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Optimization problems

Aiming to FIND LOW-ENERGY CONFIGURATIONS.

It's a fundamental problem in theoretical physics but also in computer science.
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Discrete variable instance: the random colouring
\
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The random colouring problem: phase diagram

N 7
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Considering the random coloring problem, the control parameter is the average connectivity. ™\ \ — oo

: O o 2
- Ca G| Average degree
: : :

2~ ere(N)

» For low enough degree, all solutions belong to a single Gibbs state.
» Above a critical connectivity the space of solutions splits into exponentially many different clusters.

» Above Cs, no solutions exist anymore. The ground state energy is zero before and then grows continuously
above this threshold.

F. Krzakala, J. Kurchan, Phys. Rev. E 76 (2007)
F. Krazakala, L Zdeborovd, Phys. Rev. Lett. 102 (2009)
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. From discrete to continuous degrees of freedom
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P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani. F. Zamponi, Annu. Rev. Condens. Matter Phys. 8 (2017)
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, Nature Communications 5, 3725 (2014)

Liquid phase: single smooth basin, reflecting the unbroken symmetry (ergodic phase);
Stable glass phase: many smooth and distinct basins characterizing the landscape

Marginal glass: infinitely broken phase — each basin breaks up into many (hierarchically organised) sub-basins.



Glass transition Jamming transition
N 4 N 7
from the liquid to an entropically rigid solid. transition from an “entropic”
From a fluid (high T, low density) to a glass (low rigidity to a mechanical rigidity.
T, large density).

qualitatively different microscopic dynamics
(well-separated time and stress scales)

Jamming: a fundamental theoretical paradigm to investigate low-energy phases
of glasses.

marginal stability condition: :
any small perturbation will push the glass into
a new state ~ equivalent

emergence of anomalous (soft) modes

—

~

interdisciplinary applications:

- neural networks
- optimization problems
- ecology




Physical implication of jamming

1. Elastic anomalies with respect to the Debye law associated with the Boson peak

D(w) = p()\)% = D(w)=w?! —— ordinary solids

D(w) ~ const. ——— jammed materials

2. Highly universal behavior related to marginal stability

® apower law in the distribution of forces at small values P (f) ~ fe 0 = 0.42311

® asimilar scaling for the gaps between the particles: g(h) ~h™" v = 0.41269

-y . .
<5+« Quantum fluctuations in low-temperature glasses

M. Wyart, Ann. Pays. Fr. 30 (2005); M. Wyart, SR Nagel, TA Witten, Europhys. Lett. 72 (2005)

P. Charbonneau, E. I. Corwin, G. Parisi, F. Zamponi, PRL 109 (2012);

P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5 (2014)

A. Altieri, Jamming and Glass Transitions in Mean-Field Theory and Beyond, Springer Nature (2019)
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How to define an appropriate model for describing glassy phases?
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A path from computer science to jamming: the perceptron
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® Define the gapsas: h;, = \/_N Zé;umz —0>0 Vu=1,... M
i=1

E. Gardner, B. Derrida, J. Phys. A: Math. Gen. 21 (1988)
S. Franz, G. Parisi, J. Phys. A: Math. Theor. 49, 145001 (2016)
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The energy cost due to the violated /satisfied clauseis H = B E hi@ ( —h 'u)
p=1

E. Gardner, B. Derrida, J. Phys. A: Math. Gen. 21 (1988)
S. Franz, G. Parisi, J. Phys. A: Math. Theor. 49, 145001 (2016)
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How to sketch the allowed space of solutions?
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Back to the spherical model: connections with sphere systems
N /7




Towards a new interpretation

SOFT SPHERES
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gap between two spheres
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The tunable parameter € allows us to interpolate between the hard and the soft regime.



The perceptron phase diagram
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Aim to investigate the effective behavior of such systems close to the jamming line &

to study the vibrational spectrum as a signature of an excess of soft modes.
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The effective potential in the spherical perceptron

The fundamental quantity to start with is the partition function in which additional Lagrange
multipliers are embedded to enforce the average value of particle positions:

N
. —BH[Z]+ > ui(xi—m;)
e~ CG0M) — /dfe i=1

Then, by extending the definition in the presence of both position variables and generalized forces,

we have:

N M o X Mo M o
5 - » —BH[h]+ > ziuit+ 32 vt 2o ithy (hy(z)-hy)
L(m, f) = Z miu; + Z quu — log / didhdhe i=1 p=1 B=1 0 peeee®
=1 u=1
G(m) =T(m, f)  evaluated in (g}’ ) 0




How to derive an effective potential?

Starting point to study marginal stability and the landscape of states:
definition of an effective potential as a function of a local order parameter
(average position/gap)

i

1. Let us write down a high temperature/small coupling expansion [1, 2] of the potential

2 . In fully connected systems in the thermodynamic limit the expansion can be safely truncated after a
finite number of terms

Z. Once identified the minima of the potential, one can study their basin of attraction and their stability.

[1] T. Plefka, J. Phys. A: Math. Gen. 15 (1982)
[2] A. Georges, ].S. Yedidia, J. Phys. A: Math. Gen. 24 (1991)
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The effective potential in the spherical perceptron

N\ /7

Let’s start defining the effective hamiltonian of our model

M
A 3 . )
Heprlz, h,h] = E lghiﬁ(—h“) —inhyhy(z) +ih,(h, + o)
p=1 ‘

v

irrelevant in the SAT phase formal parameter of the expansion

1 = 0 non-interacting degree
Performing an expansion in 7], we get this resulting expression at a mean-field level:

n =1 exact model

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301
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. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301



Message passing equations and inference
N\ /7

Once the effective potential is well-defined, we might want to obtain the stationary equations.

These Eqgs. can be solved iteratively.
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A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301

A. Altieri, Phys. Rev. E 97, 012103 (2018).
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Fig: Effective forces as a function of random gaps.

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301
A. Altieri Phys. Rev. E 97, 012103 (2018).




Beyond the fully-connected model

FULLY-CONNECTED MODEL FINITE CONNECTIVITY

—¥ Disordered systems on random lattices can mimic finite dimensional systems.

~—% Either in a random dilute version of the perceptron model or in finite-size systems,
an analysis beyond mean-field might be relevant.

—* Clearly, in the thermodynamic limit Fldilute model] = F[Bethe]

What is the actual role of higher-order corrections to the effective potential
close to jamming?



Higher order corrections to the effective potential |

We aim to compute further corrections to the effective potential

in order to investigate how it deviates from its critical trend upon increasing the distance from jamming.
The third order contribution in the Plefka-like approach reads:

or _
ond

e 3 ()

i on"

o()

(H) =g, + (HX2) o (H (H = (H) + T1)%)




Higher order corrections to the effective potential |

i

We aim to compute further corrections to the effective potential

in order to investigate how it deviates from its critical trend upon increasing the distance from jamming.

The third order contribution in the Plefka-like approach reads:

T, O(H) 2
gy = () =g+ (HY o)+ (H (H = (H) + 11)°)

Yo =S s — ) ) (anr)

- om; on™

o’ , N
e (He pctond Hofopmde L a2 Hlogg — <Heff>y/(i— q) — (Heps)oNq(F — )+

2 2
2 0L >
+{ Heps | 70 ==& M +
> < Ty N

_2/17179 /hur«bﬁ%‘r‘?‘&f qum7\\
\\FT W VR

In the jamming limit, all these terms give a vanishing contribution, confirming that the potential is well
described by binary interaction.



Thank you for your attention!
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Questions?
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