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Activity 1|

You have 3 minutes to write down on a piece of paper:

Have you been using entropy in
your research/ your projects?

If yes, how?



My applications: statistical physics, information theory,
econophysics, sociophysics, image processing...



"You should call it entropy, for two reasons:
In the first place your uncertainty function
has been used in statistical mechanics under
that name, so it already has a name. In the
second place, and more important, nobody knows
what entropy really is, so in a debate you will
always have the advantage.”

John von Neuman's reply to Claude
Shannon's question how to name newly
discovered measure of missing
information



Information Theory and Statistical Mechanics
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Information theory provides a constructive criterion for setting
up probability distributions on the basis of partial knowledge,
and leads to a type of statistical inference which is called the
maximum-entropy estimate, It is the least biased estimate
possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information. If one considers
statistical mechanics as a form of statistical inference rather than
as a physical theory, it is found that the usual computational
rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.
In the resulting “subjective statistical mechanics,” the usual rules
are thus justified independently of any physical argument, and
in particular independently of experimental verification; whether

or not the results agree with experiment, they still represent the
best estimates that could have been made on the basis of the
information available.

It is concluded that statistical mechanics need not be regarded
as a physical theory dependent for its validity on the truth of
additional assumptions not contained in the laws of mechanics
(such as ergodicity, metric transitivity, equal @ priori probabilities,
etc.). Furthermore, it is possible to maintain a sharp distinction
between its physical and statistical aspects. The former consists
only of the correct enumeration of the states of a system and
their properties; the latter is a straightforward example of
statistical inference.

Information entropy = thermodynamic entropy



Maximum entropy principle

In the case of inductive inference, the constraints, or
prior information, are given in terms of linear expectation
values; 1.e., the constraints considered are of the form

I, =(I;) = ZIk.:'Pfe (2)

where {Z,;} are possible realizations (alphabet) of the
observable 7.

Theorem 1 (MEP)—Given the set of constraints
C = {I;}%_,, the best estimate of the underlying (i.e., true)
probability distribution P = {p;}"_, is the one that max-
imizes the entropy functional S(P) subject to the con-
straints; i.e., it maximizes the Lagrange functional

S(P) - iﬁkq. (1)



Maximum entropy principle

General approach - method of Lagrange multipliers
Maximize L(p) = S(p ) — —@) . pi — D oA
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In case ¢;(P) = is |nvert|ble for p;, we get that

pr = " (04 =y )\k:Ii,k>
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Legendre structure of thermodynamics - interpretation of L
L(p) = S(p) — BU(p) = ¥(p) = —BF(p)

free entropy




MB, BE & FD MaxEnt

Maxwell-Boltzmann
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Structure-forming systems
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MaxEnt distribution: pgj) = exp(—aj — ﬁegj))

The normalization condition gives 3. jZe* =1
where Z; = ";—]1 > exp(—56§j>) is the partial partition function

We get a polynomial equation ine @

Average number of molecules M = > o)
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MaxEnt of Tsallis entropy

Zip?—l
Sq(p): 1—gq

MaxEnt distribution is: p; = exp,(a + Be;)

Note that this is not equal in general to ¢ = Ze.xf}f;ﬁfg)ei)

However, it is possible to use the identity

exp,(z + y) = exp,(z) exp, (equ (i))lq)

The MaxEnt distribution of Tsallis entropy can be expressed as
p; (B) = exp, (o + Bei) = exp,(a) exp,(Bei) = ¢; (B)
where 3 = — 2

exp ()l ¢
p, (@)

(sometimes called self-referential temperature)




MaxEnt for path-dependent processes
and relative entropy

What is the most probable histogram of a process X(IV, 6)?
= @ - parameters, k histogram of X (NN, 0)
m P(k|0) is probability of finding a histogram

Most probable histogram k* = arg min,, P(k|0)

In many cases, the probability can be decomposed to

P(k|0) = W (k)G(K|6)

W (k) - multiplicity of histogram

= (G(k|0) - probability of a microstate belong to &

log P(k|92 = 10g W(kl + log G(k|92

Srel SMEP Scross

Srel - relative entropy (divergence)
m S..0s5- CrOss-entropy, depends on constraints given by 6




The role of constraints

The cross-entropy corresponds to the constraints

For the case of expected energy, it can be expressed
through the cross entropy

Seross(Pq) = Z pilog g;

where ¢; are prior probabilities. By taking ¢f = e P% we get
Scross(p’q*) = B szfi -+ InZ

However, for the case of path-dependent process, the
natural constraints might not be of this form

Kullback-Leibler divergence

DKL(pHQ) — _S(p) + Scross(p7 Q)




MaxEnt for SSR processes

From multiplicity of trajectory histograms, we have shown that
the entropy of SSRis

Sesr(p) = _Nzn; [pi log (i—i) + (p1 — p;) log (1 i &)]

D1

Let us now consider that after each run (when the system
reaches the ground state) we drive the ball to a random state
with probability g;

L

After each jump the
effective space reduces 2513




MaxEnt for SSR processes

One can see that the probability of sampling a histogram k; is

where Q;

g’
G(klg) =[] Q,il.

. Zz'zl g; and Qo

n

i=1 1—1

Il
-

Similarly, one can determine the probability of sampling a par-
ticular sequence x. Each visit to a state { > 1 in the sequence

x contributes to the probability of the next visit to a state

J = i with a factor 1/Q;_, whatever j gets sampled. Only if
i =1 do we not get such a renormalization factor, since the
process restarts and all states i are \.1I1d lamc‘n with prohabm[y
g;. It follows that G(k|g,N) = ﬂ _1 4 ]_[j__ Q - and the
cross-entropy is found to be

Scross p|q Z D; log qi — Z D; log Qz 1

By assuming in ¢; < e #¢ the cross-entropy is

Scross plq B szez + B szfz =&+ F

where f;

=In) . e P



MaxEnt for Polya urns

Probability of observing a histogram
N

pc) = (, N, )o@

By carefully taking into account the initial number of
balls in the urn n; we end with

Spoya(P) = — Z log(p; +1/N)

=

- i 1 1 g —
Spéiya(plg) = — B log (pz' + N) — log (1 L ) + log Qi]
1=1

Nvypi+ 5

where ¢; = n;/N,y=6/N




Long-run limit

By taking N — oo, we get

SPélya(p) — = Z lngz
1=1

Speya(plq) = — Z % log p; + log q;
i=1

Maximizing 1 ( p|#) with respect topon 3_p. = 1, either leads to the solution

pi = l_(qj- -7 (14)
L

for 0 < p. < 1, or, if this can not be satisfied, to boundary solutions p; = 0. {is a normalization constant. There
exist three scenarios:
(A) For « < min(q), equation (14) is the max-ent solution for all i (no boundary-solutions). The limit v — 0

provides the correct multinomial limit p, — g,.

(B) If max(q) > 7 > min(g), 1’ gets maximal for those i with 4, > and follows solution equation (14); those
i where g, < -y areboundary-solutions, p. = 0.

(C) For v > max(q)all p. are boundary-solutions, meaning that one winner i takesitall, p, = 1, while all other
states have vanishing probability.



Related extremization principles

As we already found out, the MaxEnt principle can be seen as
a special case of the principle of minimum relative entropy

p* = arg rr;}n D(pl|q)

In many cases, the divergence can be expressed as
D(pllq) = —S(p) + Secross(p; q)
Priors g can be obtained from theoretical models or measurements
Posteriors p can be from parametric family or from a special class of
probability distributions

Relative entropy is well defined for both discrete and continuous
distributions

It connects information theory, thermodynamics and geometry



Maximization for trajectory
probabilities - Maximum caliber

Let us now consider the whole trajectory z(t) with probability p((t))

We define the term caliber, which is the KL-divergence of the path
probability

p(z(t))

ca D ].
1(plg) = /w og 1z (0)

N.B.: Entropy production can be written in terms of caliber as

% = Seal[p(2(t))|P(Z(2))]



Review on MaxEnt & MaxCal

REVIEWS OF MODERN PHYSICS, VOLUME 85, JULY-SEPTEMBER 2013
Principles of maximum entropy and maximum caliber in statistical physics
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The wvariational principles called maximum entropy (MaxEnt) and maximum caliber (MaxCal)
are reviewed. MaxEnt originated in the statistical physics of Boltzmann and Gibbs, as a
theoretical tool for predicting the equilibrium states of thermal systems. Later, entropy
maximization was also applied to matters of information, signal transmission, and image recon-
struction. Recently, since the work of Shore and Johnson, MaxEnt has been regarded as a principle
that is broader than either physics or information alone. MaxEnt is a procedure that ensures that
inferences drawn from stochastic data satisfy basic self-consistency requirements. The different
historical justifications for the entropy § = =3 p;logp; and its corresponding variational prin-
ciples are reviewed. As an illustration of the broadening purview of maximum entropy principles,
maximum caliber, which is path entropy maximization applied to the trajectories of dynamical
systems, is also reviewed. Examples are given in which maximum caliber is used to interpret
dynamical fluctuations in biology and on the nanoscale, in single-molecule and few-particle systems
such as molecular motors, chemical reactions, biological feedback circuits, and diffusion in
microfluidics devices.

DOIL: 10.1103/RevModPhys.85.1115 PACS numbers: 82.20.Pm, 05.40.—a, 89.70.Cf, 0250.Tt



MaxCal and Markov processes

For a discrete time process, the path entropy is

H{T} = = Z ||l'Jr',,r'|._.._.'|I ]Dg.ﬂal,.’,..._.h' {32}
iy

Fiad ] oeeer

Now, we impose pairwise constraints for each step m — n
over the time period [0, T], i.e.,

i:Itflhlrm—-rr} = Z Pr'"__...',. hrm—*n“ﬂ! =e=a ET}' {83}
L FY—
where N, (ip, ....ir) = ¥X1-0 8, 8, . counts the num-
ber of m — n transitions. We verify that ¥, N, ., =T.

We then maximize the path entropy, Eq. (72). with the
constraints given by Eq. (83) using A,, as the Lagrange
multiplier to constrain (N, _ }. This yields

m—n

T—1 —z-']lmn zi -|: j'-’-'msll—l-"’
Pn’u.-...;l = l_[ F*J._"'J.-I € p me I {34-}
k=10

where, from the second proportionality, we have p; _.; >
—4A

e “wist and the probability p, ., = 1s understood as the
conditional probability p(iz,|iz). Thus, under the constraints
imposed by Eq. (83), the joint probability distribution p, ..,
given by Eq. (84) is a first-order Markov process. That is, it
can be rewritten as the product of transition probabilities
which describe the probability of being in a state at some
time k& + | as depending only on the state at ume k.



Other extremal principles in ThD

Prigogine's principle of minimum entropy production
Principle of maximum entropy production (e.g., for living systems)

Further reading

Extremal principles in non-equilibrium thermodynamics

From Wikipedia, the free encyclopedia

The Azimuth Project
* Extremal principles in non-equilibrium
thermodynamics



MaXxEnt as an inference tool

Maximum entropy principle consists of two steps:

(I)  Finding a distribution (MaxEnt distribution) that maximizes entropy under given con-
straints.

(II) Plugging the distribution into the entropic functional and calculating physical quanti-
ties as thermodynamic potentials, temperature, or response coefficients (specific heat,
compressibility, etc.).

The first step is a statistical inference procedure.
The second step gives us the connection to thermodynamics.

(i) For each MaxEnt distribution, there exists the whole class of entropies and constraints
leading to generally different thermodynamics.

(if) It is possible to establish transformation relations of Lagrange parameters (and subse-
quently the thermodynamic quantities) for classes of entropies and constraints giving
the same MaxEnt distribution.

Entropy 23 (2021) 96



3. Calibration Invariance of MaxEnt Distribution with Entropy Transformation

The simplest transformation of Lagrange functional that leaves the MaxEnt distribu-
tion invariant is to consider an arbitrary increasing function of entropy, i.e., we replace
S(P) by c(S(P)), where ¢'(x) > 0. Let us note that this transform preserves the uniqueness
of the MEP because it is easy to show that if S(P) is Schur-concave, ¢(S(P)) is also Schur-
concave [42] which is a sufficient condition for uniqueness of the MaxEnt distribution.

In this case, the Lagrange equations are adjusted as follows,

' as(P) afg(P) , 9E(P)
(S(P) 5,2 —ac g —Beog L =0 (15)
leading to
ac = c'(S(P))(VpS(P)) — Be(VpE(P)) (16)
" A(V2S(P))
ot 1 P
pc=c¢ (S(P)}m (17)
so we get that the function ¢ causes rescaling of & and B, so
. =c'(S(P))a (18)
Pc =c'(S(P)) B (19)

while its ratio remains unchanged, i.e., a:/f: = a/p. Actually, the set of increasing
functions conform a group of Lagrange multipliers, because it is easy to show that the
Lagrange parameters related to the entropy ci(c2(5(P))

Baroes = ch(ea(S(P)) - ch(S(P)) p = ¢} (e2(S(P))Bey (20)

which can be described as the group operation (cy © ¢3) +— ¢}(c2) - c5.

Exercise: what is the relation between Lagrange multipliers
between Tsallis entropy S, = ffq > pl—1)

and Rényi entropy R, = ~_In}", pj?



Rényi entropy and Tsallis entropy: Two most famous examples of generalized entropies

are Rényi entropy R, (P) = 11—6 In (E!- p'f) and Tsallis entropy S,(P) = 11_'1 (E:‘ pl — 1).
Their relation can be expressed as

R,(P) = c,(S,(P)) = %} In[(1—q)S,;(P) +1] (23)

and therefore we obtain that
1 1
1-9)S; |Tip!

Su(P) = 14 eh)

The difference between free entropy and « can be obtained as

Sq(P
b= =5 ) + (Rq(m - E‘ffpj) 25)




Summary



