩

−
1√
2

e−i[𝜙L
(t
0
)−𝜙

L
(t
1
)]�g

1
⟩Ûa

1
(t
2
, t
1
)Ûa

2
(t
1
, t
0
)�𝜓

0
⟩.

(52)

�Ψ(t2 + 𝜀)⟩ = Ûp

�
𝜋

2

�
�Ψ(t2 − 𝜀)⟩

= −
1√
2

e−i[𝜙L(t1)−𝜙L(t2)]�g1⟩Ûa2
(t2, t1)Ûa1

(t1, t0)�𝜓0⟩

+
i√
2

e−i[𝜙L(t0)−𝜙L(t1)+𝜙L(t2)]

× �g2⟩Ûa1
(t2, t1)Ûa2

(t1, t0)�𝜓0⟩.

7. Before the second �
2
-pulse at t = t3 − �, the state reads 

8. Finally, after the second �
2
-pulse at t = t3 + �, we con-

clude with the state 

 where 

 and 

are the unitary evolution operators associated with 
the center-of-mass motion for the lower and the upper 
paths of the interferometer shown in Fig. 2, and 

 is the total phase resulting from the action of the four 
laser pulses.

Appendix D: Conditions for a closed T3

‑interferometer

In the preceding Appendix, we have derived an expression 
for the complete quantum state of the atom in the exit ports of 
the interferometer. Here we have allowed arbitrary times for 
the interactions with the laser pulses. In the present Appen-
dix, we choose these times in such a way as to maximize the 
contrast.

The probability Pg1
 to observe atoms in the ground state 

�g1⟩ after the action of the four Raman pulses at t = t3 + �, 
follows from the quantum state �Ψ(t3 + �)⟩ given by Eq. (54) 
and contains the state

(53)

�Ψ(t3 − 𝜀)⟩ = Ûa(t3, t2)�Ψ(t2 + 𝜀)⟩
= −

1√
2
e−i[𝜙L(t1)−𝜙L(t2)]

× �g1⟩Ûa1
(t3, t2)Ûa2

(t2, t1)Ûa1
(t1, t0)�𝜓0⟩

+
i√
2
e−i[𝜙L(t0)−𝜙L(t1)+𝜙L(t2)]

× �g2⟩Ûa2
(t3, t2)Ûa1

(t2, t1)Ûa2
(t1, t0)�𝜓0⟩.

(54)

�Ψ(t3 + 𝜀)⟩ = Ûp

�
𝜋

4

�
�Ψ(t3 − 𝜀)⟩

=
1

2
e−i[𝜙L(t1)−𝜙L(t2)]�g1⟩

�
e−i𝜑L Ûu − Ûl

��𝜓0⟩

+
i

2
e−i[𝜙L(t1)−𝜙L(t2)+𝜙L(t3)]�g2⟩

�
e−i𝜑L Ûu + Ûl

��𝜓0⟩,

Ûl ≡ Ûa1
(t3, t2)Ûa2

(t2, t1)Ûa1
(t1, t0)

(55)Ûu ≡ Ûa2
(t3, t2)Ûa1

(t2, t1)Ûa2
(t1, t0)

(56)�L ≡ �L(t0) − 2�L(t1) + 2�L(t2) − �L(t3)

(57)��g1
⟩ ≡ ⟨g1�Ψ(t3 + �)⟩
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of the center-of-mass motion of atom in �g1⟩. It takes the 
form

where the contrast C and the phase �i of the interferometer 
are the modulus and the argument of the matrix element

We maximize C, that is we have C = 1, when we close our 
interferometer. In this case Pg1

 given by Eq. (58) is inde-
pendent of the initial velocity and position of the atom.

To close the interferometer we have to find the time inter-
vals tj+1,j ≡ tj+1 − tj with j = 0, 1, 2 between the Raman 
pulses shown in Fig.  2, such that the final velocities vu(t3) 
and vl(t3), as well as the final positions zu(t3) and zl(t3) on the 
upper and lower paths of the interferometer are identical.

Indeed, for the velocity we derive the following formulae:

(i) for the upper path 

(ii) for the lower path 

As a result, the interferometer is closed in velocity space, if 
vu(t3) = vl(t3), that is,

or, equivalently,

As for the position, we obtain the following rather lengthy 
expressions:

(i) for the upper path 

(58)Pg1
≡ ⟨�g1

��g1
⟩ = 1

2

�
1 − C cos

�
�i + �L

��
,

(59)⟨𝜓0�Û†
u
Û

l
�𝜓0⟩ ≡ Cei𝜑i .

v0 → vu(t1) = v0 + a2t10

→ vu(t2) = vu(t1) + a1t21

→ vu(t3) = vu(t2) + a2t32

v0 → vl(t1) = v0 + a1t10

→ vl(t2) = vl(t1) + a2t21

→ vl(t3) = vl(t2) + a1t32.

v0 + a2t10 + a1t21 + a2t32

= v0 + a1t10 + a2t21 + a1t32,

(60)t10 − t21 + t32 = 0.

z0 → zu(t1) = z0 + v0t10 +
1

2
a2t

2
10

→ zu(t2) = zu(t1) + vu(t1)t21 +
1

2
a1t

2
21

→ zu(t3) = zu(t2) + vu(t2)t32 +
1

2
a2t

2
32

= z0 + v0(t10 + t21 + t32) +
1

2
(a2t

2
10
+ a1t

2
21
+ a2t

2
32
)

+ a2t10(t21 + t32) + a1t21t32,

(ii) for the lower path 

As a result, the interferometer is closed in position space if 
zu(t3) = zl(t3), that is,

When we solve the system of the two algebraic Eqs. (60) 
and (61), for t21 and t32 in terms of t10, we obtain

Hence, to close the interferometer, the four Raman pulses 
must be separated in time by T, 2T, and T as indicated in 
Fig. 2.

Appemdix E: Interferometer phase

In the preceding Appendix, we have used classical trajec-
tories to find the separation T − 2T − T  between the four 
Raman pulses leading to a closed interferometer. We now 
show that in this case the product Û†

u
Ûl of the evolution 

operators Ûl and Ûu defined by Eq. (55) is proportional [28, 
37, 67] to the identity operator, that is

where �i is the interferometer phase.
Therefore, a normalized state ��0⟩ leads by virtue of Eq. 

(59) to a perfect contrast, that is C = 1, indicating that the 
interferometer is independent of ��0⟩. Moreover, this calcu-
lation provides us with an explicit expression for �i.

To evaluate the evolution operator

for the lower path of our interferometer, shown in Fig.  2, 
we use the Baker–Campbell–Hausdorff and Zassenhaus 
formulas [85] to represent the operator Ûa(T) given by Eq. 
(13) in the form of a product

z0 → zl(t1) = z0 + v0t10 +
1

2
a1t

2
10

→ zl(t2) = zl(t1) + vl(t1)t21 +
1

2
a2t

2
21

→ zl(t3) = zl(t2) + vl(t2)t32 +
1

2
a1t

2
32

= z0 + v0(t10 + t21 + t32) +
1

2
(a1t

2
10
+ a2t

2
21
+ a1t

2
32
)

+ a1t10(t21 + t32) + a2t21t32.

(61)t2
10
− t2

21
+ t2

32
+ 2t10(t21 + t32) − 2t21t32 = 0.

(62)t3 − t2 = t1 − t0 = T and t2 − t1 = 2T .

(63)Û†
u
Û

l
= ei𝜑i 1,

(64)Û
l
≡ Ûa1

(T)Ûa2
(2T)Ûa1

(T)

(65)Ûa(T) = exp

(
i
ma2T3

12�

)
̂(

1

2
aT2,maT

)
Û0(T)
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consisting of a phase factor, the displacement operator

and the unitary operator

of a free particle.
The decomposition, Eq. (65), allows us to rewrite Eq. 

(64) as

With the help of the commutation relation

and the addition identity

for the operators ̂ and Û given by Eqs. (66) and (67), we 
can shift all free-evolution operators Û0 in Eq. (68) to the 
right and we arrive at

or

In the last step we have made use of the addition identity

with

to combine all three displacement operators into a single 
one.

Since the evolution operator Û
u
 defined by Eq. (55) for 

the upper path of our interferometer follows directly from 
the operator Û

l
 given by Eq. (69) for the lower path by an 

exchange of the accelerations a1 and a2, we arrive at

(66)̂(Z,P) ≡ exp
[
−
i

�

(
Zp̂z − Pẑ

)]
,

(67)Û0(T) ≡ exp

(
−
i

�

p̂2
z

2m
T

)

(68)

Û
l
= exp

[
i
m(a2

1
+ 4a2

2
)

6�
T3

]
̂(

1

2
a1T

2,ma1T
)
Û0(T)

× ̂(
2a2T

2, 2ma2T
)
Û0(2T)̂

(
1

2
a1T

2,ma1T
)
Û0(T).

Û0(T)̂(Z,P) = ̂(
Z +

P

m
T ,P

)
Û0(T)

Û0(T1)Û0(T2) = Û0(T1 + T2)

Û
l
= exp

[
i
m(a2

1
+ 4a2

2
)

6�
T3

]
̂(

1

2
a1T

2,ma1T
)

×̂(
4a2T

2, 2ma2T
)̂(

7

2
a1T

2,ma1T
)
Û0(4T),

(69)
Û

l
= exp

[
i
mT3

3�

(
5a2

1
+ 9a1a2 + 2a2

2

)]

× ̂(
4(a1 + a2)T

2, 2m(a1 + a2)T
)
Û0(4T).

̂(
Z1,P1

)̂(
Z2,P2

)
= ei�̃�̂(

Z1 + Z2,P1 + P2

)

�̃� ≡ 1

2�

(
P1Z2 − P2Z1

)
,

When we substitute Eqs. (69) and (70) into the left-hand 
side of Eq. (63) and use the property that the operators ̂ 
and Û0 are unitary, the interferometer phase reads

Hence, �i is independent of the initial position z0 and veloc-
ity v0 as well as of the initial state. Moreover, it scales with 
the third power of the time interval T ≡ t1 − t0 between the 
first and the second Raman pulses.
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