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Mattewaves are promising candidates for the realization of extremely sensitive sensors. Some 
of the most sensitive and precise measurements to date of gravity[1],  inertia[2],  and rotation[3]  
are based on matter-wave interferometry with free-falling atomic clouds. A critical requirement 
to achieve very high sensitivities is the long interrogation time, which consequently leads to 
experimental apparatus up to a hundred meters tall or the requirement for experiments to be 
performed in microgravity in space[4—7].  To tackle this problem, the gravitational 
acceleration must be cancelled, e.g. by manipulating atomic waves in time-changeable traps 
and waveguides [8]. 
We have recently demonstrated smooth and controllable matter-wave guides by transporting 
Bose-Einstein condensates (BECs) over macroscopic distances without any heating or 
decohering their internal quantum states [9]. A neutral-atom accelerator ring was utilized to 
bring BECs to very high speeds (up to 16 times their sound velocity) and transport them in a 
magnetic matter-wave guide for 15 centimetres whilst fully preserving their internal coherence. 
We then use a magnetogravitational matter-wave lens to collimate and focus matterwaves in 
ring-shaped time-averaged adiabatic potentials. This “Delta-kick cooling” sequence of Bose-
Einstein condensates reduces their expansion energies by a factor of 46 down to 800 pK. 
Compared to the state-of-the-art experiments, requiring zero gravity or large free-flight 
distances, the ring-shaped atomtronic circuit has a diameter of less than one millimetre and 
exhibits a high level of control, providing an important step toward atomtronic quantum sensors 
and the investigation of very low energy effects in ultra-cold atoms. 

 

 
 

Figure: The focus of a BEC in a matter wave guide based  
on Time-Averaged Adiabatic Potentials 
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