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Activity III
 

You have 3 minutes to write down on a piece of paper:
             

Have you been using entropy in
your research/ your projects? 

 
If yes, how?

 
 
 



My applications: statistical physics, information theory,
econophysics, sociophysics, image processing...



"You should call it entropy, for two reasons: 
In the first place your uncertainty function 
has been used in statistical mechanics under 
that name, so it already has a name. In the 
second place, and more important, nobody knows 
what entropy really is, so in a debate you will 
always have the advantage."

John von Neuman's reply to Claude
Shannon's question how to name newly

discovered measure of missing
information



Information entropy = thermodynamic entropy



Maximum entropy principle



Maximum entropy principle

General approach - method of Lagrange multipliers
 Maximize 

In case  is invertible for , we get that
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Legendre structure of thermodynamics - interpretation of L

L(p) = S(p) − βU(p) = Ψ(p) = −βF (p)
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MB, BE & FD MaxEnt
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MB, BE & FD MaxEnt



Structure-forming systems
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The normalization condition gives   

where  is the partial partition function

We get a polynomial equation in 
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MaxEnt of Tsallis entropy

MaxEnt distribution is: 

Note that this is not equal in general to  

However, it is possible to use the identity
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The MaxEnt distribution of Tsallis entropy can be expressed as
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MaxEnt for path-dependent processes
and relative entropy 

What is the most probable  histogram of a process ?

 - parameters,  histogram of 
 is probability of finding a histogram

 Most probable histogram 
In many cases, the probability can be decomposed to

   - multiplicity of histogram
 - probability of a microstate belong to 

 - relative entropy (divergence)
- cross-entropy, depends on constraints given by 
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The role of constraints

The cross-entropy corresponds to the constraints
For the case of expected energy, it can be expressed

through the cross entropy

where  are prior probabilities. By taking  we get

However, for the case of path-dependent process, the
natural constraints might not be of this form
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MaxEnt for SSR processes
From multiplicity of trajectory histograms, we have shown that

the entropy of SSR is

Let us now consider that after each run (when the system
reaches the ground state) we drive the ball to a random state
with probability qi

After each jump the
effective space reduces



MaxEnt for SSR processes
One can see that the probability of sampling a histogram  is ki
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MaxEnt for Pólya urns
Probability of observing a histogram

p(K) =   p(I)(
k ,… , k1 c

N )

By carefully taking into account the initial number of
balls in the urn  we end withni
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Long-run limit
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By taking , we getN →∞



Related extremization principles
As we already found out, the MaxEnt principle can be seen as
a special case of the principle of minimum relative entropy

p =⋆ arg D(p∣∣q)
p
min

In many cases, the divergence can be expressed as 
D(p∣∣q) = −S(p) + S (p, q)cross

It connects information theory, thermodynamics and geometry

Priors  can be obtained from theoretical models or measurementsq

Posteriors  can be from parametric family or from a special class of
probability distributions

p

Relative entropy is well defined for both discrete and continuous
distributions



Maximization for trajectory
probabilities - Maximum caliber

Let us now consider the whole trajectory  with probability 

We define the term caliber, which is the KL-divergence of the path
probability
 

x(t)x p(x(t))x

S (p∣q) =cal Dx(t)p(x) log∫ x x
q(x(t))x

p(x(t))x

N.B.: Entropy production can be written in terms of caliber as
 

Σ =t S [p(x(t))∣ ( (t))]cal x p~ xx~



Review on MaxEnt & MaxCal



MaxCal and Markov processes



Other extremal principles in ThD
Prigogine's principle of minimum entropy production

Principle of maximum entropy production (e.g., for living systems)

Further reading



MaxEnt as an inference tool
Maximum entropy principle consists of two steps:

The first step is a statistical inference procedure.
The second step gives us the connection to thermodynamics.

Entropy 23 (2021) 96



Exercise: what is the relation between Lagrange multipliers 
between Tsallis entropy  

and Rényi entropy  ?

S =q p − 11−q
1 (∑i i

q )

R =q ln p1−q
1 ∑i i

q





Summary


