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Activity lI
You have 3 minutes to write down on a piece of paper:
What is the most unexpected/surprising application

of entropy
you have seen? (unexpected field, unexpected result)
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Jaume Rigau Miquel Feixas Mateu Sbert

Institut d’Informatica 1 Aplicacions
Universitat de Girona, Catalonia, Spain

Figure 4: Reference image used in the test in Figure 5
with 1024 rays per pixel.
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Using Boltzmann's formula for
non-multinomial systems

As we saw in the previous lecture, the multinomial multiplicity

W(ng,... ng) = ( ¢ )

Nniy... Nk

leads to Boltzmann-Gibbs-Shannon entropy.

Are there systems with non-multinomial multiplicity?
What is their entropy?



Ex. |I: MB, FD & BE statistics

1. Maxwell-Boltzmann statistics - N distinguishable
particles, N; particles in state e;

Multiplicity can be calculated as

N\ (N-MN N-YMm L
W(Nl,...,Nk):(Nl)( . )( o :N!HM!

=i

If e; has degeneracy g;, then

Then, we get




Ex. |I: MB, FD & BE statistics

2. Bose-Einstein statistics - IV indistinguishable particles, V;
particles in state ¢; with degeneracy g;,

Multiplicity can be calculated as

k
W(Ny,...,Ne) =] ] (N" +]§?’ B 1) (1%)
i=1 ¢

Let us introduce a; = g;/N. Then, we get
k

Spe = N Z (s + pi) log(ai + pi) — ailog i — pilog pi]
i=1




Ex. I: MB, FD & BE statistics

3. Fermi-Dirac statistics - V indistinguishable particles, V;

particles in state ¢; with degeneracy g;, maximally 1 particle
per sub-level (thus N; < g;)

Multiplicity can be calculated as

W(Nl,...,Nk):ﬁ (]{7)

1=1
Let us introduce a; = g;/N. Then, we get

Sep = N Z — pi) log(i — p;) + i log a; — p; log pi|




Ex. lI: structure-forming systems
Let us start with a simple example of a coin tossing.

States are: ’ ,

But! let's make a small change, we consider magnetic coins
The bound (or sticky) state is simply »f

State space grows super-exponentially (W(n) ~ n® ~ ™8™ )
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picture taken from: Jensen et al 2018 J. Phys. A: Math. Theor. 51 375002



Multiplicity
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Multiplicity

we have n”) molecules of size j in a state s/

&)
. : i1y tations
(4) n{)! permutations of molecules ()™ permu
n; molecules (") p of particles in molecules

\Va AV \Vz
VoV

3 molecules of size 3 3! = 6 permutations 313 = 216 permutations

Total multiplicity : = 280

9!
31(31)3

General formula: W(n,,(;j)) — nt NG

i ()"



Boltzmann's 1884 paper

II1. Ueber das Arbeitsquantum, welches bei
chemvischen Verbindungen gewonnen werden kann;
von Ludwig Boltzmann in Graz.

(Aus dem 88. Bde. der Sitzungsber. der k. Akad. der Wiss. zu Wien,
[1, Abth. vom 18. Oct. 1883 mltggthellt vom Hrn. Verf.)

W o v S B Tl - S L S ]

Es seien z. B. 4 Ohlor- und B Wasserstoﬁ'atome gege-
ben., Ks wird gefragt, wie wahrscheinlich es ist, dass sich
daraus gerade NV, Chlor-, IV, Wasserstotf- und N, Chlor-
wasserstoffmoleciile bilden. Hier ist a; =2, b, =0; q, =0,
b,=2;, ay=1, b,=1; die Anzahl der Chloratome ist
A=2N, + N;; die Anzahl der Wasserstoffatome ist
B=2N,+ N,: die Anzahl der Bildungsweisen:

7 A! B!

T Mt N N ININ,!



Entropy of structure-forming systems

S = logW ~nlogn — Z (ngj) logngj) — ngj) +n§j) logj!)
]

Introduce "probabilities" p\) = (j)/n

1

S=S5/n=-— sz logpZ sz log

tj
Finite interaction range: concentrationc =n/b

S=8/n=-Y p (logp - Z@ log =

]

Nat. Comm. 12 (2021) 1127



p(i)

Ex. lll: sample-space reducing
processes (SSR)
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Corominas Murtra, Hanel, Thurner PNAS 112(17) (2015) 5348



Multiplicity

The number of states is n. Let us denote the statesas z,, — --- — zy,
where z; is the ground state, where the process restarts. Let us
sample R relaxation sequences x = (z,,...,1).

The sequences can be visualised as

rxi W W—-11IW-=21| --- 2 1
. — |1 *1*| Eachrun must
- * % _ ¢ )
T L, contain z;
R—-2| — * % cee | —
R—l — %k —_— P sk *
R | - | - e ol =l %
kw | kw-_i kw—a || <=+ | k2 || ki

How many of these sequences contain a state z; exactly k; times?



Multiplicity
Number or runs R = k;, number of them containing z; is k;
Multiplicity of these sequences: (’,‘f;)

By multiplying the multiplicity for each state we get

W(kl,...,kn):ﬁ (:;)

J=2

kilogky — ki — kjlogk; + ki — (k1 — k;) log(k1 — k;) + (ks—%;)]

S

logWW ~ Z

[
=2
n

[k’l log k’l - kj log kl u kjlog% o (kl _— k'J) 10g(k1 _— k‘]):|
1

J=2

By introducing p; = k; /N where N is the total number of steps, we get

Sssr(p) = _Nzn; [pi log (ﬁ—i) + (p1 — pi) log (1 - i—i)]




Ex. IV: Polya urns

| |

ek

Figure 1. Schematic illustration of a Pélya process. When a ball of a certain color is drawn, itis replaced by 1 + § balls of the same
color. Then the next ball is drawn and the process is repeated for Niterations. Here & = 2. This reinforcement process createsa
history-dependent dynamics. The configurations obtained after successive iterations have non-multinomial structure.

Hanel, Corominas Murtra, Thurner New J. Phys. (2017) 19 033008



Probability of a sequence

We have c colors, initially n;(0) = n; balls of color ¢;. After a
ball is drawn, we return § balls of the same color to the urn.

After N draws, the number of balls in the urn is

n;(N) = n; + dk;
where k; is the number of draws of color ¢;. The total
number of ballsisn(R) =) n.(N) =N + 0N
The probability of drawing a ball of color ¢; in N-th run, is
pi(N) = n;(N)/n(N). The probability of sequence
T ="{i,...,in}is

c . (,k)
J
6.V

S

S

j=1

where m®" = m(m +6)...(m + ré)



Probability of a histogram

A histogram K = {kq,...,k.} is defined as k. =
> i1 9(i5,)

Thus the probability of observing a histogram is
N

pc) = ()o@
(6

n; R oo ks V8% (K + 1)/

| TG B8 (k1)
A Hjj_\i'/k% )

... technical calculation ...

Spéiya(p) = logp(K) ~ — ) _log(p; + 1/N)

=1




Ex. IV: g-deformations

This example is rather theoretical, but provides us a
useful hint of what happens if there are correlations in
the sample space

Motivation: finite versions of exp and log
exp(z) = lim, oo (1 + %)n

So define
exp,(z) i= (1+ (1 — g)z)"/" 7
logq(w) = ‘Bl_jgl

Let us find an operation s.t.
exp, () ®, exp,(y) = exp, (v +y)
= a®gb=[a'"1+ b7 —1] t/{1=a)

Suyari, Physica A 368 (2006) 63-82



Calculus of g-deformations

In analogyton!=1-2..-.. nintroduce nly :=1Q®,2®, - Qn
It is than easy to show that log, n!, = E’éllﬁ " which can be
q

used for generalized Stirling's approximation log, n!; ~ 3%, log, n

Let us now consider a g-deformed multinomial factor

o — ' ' e o o '
( ) i=nly Qg (n1ly Qg - -+ ®g myly)
ni,. q

ey M
1/(1—q)

n ny ng
e 1—q .1—q 1—gq
— g l - E i; —e E i,
=1 11 ik



Tsallis entropy

Let us consider that the multiplicity is given by a g-
multinomial factor W(n4,...,n;) = (nlnk)q
In this case, it is more convenient to define entropy
as S = log, W, which gives us:

2—q k 2—q 2—q
n 2 i1 Pi 1 n

= So_
2—(] q—l 2—(] 2q(p)

log, W =

This entropy is known as Tsallis entropy
Note that the prefactor is not n but n?4
(non-extensivity) - we will discuss this later



Entropy and energy

Until now, we have been just counting states; let us
now discuss the relation with energy.

We consider that the states describe the energy of
the system (either Hamiltonian or more generalized

energy functional)

Therefore, entropy is defined as
S(E) :=1logW(E)




Ensembles

There are a few typical situations:
1. Isolated system = microcanonical ensemble
Let H(s) be the energy of a state s. Multiplicity is then

W(E) =>_,6(H(s) - E)
dS(E)

Phenomena like negative "temperature" T' = === < 0

2. closed system = canonical ensemble

Total system is composed of the system of interest (S) and
the heat reservoir/bath (B). They are weakly coupled i.e.,
H;.(s,b) = Hg(s) + Hp(b) (no interaction energy)

W (Eiot) Z 6(Hiot(8,0) — Eyot)

3. open system = grandcanonical ensemble



Entropy in canonical ensemble

This can be further rewritten as

- / dEs 3 6(Hs(s) — Es) Y (Hp(b) — (Bt — Bs))

b

— /dES Ws(Es)Wg(Eis — Es)

This is hard to calculate. Typically, the dominant contribution is from
the maximal configuration of the integrand, which we obtain from

OWs(Es)Wp(Eiwt — Es) 0 Ws(Es) _ Wp(Ei — Es)
8ES WS (E) WB (Etot i ES)
0Sg (Bs) !

8E5 8ES

0SB (Etot —Es) . 1

kgT

As a consequence

and §B(Et0t — ESZ — \SB(Etotz — ;TSSES "‘ 50 c

NV NV

free entropy bath entropy
This is the emergence of Maximum entropy principle



Canonical ensemble & Coarse-graining

Deterministic
picture

coupling

A coarse-graining
Statistical
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Summary



