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Channels Markovian coding
Channel classification

Channels

Markovian modelling

o Channel = general notion. Initially meant to study transmission of a
coded message through noisy medium.

o Presently, to mean arbitrary transformation of a word of a finite alphabet
to another word of a (may be different) finite alphabet.

o Input: random word X € X*, where X input alphabet.
o Output: random word Y € Y, where Y output alphabet..

e Transmission probability: conditional probability P(Y = y|X = x)
o Assume (for simplifjcity)

e input and output words of same lenght; i.e. |x| = |y| and
e input symbols emitted by independent source.

Both hypotheses can be relaxed at the price of more complicated formulz.
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Channels Markovian coding
Channel classification

Channels

Ideal and realistic

o Transmit 1 bit of information = transport the precise state — of physical
system encoding the bit — through a physical medium or process — the

channel:

| Transmission vector [ Ideal channel Realistic channel
electric current ideal cooper wire copper wire with > 0 resistivity
Hertzian beam empty space atmosphere
laser beam empty space or fiber fiber not 100% transparent
photon empty space or fiber fiber not 100% transparent
DNA cellular mitosis/meiosis | mutations

@ = transmission errors.
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Channels Markovian coding
Channel classification

Channels

Markovian modelling (cont'd)

(pn)nen, n € N, sequence defined by

X" xY" 3 (x,y) = pa(x,y) :=P(Y = ylx =x) € [0,1].

o Triple (X,Y, (pn)nen) discrete channel.

o Channel is memoryless if exists stochastic matrix P : X x Y — [0, 1] s.t.
forallneN, x € x € X" and y € Y", conditional probability reads
Yy S X
po(x,y) = [17, P(x, y).
Memoryless channel |dent|f£|ed with triple (X
IX] x |Y|-stochastic matrix. i

, P), where P a

Y
t
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Huw, September 2022 Information and complexity



0

?—}’\: %= V= Aald Po o ( A2, k\ ¢, € Tal)
M- W 2 e e
(A)/I) ?(6,0) = e, (/—&)(lﬂ’,)

- o>

P ( Y_ Ao ]}:o o) Ton®

g R K
A
o A= b,z,ﬂ} As o ¢
S Inskantanen? wds  Can L wewed @o
16: Aoc ('779\?1\7) cannel Y = C(%)l {0/;\0/ »/'o/M/‘S
° +10 o Me mo M
A

ﬂ/l’l A”
P ) )
aL 1 :



Channels Markovian coding
Channel classification

Sources and channels

Reminder

If source law is ;1 € PVx and channel transmission matrix is P, can compute
@ source entropy H(X)._ _ 9 v Ly )
e joint law of input-output k(x,y) =P(X = x,Y = y) = u(x)P(x,y)
h joint ent H(X,Y
(hence joint entropy H(X, Y)). _ %J\ Kingyy Rof K bay) ’QA?))
utgut

o output law v(y) = k(X ¥) = 2 cx M(X)P(x,y) (hence'o
entropy H(Y)),

e conditional entropies H(X|Y) and H(Y|X) and mutual information
(X :Y).

| B |

H(X|Y) ‘ I(X : Y) ‘ H(Y|X) |

6\
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Channels Markovian coding
Channel classification

Channels

Channel classification

Channels without loss: caracterised by H(X|Y) = 0; if output is known, no residual
uncertainty on input. Equivalently
I(X :Y)=H(X)— H(X|Y) = H(X).
Deterministic channels: their transmission matrix is deterministic i.e.
vx e X, Aly =y € Y, P(x,yx) = 1.

~—
If u source law,

XX Y3 (x,y) = k(xy) = m(x)P(x,y) = p(x)by,.y-

Hence H(X,Y) = H(k) = H}X) H(Y|X)=H(X,Y)—H(X)=0
and I(X : Y)=H(Y)— H(Y|X) = H(Y), i.e. if input is known, no
residual uncertainty on output.

Noiseless channels: without loss (H(X|Y) = 0) and deterministic (H(Y|X) = 0).
Hence /(X : Y) = H(X) = H(Y).

Useless channels: Vu € PV, I(X : Y)=0. Hence
0=1I1(X:Y)=H(X)— H(X|Y)=0= H(X) = H(X|Y),
i.e. input, X, and output, Y, variables independent.

Symmetric channels: continues to next slide ... NIVERSITE ‘%
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Channels Markovian coding
Channel classification

Channels

Channel classification (cont'd)

Symmetric channels (cont(d): S, permutation group on n objects and
(X,Y, P) memoryless channel. 0= n

Definition

Assume 3p € PVy and 3z € [0,1]%!, s.t.
Q Vx € X,Jox € Sy : Vy €Y, P(x,y) = p(oxy) and
Q Vy € X,Jo, € Six : Vx € X, P(x,y) = z(oyx).

Then channel is symmetric.
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Channels Markovian coding
Channel classification

Channel capacity

For fixed channel (i.e. fixed transmission matrix P), capacity of the channel is
the quantity
cap:=cap(P)= sup [(X:Y).

HEM;(X)

Remark

For the moment significance of capacity unclear. Two main results can be established:
@ if transmission rate R < cap, possible to transmit information with arbitrarily small error;

@ if R > cap, impossible to make transmission error vanish.

+ Q = no problem 1 + = no problem
+ Q = no problem + = problem.
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Channels Markovian coding
Channel classification

Channel capacity (cont'd)

Proposition

(X,Y, P) noiseless channel with capacity cap.
Q cap> 0.
@ cap < logcardX.
@ cap < logcardY.

Fix reasonable decoding rule A : Y — X guessing .

Definition

Channel (X,Y, P). The decision rule = guessing the emitted symbol x € X
when the received symbol is y € Y. The rule

A(y) € argmaédP’(X =zlY=y),yeY
=ZE

is called of maximum likelihood decision rule.

6\
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Channels Markovian coding
Channel classification

Channel capacity

Example

Channel (X,Y, P) with X = {x1,x2,x3}, Y = {y1, y2, y3}, and

05 03 0.2
Py :=P(Y=yX=x)=[02 03 05
03 03 0.4

Definition

A decision rule is a stochastic kernel

Ka:Y x X — [0,1]

assigning to every received symbol y € Y a probability Ka(y, x) for every
possibly emitted symbol x € X.

6\
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The fundamental transmission theorem

Coding of a noisy channel

Want to transmit n-letter words over X through memoryless channel (X,Y, P).
Consider

o either channel (X, Y, P) trasmitting (sequentially, i.e. letter by letter)
random words X = X1 --- X, € X" towards random words
Y =Yi--- Y, € Y" according to the transmission matrix P,

B(Y = y|X =x) = ] Pxi.yi) = Qu(x.y), T CYREN Y

e or extended channel to (X", Y", Q,), where Q, is the transmission matrix
between X" and Y" trasmitting (globally) random words X € X" towards
random words Y € Y" according to the transmission matrix Q,,

P(Y = y|x = X) = Q"(X7 Y)7
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The fundamental transmission theorem

Coding of a noisy channel (cont'd)

Actions considered separately

o Sets of words X" and Y" not of direct interest.
o Set of messages M encoded into words of X" and words of Y" decoded
into messages of M.
e Two mappings
o coding M > m— C(m) € X" and
o decoding (deterministic or random) rule Y" > y — A(y) € M.

@ coding @ @ decoding @

m} C(m) yi Aly)

/ y<1)
b
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The fundamental transmission theorem

Coding of a noisy channel (cont’d)

Actions considered sequentially

(4 )—{ codling |——(x7)——{channe -——( 7 )—{decoding|—(1)

;l): % (EN‘ )Z/
Clw) Yy —————————— Ay)

Net effect of channel: transform input message M = m (distributed according to )
¥ v~
n= dm) into random variable M’ € M of law @ *é“(’l;‘ﬂ ) Kyl )

m(m') = Pn(M' = m') = P(M' = m'|M = m)
= Z P(M' = m'|M = v)dm(v) = KcQuKa(m, m’)

veM

=3 > Ke(mx)Qu(x,y)Kaly, m')

x€EXN yeYn

=D Qn(C(m).y)da(y).m- RS

yeY”
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The fundamental transmission theorem

Channel capacity

Transmission error

o Individual transmission error

e(m) := e (m) = Ps, (M’ # m) Z Z Qn(C(m),y)da(y),m’

m'#my€eyYn

= > Qu(C(m). y)Lon (my (A(Y)).

yeyn

o Maximal transmission error

e e( ) = maxe!” )(m).
meM

o Mean transmission error

z:=2" = Z p(m)e™ (m).

meM

Huw, September 2022 Information and complexity



The fundamental transmission theorem

Channel capacity

Bloc codes

Definition

An [n, k]-bloc code (with k and n integers > 1) for a discrete memoryless channel
(X,Y, P) is the triple (M, C, A), where

@ M is the set of messages with cardM = k,
@ C: M — X" is the bloc coding of size n,
@ A:Y" — M is the decoding.

Denote C, more precisely K(n, k) (or simpy [n, k]), such a code. The image
C(M) C X" is the glossary of the code K. —

Definition

Let K an [n, k] bloc code.
@ Transmission rate R

@ A transmission rate R is attainable if exists sequence (KC¢)sen of [ng, k¢]-bloc

codes, such that
|0g‘X| ke "‘“

lim ——— — Rand lim enmax[K¢] =0.
|— o0 ny |— o0
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The fundamental transmission theorem

Channel capacity

Fundamental theorem of transmission

Theorem (Shannon theorem for transmission)

Let (X,Y, P) be a memoryless channel with capacity cap := cap(P).
e For every R < cap, exists sequence (K;)ien of [ne, ke]-codes, with
transmission rates R, := W — R, such that lim;_, . €[K¢] = 0.

o Conversely, for every R > cap and every sequence (K¢)een of [ne, ke]-codes
with blocs of increasing size (i.e. n1 < n2 < n3z < ...) and transmission
rates Ry > R, we have lim¢_, €[K¢] = 1.

A
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The fundamental transmission theorem

Channel capacity

Fundamental theorem of transmission (cont'd)
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Figure: For binary symmetric channel, with error rat@ red curve is the
Shannon boundary. Blue marks = transmission rates ual error probablllty for
the family of repetition ECC R,, with n =1,3,5,...,61.
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The fundamental transmission theorem

Channel capacity

Exercise: capacity of the “sum” of two channels

Exercise

@ Let K; = (X;,Y;, Pj),i = 1,2 be two channels.
@ Denote by X = X; B X, (if X3 and X3 are distinct then X3 H Xy = X3 U Xj; else, start by
distinguishing artificially the elements of X3 and X before taking their union.)

@ Similarly for Y = Y; B Y,.

@ Transmission matrix of the “sum” is the bloc matrix P = (F:)l Poz>

@ X a X-valued r.v. whose law described by 7 € PVyx and Y a Y-valued r.v. whose law determined
by the cannel.

@ Compute H(w). Hint: Let p = erxl 7(x) (hence 1 — p = ZxEXz 7(x).)

@ Compute H(X]|Y).
© Consider r.v. X3 and X2 with values in X1 and X2 and laws p1 and p2; denote by Y3 and Y> the
restrictions to Y1 and Y2 of Y. Show that H(X|Y) = pH(X1|Y1) + (1 — p)H(X2|Y2) and conclude

that
C(p) = sup I(X:Y)=H(p,1—p)+pC+(1-pC.
™Y xexy T(X)=p
G (el
Show that R p= o 2em-
Q@ Show that arg max, C(p) is p G Cal
©@ Conclude that capacity of “sum” channel reads‘2c -2G + 2228 4 (?' S &

———
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