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Activity IV
 

You have 3 minutes to write down on a piece of paper:
             

What is the most important 
result/implication/phenomenon

that is related to entropy? 
 
 
 



Spin glass



Axiomatic approaches 
Now we do the opposite approach compared to lecture II.
We postulate the properties we think entropy should have

and derive the corresponding entropic funcional 

These axiomatic approaches have different nature, we will
discuss their possible connection



1.  Continuity.—Entropy is a continuous function of the
probability distribution only.

2. Maximality.— Entropy is maximal for the uniform
distribution.

3. Expandability.— Adding an event with zero probability
does not change the entropy.

4. Additivity.—  where S(A ∪B) = S(A) + S(B∣A)
S(B∣A) = p S(B∣A =∑i i

A a )i

Shannon-Khinchin axioms
you know them from the other lectures

Introduced independently by Shannon and Khinchin
Motivated by information theory

These four axioms uniquely determine Shannon entropy

SK axioms serve as a starting point for other axiomatic schemes

S(P ) = − p log p∑i i i



Non-additive SK axioms
Several axiomatic schemes generalize axiom SK4.

One possibility is to generalize additivity. The most prominent
example is q-additivity 

 

   
where  is q-addition

             is conditional entropy

and  is escort distribution.

This uniquely determines Tsallis entropy

S(A ∪B) = S(A) ⊕q S(B∣A)

x⊕q y = x+ y + (1 − q)xy

S(B∣A) = ρ (q) S(B∣A =∑i i
A a )i

ρ =i p / pi
q ∑k k

q

S (p) =q p − 1
1 − q

1 (
i

∑ i
q )

Abe, Phys. Lett. A 271 (2000) 74.



Kolmogorov-Nagumo average
Another possibility is to consider a different type of averaging
In the original SK axioms, the conditional entropy is defined as the
arithmetic average of 

We can use alternative averaging, as Kolmogoro-Nagumo average

S(B∣A = a )i

⟨X⟩ =f f p f(x )−1 (
i

∑ i i )
By keeping addivity, but taking 

for  we uniquely obtain Rényi entropy

 

S(B∣A) = f ( ρ (q) f(S(B∣A =−1 ∑i i
A a ))i

f(x) = 1−q
e −1(1−q)x

R (p) =q log p
1 − q

1

i

∑ i
q

Jizba, Arimitsu, Annals of Physics 312 (1) (2004)17-59



Generalized SK axioms and
pseudo-additive entropies



Entropy composability
and group entropies



Entropy composability
and group entropies



Entropy and scaling

We have been mentioning the issue of extensivity before
 

Let us see how the multiplicity and entropy scales with size 

 
This allows us to introduce a classification of entropies

N



How the sample space changes when we rescale its size ?

The ratio behaves like  for  

the exponent can be extracted by : 

For the leading term we have .

Is it only possible scaling? We have 

Let us use the other rescaling 

The we get that 

First correction is 

It is the same scaling like for -entropy
Can we go further?

N ↦ λN

∼
W (N)
W (λN)

λc0 N →∞

∣
dλ
d

λ=1 c =0 lim→∞ W (N)
NW (N)′

W (N) ∼N c0

∼
W (N)
W (λN)

(λN)c0
N c0 1

N ↦Nλ

∼
W (N)
W (N )λ

Nλc0
N c0

λc1

W (N) ∼N (logN)c0 c1

(c,d)

Multiplicity scaling



We define the set of rescalings  )  
 

  ,   ,   , ...

They form a group:  ,    ,   

We repeat the procedure:   ,

We take 

,

Second correction is 

r (x) :λ
(n) = exp (λ log (x)(n) (n)

f (x) =(n)

n times

f(f(…(f(x))…))

r (x) =λ
(0)

λx r (x) =λ
(1)

xλ r (x) =λ
(2)  elog(x)

λ

r r =λ
(n) ( λ′

(n)) rλλ′
(n)

r =( λ
(n))−1 r1/λ

(n)

r (x) =1
(n)

x

∼
W (N)
W (N )λ

N (logN )λc0 λ c1

N (logN)c0 c1
1

N ↦ r (N)λ
(2)

∼
W (N)

W (r (N))λ

(2)

r (N) (log r (N))λ

(2) c0
λ

(2) c1

N (logN)c0 c1
λc2

W (N) ∼N (logN) (log logN)c0 c1 c2

Multiplicity scaling



 

General correction 

Possible issue: what if ?  grows faster than any 
 We replace 
The leading order scaling is  for 
So we have 
If this is not enough, we replace                    
                    so that we get finite 
General expansion of  is

  ∼
W (N)

W (r (N))λ

(k)

∏j=0
k−1 (

log (r (N))(j)
λ

(k)
log N(j) )

cj

λck

c =0 +∞ W (N) Nα

W (N) ↦ logW (N)
∼logW (N)

logW (λN)
λc0 N →∞

W (N) ∼ exp(N )c0

W (N) ↦ log W (N)(l)

c0

W (N)
W (N) ∼ exp N (logN) (log logN) …(l) ( c0 c1 c2 )

J.K., R.H., S.T. New J. Phys. 20 (2018) 093007

Multiplicity scaling



Extensive entropy
 We can do the same procedure with entropy 
Leading order scaling: 

First correction 

 First two scalings correspond to -entropy                          
                                                      for  and 

Scaling expansion of entropy

Requirement of extensivity    determines the
relation between  and  :

,                   for 

S(W )
∼

S(W )
S(λW )

λd0

∼
S(W )
S(W )λ

W λd0
W d0

λd1

(c,d)
c = 1 − d0 d = d1

S(W ) ∼W (logW ) (log logW ) …d0 d1 d2

S(W (N)) ∼N

c d

d =l 1/c0 d =l+k −c /ck 0 k = 1, 2,…



Process S(W)
Random walk

 
0 1 0

   

Aging random walk

 
0 2 0

Magnetic coins *

 
0 1 -1

Random network

 
0 1/

2
0

Random walk cascade

 
0 0 1

logW

(logW )2

(logW )1/2

log logW

d0 d1 d2

logW/ log logW

* H. Jensen et al. J. Phys. A: Math. Theor. 51 375002

W (N) = 2N

      
                        

 

W (N) ≈ 2 ∼/2N 2N
1/2

  W (N) ≈ N  e ∼N/2 2 N eN logN

  W (N) = 2 ∼( 2
N) 2N

2

   W (N) = 2 −2N 1 ∼ 22
N



Parameter space of  entropy(c,d)

How does it change for one more scaling exponent?

R.H., S.T. EPL 93 (2011) 20006



Parameter space of -entropy(d ,d ,d )0 1 2

To fulfill SK axiom 2 (maximality): , to fulfill SK axiom 3 (expandability): d >l 0 d <0 1



Axiomatization from the Maximum entropy principle point of view
Principle of maximum entropy is an inference method and it should
obey some statistical consistency requirements. 
Shore and Johnson set the consistency requirements:

1.   Uniqueness.—The result should be unique.

2.  Permutation invariance.—The permutation of states should not matter.

3.  Subset independence.—It should not matter whether one treats disjoint subsets of system

states in terms of separate conditional distributions or in terms of the full distribution.

4. System independence.—It should not matter whether one accounts for independent

constraints related to disjoint subsystems separately in terms of marginal distributions or in

terms of full-system constraints and joint distribution.

5.  Maximality.—In absence of any prior information the uniform distribution should be the

solution.

 Shore-Johnson axioms

P.J., J.K. Phys. Rev. Lett. 122 (2019), 120601



History & Controversy of Shore-Johnson axioms
J. E. Shore, R. W. Johnson. Axiomatic derivation of the principle of maximum entropy and the principle

of minimum cross-entropy. IEEE Trans. Inf. Theor. 26(1) (1980), 26. - only Shannon

 J. Uffink, Can the Maximum Entropy Principle be Explained as a Consistency Requirement? Stud. Hist.

Phil. Mod. Phys. 26(3), (1995), 223. - larger class of entropies including Tsallis, Rényi, ..

S. Pressé, K. Ghosh, J. Lee, K.A. Dill, Nonadditive Entropies Yield Probability Distributions with Biases

not Warranted by the Data. Phys. Rev. Lett., 111 (2013), 180604. - only Shannon - not Tsallis

C. Tsallis, Conceptual Inadequacy of the Shore and Johnson Axioms for Wide Classes of Complex

Systems. Entropy 17(5), (2015), 2853. - S.-J. axioms are not adequate

S. Pressé K. Ghosh, J. Lee, K.A. Dill, Reply to C. Tsallis’ Conceptual Inadequacy of the Shore and Johnson

Axioms for Wide Classes of Complex Systems. Entropy 17(7), (2015), 5043.  - S.-J. axioms are

adequate

B. Bagci, T. Oikonomou, Rényi entropy yields artificial biases not in the data and incorrect updating

due to the finite-size data Phys. Rev. E 99 (2019) 032134 - only Shannon - not Rényi

P. Jizba, J.K. Phys. Rev. Lett. 122 (2019), 120601 - Uffink is correct!

(and the show goes on)



 Shannon & Khinchin meet Shore & Johnson

Are the axioms set by theory of information and statistical inference
different or can we find some overlap?

Let us consider the 4th SK axiom
in the form equivalent to composability axiom by P. Tempesta:

 
4. 

               if B is independent of A.

 
Entropies fulfilling SK and SJ: 

S(A ∪B) = f [f (S(A)) ⋅−1 f (S(B∣A))]−1

S(B∣A) = S(B)

S (P ) =q
f f p =⎣⎢

⎡(
i

∑ i
q)1/(1−q)

⎦⎥
⎤

f exp p log (1/p )[ q (
i

∑ i q i )]
Phys. Rev. E 101, 042126 (2020)



Non-equilibrium thermodynamics axioms

In ST lecture, you saw that Shannon entropy fulfills the second law of
thermodynamics for linear Markov dynamics with detailed balance.

But is it the only possible entropy?

Our axioms are:
1. Linear Markov evolution - 

2. Detailed balance - 

3. Second law of thermodynamics: 
where , and  where 

=ṗm (w p −∑n mn n w p )nm m

w p =mn n
st w pnm m

st

=Ṡ +Ṡi Ṡe

=Ṡe βQ ≥Ṡi 0 =Ṡi 0 ⇔ p = pst

  New J. Phys. 23 (2021) 033049

Then S = − p log p∑m m m

This is a special case of more general result connecting non-linear
master equations and generalized entropies



Summary


