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1.1 INTRODUCTION: THERMODYNAMICS AND STATISTICAL
MECHANICS OF THE PERFECT GAS

Ludwig Boltzmann, who spent much of his life studying statistical
mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the
work, died similarly in 1933. Now it is our turn to study statistical mechanics.
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No questions are stupid

Please ask anytime!



o @
Activity |
You have 3 minutes to write down on a piece of paper:
a) Your name

b) What do you study
c) What is entropy to you? (Formula/Concept/Definition/...)



My take on what is entropy

S=k-:-logW

£ Located at Vienna central cemetery
: (Wien Zentralfriedhof)
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We will get back to this formula



Why so many definions?

Entropy (disambiguation)

From Wikipedia, the free encyclopedia

Entropy, in thermodynamics, is a property originally introduced to explain the part of the internal energy of a thermodynamic system that is unavailable as a source for
useful work.

Entropy may also refer to:
« Entropy (classical thermodynamics), thermodynamic entropy in macroscopic terms, with less emphasis on the statistical explanation
= Entropy (statistical thermodynamics), the statistical explanation of thermodynamic entropy based on probability theory

¢ Entropy (information theory), also called Shannon entropy, a measure of the unpredictability or information content of a message source

There is more than one face of entropy!

‘ Three faces of entropy for complex systems: Information,
thermodynamics, and the maximum entropy principle

Stefan Thurner, Bernat Corominas-Murtra, and Rudolf Hanel
Phys. Rev. E 96, 032124 — Published 15 September 2017
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What measures entropy?

Maximum data

Randomness? "
: mpr ;
Part of the internal energy O e
unavailable for useful work? Disorder?
Information content? '‘Distance' from equilibrium?

Uncertainty?
Heat over temperature?
Energy dispersion?

Or is it just a tool? (Entropy = thermodynamic action?)

MaxEnt SoftMax

Prigogine
MaxCal Maxes



My courses on entropy

a.k.a. evolution of how powerful entropy is

@ Czech Technical University in Prague

y 1 A Faculty of Nuclear Sciences
and Physical Engineering

Field: mathematical physics
warning: Personal opinion!



Bachelor's studies
SS 1st year Bc. - Thermodynamics

ds = 32
C, =T (g_s 14
(89)r = (%)
ov)T o |, differential forms?

SS 2nd year Bc. - Statistical physics
S = — i Prlogps
7 = e Pe

InzZ=5-U / T probability theory?

SS 3rd year Bc. Quantum mechanics 2
S = —Tr(plogp)
Z = Tr(exp(—BH))




Master's studies Erasmus exchange
@ FU Berlin

WS - 2nd year MS - Advanced StatPhys
Fermi-Dirac & Bose-Einstein statistics

Ising spin model and transfer matrix theory
Real gas and virial expansion

WS - 2nd year MS - Noneq. StatPhys
Onsager relations

Molecular motors
Fluctuation theorems




Historical intermezzo
by @ Kathy Loves Physics & History


https://www.youtube.com/embed/7se7K0mnRaY?enablejsapi=1

Motivations for introducing entropy
1. relation between energy, heat, work and temperature

R. Clausius Lord Kelvin H.von Helmholtz S. Carnot
Thermodynamics (should be rather thermoSTATICS)

2. relation between microscopic and macroscopic

J. C. Maxwell L. Boltzmann M. Planck J. W. Gibbs
Statistical mechanics/physics



Why statistical physics?
Microscopic to Macroscopic
Statistical Physics = Physics + Statistics

Role of statistics in physics
Classical mechanics (quantum mechanics)
- position & momenta given by equations of motion

- 1 body problem: solvable
- 2 body problem: center of mass transform
- 3 body problem: generally not solvable

- N body problem: ??7?
Do we need to know trajectories of all particles?



Liouville theorem

Let's have canonical coordinates q(t), p(t) evolving by Hamiltonian dynamics
_0H . 0H

Let p(p, q,t) be a probability distribution in the phase space. Then,

Consequence:‘%(tp): 4 ([pt)Inp(t)) = 0.‘
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Figure 1: Displacement in phase space of an initial hypercube subject to zero (a) and constant

(b) forces.



Useful results from statistics

@ = - NP
1. Law of large numbers (LLN) 190 :o: AT
Yr.X; —»>nX forN>1 W w e
2. Central limit theorem (CLT) U o & :::

(%Z?:l X;—X)— %N(Ov"'z)

Conseguence: a large number of
i.i.d. subsystems can be described
by very few parameters for N > 1

Sample mean

= e.g., a box with 1 mol of gas
particles A

0 100 200 300 400 500

NUmber of throws



Useful results from combinatorics

Bars & Stars theorems (| *)

Statements of theorems [edit]

The stars and bars method is often introduced specifically to prove the following two theorems of elementary combinatorics concerning the number of solutions to an equation.

Theorem one [edit]

For any pair of positive integers 77 and £, the number of k-tuples of positive integers whose sum is 11 is equal to the number of (k£ — 1)-element subsets of a set with 7 — | elements.

For example, if 7 = 10 and k = 4, the theorem gives the number of solutions to x; + x5 +x3 + x4 = 10 (with x1, x5, 3. x4 = 0) as the binomial coefficient

()= (3) =

Theorem two [ edit]

For any pair of positive integers 77 and k, the number of k-tuples of non-hegative integers whose sum is # is equal to the number of multisets of cardinality 77 taken from a set of size k, or equivalently, the
number of multisets of cardinality £ — 1 taken from a set of size i + 1.

For example, if 77 =10 and & = 4, the theorem gives the number of solutions to x; + x5 +x3 + x4 = 10 (with xq, 19, x3. x4 > 0 ) as:

n+k—1 10+4—-1 13
= = =92
( k-1 ) ( 4-1 ) (3) 5

* %k ok ok ok ok K

Fig. 1: Seven objects, represented by stars

* ok Kk k| K| KKk

Fig. 2: These two bars give rise to three bins containing 4, 1, and 2 objects

* Kk || K| K K|

Fig. 3: These four bars give rise to five bins containing 4, 0, 1, 2, and 0 objects



Emergence of statistical physics:
Coarse-graining
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Coarse-graining or Ignorance?

Condensed Matter > Statistical Mechanics
[Submitted on 28 iar 2019 (1), last revised 2 Jun 2019 (this version, v2)]

Gibbs and Boltzmann Entropy in Classical and Quantum Mechanics

Sheldon Goldstein, Joel L. Lebowitz, Roderich Tumulka, Nino Zanghi

1.2 X vs.p

An immediate problem with the Gibbs entropy is that while every classical system has
a definite phase point X (even if we observers do not know it), a system does not
“have a p”; that is, it is not clear which distribution p to use. For a system in thermal
equilibrium, p presumably means a Gibbsian equilibrium ensemble (micro-canonical,
canonical, or grand-canonical). It follows that, for thermal equilibrium states, Sg and
S¢ agree to leading order, see (31) below. In general, several possibilities for p come to
mind:

(a) ignorance: p(r) expresses the strength of an observer’s belief that X = x.

(b) preparation procedure: A given procedure does not always reproduce the same
phase point, but produces a random phase point with distribution p.

(c) coarse graining: Associate with every X € 2 a distribution px(z) on 2" that cap-
tures how macro-similar X and x are (or perhaps, how strongly an ideal observer
seeing a system with phase point X would believe that X = z).

Correspondingly, there are several different notions of Gibbs entropy, which we will
discuss in Sections 4 and 6. Here, maybe (c¢) could be regarded as a special case of (a),
and thermal equilibrium ensembles as a special case of (b). In fact, it seems that Gibbs
himself had in mind that any system in thermal equilibrium has a random phase point
whose distribution p should be used, which is consistent with option (b); in his words
(Gibbs, 1902, p. 152):



Coarse-graining in

thermodynamics
Macroscopic systems '—a”
Thermodynamics “3"
N AT
)
_|
O

Mesoscopic systems

Stochastic thermodynamics
A

Statistical mechanics

Microscopic systems
Classical mechanics (QM,...)
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Microstates, Mesostates and Macrostate

Consider again a dice with 6 states | ® | o [le® | lo ol |0%

Let us throw a dice 5 times. The resulting sequence is

# micro: 6° = 7776

oo Microstate :
@ ® O

The histogram of this sequence is

Z 11 1
0 mm 0 mm mm =

gt asies)

. (64+5-1\ __
. . Mesostate .  # meso: (°7; ) = 252

Coiiiesssiesy

The average value is 3,8 Macrostate # macro:5-6—5-1=25



Multiplicity W (sometimes 2):
# of microstates with the same

mesostate/macrostate

Now we come back to the formula on Boltzmann's grave

Question: how do we calculate multiplicity W for mesostate

1

Answer: see combinatorics lecture.

Full answer: 1.) permute all states, 2.) take care of overcounting

1.) Permuation of all states: 5! =120

0

1
-

1
-

2.) Overcounting - permutation of

Together: W(0,2,0,1,1,1) = 3. = 60

2!

2




"General" formula - multinomials

S m ) _ (i)

k
17 ¢ ,nk H’L:1n7'!

The question at stake: WHY log?

Succint reason: log transforms [] to >

(similar to log-likelihood funciton)

Physical reason: multiplicity of X x Y

is W(X)W(Y)
(extensivity/intensivity of thermodynamic variables)



Boltzmann entropy = Gibbs entropy?

Stirling's approximation: log(n!) ~ nlogn — n + O(logn)

Denote: Y | ny = n.

k k
logW(ni,...,n,) =nlogn—y%— >  n;logn; +> ~—n;

— Zle n;(logn —logn;) = — Zle n; log ™

Denote: n;/n = p;.

k
logW(nq,...,ng) = — ani log p;
i=1

What is actually p;?



Frequentist vs Bayesian probability

In probability, there are two interpretations of probability

1. Frequentist approach

probability is the limiting success value of a repeated experiment
p = lim M LLN

n—oo N

It can be estimated as p = X1+-*%» and it does not make any
sense to consider parametric distribution.
2. Bayesian approach

probability quantifies our uncertainty about the experiment. By
observing the experiment we can update our knowledge about it

folp) = PP s

posterior N————  prior

likelihood ratio




Thermodynamic limit

By using the relation n; /n = p;, we actually used the frequentist
definition of probability. As a consequence, it means that n — oo (in
practical situations n > 1). This limit is in physics called

thermodynamic limit. (LLN & CLT)

There are a few natural questions:

Does it mean that the entropy can be used only in the
thermodynamic limit?

Does the entropy measure the uncertainty of a single particle in a
large system or some kind of average probability over many
particles?



Gibbs vs Boltzmann Entropies®

E. T. Jay~es
Depariment of Physics, Washington University, SI. Louss, Missours
(Received 27 March 1964 ; in final form, 5 November 1964)

the system. The Gibbs IT is then

H};zf Wy log Wydr (1)
and the corresponding Boltzmann I is

Hy= N[wl logw,dr,, (2)

where w,(xy,p1;¢) is the single-particle proba-
bility density

wy (x1,p1; 1) = [H'rNdT—l+ (3)

wi(1)- - ~wi(N)
jffs—ffgﬂfWN[ —l:ld?':‘j,
W}\-’{l - J.&rr:l

and we have proved
T heorem 1: The Gibbs and Boltzmann /7 func-
tions satisfy the inequality

Hpy<Hg, (3)

with equality if and only if Wy factors “almost
everywhere” into a product of single-particle
functions

Wyl -N)y=wn (1} - - (N).

N.B.: does anybody recognize what is Hy; — Hg?



Resolution: what are the states?

Do we consider states of a single dice? | ® ||s °||e®°||s o lo®a| (S
Do we consider states of a pair of dices? % % % % etc.

Do we consider states of an n-tuple of dices?

Excercise activity for you: can you derive Gibbs entropy from

considering the state space of n-tuples of dices?




Two related issues
1. Gibbs paradox

© C  oc o
OOO c? °e : © Oo 80)0( 08 20900 .
0008 ——— | °2c’0 ¢’ ebo Resolution
©® o' %% © ogo 0o ) )
. N 1. Simply multiply entropy by
’ » NALNYB
Irre:ersiblemixing coupled with expansion ]./N! _ due tO llquantumll reasons
o -~00 ® 000~0 0 . e . e
ol ool o© 0% 90|  (indistinguishability)
oo 0o — %’ 0a o% OOO
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V. N 2V,2 Ny 2. Swendsen approach

Reversible assimilation coupled with expansion.

Journal of Statistical Physics, Vol. 107, Nos. 516, June 2002 (© 2002 )
Statistical Mechanics of Classical Systems with
Distinguishable Particles

AS =EkNIn2

Robert H. Swendsen'



Two related issues
2. Additivity and Extensivity

(we will come back to it later)

Additivity: We have two independent systems A and B
S(A,B) = S(A) + S(B)

Extensivity: We have a system of N particles, then
S(kN)=k-S(N)




Summary



