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Critique of Shannon's information 5 >
Shannon ignores meaning

Descriptive information

Shannon's information

First critique

“The fundamental problem of communication is that of re-
producing at one point either exactly or approximately a mes-
sage selected at another point. Frequently the messages have
meaning; that is they refer to or are correlated according to
some systems with certain physical or conceptual entities.
These semantic aspects of communication are irrelevant to
the engineering problem. The significant aspect is that the
actual message is one selected from a set of possible messages.
The system must be designed to operate for each possible se-
lection, not just the one which will actually be chosen since
this is unknown at the time of design.”

Claude Shannon (1948),
A mathematical theory of communication.
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Critique of Shannon 5
nores meaning
Descriptive information

Shannon's information
First critique (cont’d)

o X random variable distributed according to p on finite set X.

o One of interpretations of H(p) = H(X) = mean number of binary
questions needed to determine X.

o Another (equivalent) interpretation: E(— log p(X)).

o Can define descriptive complexity of event {X = %} the number
[log ﬁ'\, since E([log ﬁ'\)& H(p) = the number of questions needed
to determine whether X = x.

e But numerous situations Where‘b“ unknown or worse not existing. E.g.

o What is the information content of these transparencies? Can they be
viewed as element of a set of all possible transparencies with a probability
vector on it?

o What is the heredity information of a biological organism encoded in its
DNA? Again, can it be viewed as a DNA realisation in the set of all possible
ones with a probability vector on it?

o)
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Critique of Shannon 5
nores meaning
Descriptive information

Shannon's information

Second critique

@ H assigns information to an ensemble of possible messages on finite set X

o If all messages equiprobable in X, then H = log |X| =number of bits to describe
generic message.

Says nothing about number of bits to convey individual message.

o A={0,1}.,
X = set of binary strings of 2 x 10° bits, i.e. X = A2X10°,

°

@ If p uniform probability vector, Shannon H(p) = 2 x 109 bits.

@ Hence, generically, words of X require 2 x 10 bits to be described.
°

But, appealing to meaning of message, some words admit substantially shorter
description, e.g.

e among the words of X, consider o := (01)109 = [l o= (il
e b

2109
o «a admits description “the repetition one billion times of the word 01"
requiring only 47 letters (and digits) of the Latin alphabet. Using
1ISO-8859-1 coding, only 47 x 8 = 376 bits necessary.
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Turing machine
Kolmogorov's complexity
Relationship with entropy

Algorithmic information

Intermezzo
What is a Turing machine?

|O/1’| 1 | 0 | 0 | 0 | 1 |u | Input/Output tape

Reading and writing head
(moves in both directions
according to instructions)

(M = (1570) ®)

X3

X2 Xn

X1 Xo

Finite control unit
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Intermezzo
What is a Turing machine (cont'd)?

A Turing machine M is the sextuple (X, A, B, §, xo, F) where
@ X is the finite set of internal states,
o A is the finite alphabet in which words of the language are written,
o B D A is the finite (extended) alphabet of the tape,
°

0:XxB— X xBx {L, R} is the transition function (L := —1 means
“move the head leftwards”’, R := +1 “move rightwards”),

@ xp is the initial state,

o F = Facc LI Frej is the set of halting states, split into Face = {Xacc} and
Frej = {xwej} (always assume that xo & F).

Class of Turing machines denoted T, more precisely 7(X, A, B, §, xo, IF).

o)
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Intermezzo

Example of Turing machine

Figure: Directed graph description of Turing machine recognising whether input of the

n 1
form 027, n € N. ERSITE N
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Algorithmic information

Turing machine
Kelmogoroy!slcomplaxity
Relationship with entropy
Intermezzo
What does a Turing machine?

o Turing machine = abstract theoretical construction modelling algorithms
that can be executed on classical computers.

o Configuration space S = X x A" x N At initial time t =0,
o machine gets input word o = a1 ... 4| € A%,
e internal state of the machine is Xo = xo, and

o the position of the head is at Pop = 1 (1st cell of the tape),

o i.e. initial configuration So := (Xo, Ao, Po) = (xo,ao, 1).

o Suppose configuration at time t is S, := (X, A¢, Pt) = (x, 3, p), denote
¢ = ap the letter at cell p of the tape.

3(x,¢) = (x',c,D) € Xx B x {-1,1} = S¢11 = (X', &/, p+ D),
where @’ = a1 ...ap_1¢pir .

o Hence, function § induces discrete time dynamical system on S.

Ay
Huw, September
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Intermezzo

How the Turing machine computes?

o Let 7:=T7y(a) =inf{t >0: Xt E ]F} € NU {400} be the stopping time of the
machine?.
\/)’(rb

@ If 7 < oo and

o if X; = Xacc then input « is accepted,
o if X; = x¢; then input o is rejected.

[

Suppose a accepted. Stripping word A, from all blank cells, results in a finite
word v € A*. v is the result of the computation corresponding to input a.

@ l.e. a Turing machine implements partial function
A* > ar Tury(a) =~ € A*
with domain -
dom(Tury) = {a € A* : 7 = 7(a) < 00, X7 = Xacc}-
A function f : A* — A* is computable if therel exists a Turing machine M such
that f = Tury,. Mind: A* isomorphic to N, hence f : N — N.

A Turing machine = a theoretical model that can compute anything a classical -
computer can conceivably compute. &

“As a matter of fact, t > 1 because xo ¢ F.
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Definition

Definition

Let A = {0,1}, A* = UpenA", M € T Turing machine. Kolmogorov’s complexity of
a € A* wrt. M:

Kum(a) := inf{|B], 8 € A* and Turm(B) = a},

with convention Ky () = oo if no such j exists.

@ 3 must be thought as a programme that when fed as input to computer M
produces output a.

@ Komogorov's complexity: the minimum length over programmes that halt and
print out & when run on computer M.

@ Machine U € T is universal, if for any other M € T, 3yy € A*, s.t.
VB € A", Tury(B) = Tury(viB).

ion and comple:;
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Universality of complexity

If U € T universal,

VM € T,3c := cu : Ku(@) < Km(a@) + cm,Va € A",

o Let 8:= Bum be programme s.t. Turm(Bm) = .

o From universality of U, there exists programme 7y simulating computer
M on U. Let ¢ := cy = |ym|.

o When string § = yufum fed to U, then U starts by simulating M and then
M uses S as input to produce . Now

[0] = |ym| + |Bum| = cm + | Buml-
Hence

Ku(a) = _ inf < inf M+ = cm + Km(a). a\
dey= . Wl g (eneldl = e i) G\

Huw, September 2 Information and compl:



Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Universality of complexity (cont'd)

Theorem (Invariance theorem)

For every pair of universal machines U,V € T, there exists c, s.t.

Va € A", |Ky(a) — Kv(a)| < c.

By universality: Ku(a) < Kv(a) + cv and Ky () < Ku(a) + cu. Hence

—cu < Ku(a) — Kv(a) < cv = |Ku(a) — Kv(a)| < ¢ := max(cu, cv).

o)
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Conditional complexity

o A pairing function ( -,- ) : A* X A* — A* is the map defined by

{a,B8) =018

@ The conditional Kolmogorov complexity of a a, given the hint v, is

Ku(or|[7) = inf{|B] : Turu(( o, 8)) = ),

if such a 8 exists, +00 otherwise.

o Ku(a|e)=infg{|B|: Turu(18) = a} = Ku(a).

—\ @ The hint ~ is supposed to reduce the complexity of «

o)
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Upper and lower bounds

Because of invariance, complexities w.r.t. different universal computers differ only by
constant = we can drop dependence on U.
Theorem (Upper bound)
There exist constants ¢ and c’, s.t. for all o € A*,
K(a) < lo] +logla] + ¢

and
K(o | rep(la])) < |af + ¢’.

Theorem (Lower bound)
Let A = {0,1}. For integer k > 1,
card{a € A* : K(a) < k} < 2K.

Meaning of lower bound: although some (very few) input words have short =
descriptions, most of them have not. N

ion and complexi
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Turing machine
Algorithmic information Kolmogorov's complexity
Relationship with entropy

Kolmogorov's complexity of a string

Complexity vs. entropy

Theorem (Asymptotically: average complexity = entropy)

Let (Xk)ken be sequence of independent X-valued r.v., with finite X, and
identically distributed with p. Write p") for probability vector of the joint law

of nrv., i p™(x,...,xa) = [I1_, pP(xc). Then, there exists constant c, s.t.
for all n,

1 |X|logn ¢

H(p) < = (xa,..., x)K <H =

E<E 3 POk rep(n) < H(p) + 1B €

Xl )EXT

E <M> o)

n

hence

’
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What is randomness?
Stochasticity, chaoticity, typicality: three aspects of randomness

Randomness Chaoticity and Kolmogorov's complexity

A question of the utmost importance
How to play “heads or tails"?

“Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin. For, as has
been pointed out several times, there is no such thing as a
random number — there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not
such a method.”

John von Neumann (1951),
Various techniques used in connection with random digits.

o Kolmogorov's theorem states that there exist
e an abstract probability space (2, F,P),
o on which can be defined an infinite independent sequence of random
variables X, : Q@ — {0,1} such that P(X, =1) =1/2 for all n € N.
o But this answer is existential, not constructive. We have merely displaced
the problem: how to simulate (Q, F,P)?
o Not surprisingly, the person who more deeply searched for a convincing
constructive answer to this problem was Kolmogorov himself

[Kolmogorov1965]. Ay
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What is randomness?
Stochasticity, chaoticity, typicality: three aspects of randomness
Randomness Chaoticity and Kolmogorov's complexity

Stochasticity, chaoticity, typicality

Three aspects of randomness

Sequence will be termed

stochastic, if fulfills conditions of frequency stability,

chaotic, if disordered with a Kolmogorov's complexity (another measure of
its informational content) proportional to its length, and

typical, if belongs to an effectively full measure set (in the sense that
non-typical sequences belong to an effectively negligible set.)

Huw, September

ion and complexi



What is randomness?

chaoticity, typicality: three aspects of randomness

Randomness and Kolmogorov's complexity

Stochasticity

Frequency stability

Let w = wowiws - - -, with w; € B = {0, 1}, a binary infinite sequence and
th)(u) =y L by (wk), for b € B. The sequence w is frequencially

(m
stable if lim & sw)

= pp, where p, € [0,1] and Zbeﬂ pp=1.

First attempt to define randomness = frequency stability [von Mises 1936,

(
1956, 1964]: sequence w is random if lim 2=~ w) _ 1

First order objection: w = 010101010101 - 'nIS frequenually stable but
.. does not look very random.

First order correction: not only sequence but also subsequences must be

frequentially stable. Here even (0000---) and odd (1111---)

subsequences are not.

Second order objection: frequency stability cannot be true for every

subsequence. Eg. for w = (wowiwa, - -+ ) construct integer sequence by

no = inf{n >0:w, =0}
and recursively, as long as nm_1 is finite,

Am = inf{n > nm_1: x, = 0}.

If inf{m : np = +00} = +o0, the subsequence (wnq,Wny,Wn,, - - - ) fails =N

by construction — to be frequentially stable.

Huw, September 2
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What is randomness?
city, chaoticity, typicality: three aspects of randomness
Randomness icity and Kolmogorov's complexity

Stochasticity

Frequency stability (cont’d)

Frequency stability not true for all subsequences but only legal ones.

Definition

Let v € B arbitrary finite binary word of length £ = |y| and w an infinite
binary sequence. Note

io = io(w, ) :==inf{m > £: Wim_gm =7} +1

ik = ik(w,y) == inf{m > ik—1 : Wim—r:m =7} + 1 for k > 0ifi ix—1 < oo.

Subsequence wjywj, wi, - - - is a y-legal subsequence of w. legal subsequences
are all y-legal ones when v € B™.

Definition

A sequence is stochastic if all its legal subsequences are frequencially stable.

ion and comple:;
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ity, chaoticity, typicality: three aspects of randomness
Randomness y and Kolmogorov's complexity

Stochasticity

Frequency stability (cont’d)

Let v = ~1-- -k an arbitrary finite word of lenght |y| = k and & a stochastic
sequence generated by a Bernoulli law with parameter 1/2. Then

lim *Z]l{'y} it = 2

n—oo

o If |y| =1, the result is a consequence frequencial stability for infinite
sequences.

o If |y| > 1, proceed by recurrence. Suppose formula correct v € B¥, k > 1,
ie. nLI)n;o 1 By Ly (Episivk—1]) = 2%( Every word ~ inside £ followed
either by 0 or 1 and sequence of successors of ~ is a legal subsequence of
&, hence is frequencially stable. Therefore,

19

):275»

1 :
e Z Loyoy (€piivn) = g = Jim,
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What is randomness?
Stochasticity, chaoticity, typicality: three aspects of randomness
Randomness Cha ity and Kolmogorov's complexity

Stochasticity
Frequency stability (cont’d)

The previous proposition means

o every finite word must appear infinitely many times inside an infinite
stochastic word,

in particular, every infinite stochastic sequence is Borel-normal,

the r.h.s. limit appearing in the proposition can be obtained as an almost
sure result of the strong law of large numbers,

however, here it holds for all stochastic sequences. It is as if stochastic
sequences were the subset of the universe stripped from the exceptional
sequences (of measure zero) that are precisely ignored by the “almost sure”
proviso of the strong law of large numbers.
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What is randomness?
Stochasticity, chaoticity, typicality: three aspects of randomness
Randomness Chaoticity and Kolmogorov's complexity

Chaoticity

Kolmogorov's omplexity

o Intuitively: easier to describe a sequence of 1000000 bits 0 than a random
sequence of 1000000 outcomes of a honest coin.

@ Because first sequence described by the very short sentence 1000000 bits
0" while the second requires the full display of the sequence.

o Kolmogorov's definition of random sequence as one that is intrinsically
algorithmically difficult to describe it shortly.

@ Uses equivalence of algorithm with Turing machine to give precise

definition of chaoticity in terms of Turing machines.

ion and comple:;
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What is randomness?
Stochaaticity, chaaticity, typicality: three aspects of randomness
Randomness ticity and Kolmogorov's complexity

Chaoticity

Kolmogorov complexity (cont'd)

/\owﬂm‘ 270 (2 c T
|4}

Definition
Denote A = {0,1}, A* = UpenA", T set of Turing machines, and rep : T — A* their
binary coding.
@ Kolmogorov’s complexity of oo € A*:
K(a) := inf{|rep(M)B| : M € T, 8 € A*, s.t. on input 3, M halts and Tury(8) =|a}.

@ Sequence « is chaotic, if

K(e) = O(lal).

o Previous results have shown that there exist chaotic sequences as well as
ones with short description.

o The previous definition implies that no algorithm run on a classical
computer can generate chaotic sequence.
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What is randomness?
Stochasticity, chaoticity, typicality: three aspects of randomness
Randomness Chaoticity and Kolmagom s complexity

Chaoticity

Impossibility of classical randomness

@ Previous result excluded the existence of classical algorithmic randomness.

@ Nagging question: is it possible to generate classical true randomness?

Example (Coin tossing revisited)

@ Coin viewed as solid body subject to laws of motion.

@ Coin idealised as disk with no thickness of radius R and mass m. Its barycenter coincides with
geometrical center.

@ An initial impulse is exerted on the coin resulting to an initial vertical velocity v, and an angular
velocity o around a rotation axis lying on the disk plane and passing through its center.
@ Afterwards, coin evolves subject to earth’s gravity following Newton's equations from time t = 0
to the first time top it touches the soil (assumed perfectly plastic to stop the coin instantaneously.)
@ Equations of motion
22 o ' dz
— (1) = with initial conditions: z(0) = R, — (0) = v,
de? t

da26 6
——(t) = 0, with initial conditions: 6(0) =0, —(0) = «,
de2 dt

have solution

2(t) = vot — %gterR; 6(t) = at, t € [0, to]- ’P\S
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What is randomn
S icity, chaot typicality: three aspects of randomness
Randomness Chaoticity and Kolmogorov's complexity

Chaoticity

The coin tossing machine

In [DiaconisHolmesMontgomery2007] the previous setting has been physically
realised!

Figure: The coin tossing machine.

o

"RENINES1
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randomness?
ity, chaoticity, typicality: three aspects of randomness
Randomness Chaoticity and Kolmogorov's complexity

Chaoticity

Impossibility of classical randomness (cont'd)

Example (Coin tossing revisited(cont'd))

o to positive solution of z(to) — R|sin6(t)| = 0.
o Coin shows up “heads” if
2nm — g < 0(to) < 2nm + g,ne N.
o Pre-images of "heads” the pairs (v, a) € R2 that show up “heads’, i.e.
ato € [(2n — L)m, (2n + L)n].
o Introducing variable ¢ = "gi (with dimensions of time), the family of

equations

1
a=(2n+ E)g(,ne N>

delimits in the («, ¢)-plane the alternating loci of parameters for which
coins end up "heads” or “tails”.

o)
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What is randomness?
Stochasticity, chaoticity, typicality thr:e aspects of randomness
Randomness Chaoticity and Kolmogorov's complexi

Chaoticity

And the solution reads ...

¢

Figure: The phase space (a, ¢), where « initial angular velocity and the initial
parameter ¢ = f, where v; is the initial vertical velocity g the gravity acceleration.
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Randomness complexity

Chaoticity

Lessons from this example

Apparent randomness due to lack of complete information on initial
condition.

Our fingers too crude to control initial impulse precisely.
If initial condition known with infinite precision, no randomness.
In principle: classical randomness is reducible.

Only true randomness in Nature of quantum origin because quantum
randomness is intrinsic and irreducible.

Huw, September 20:
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