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Aiming to FIND LOW-ENERGY CONFIGURATIONS.
It’s a fundamental problem in theoretical physics but also in computer science. 

Optimization problems
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Aiming to FIND LOW-ENERGY CONFIGURATIONS.
It’s a fundamental problem in theoretical physics but also in computer science. 

TYPICAL INSTANCE:
Suppose you know a set of cities                     and a cost 

QUESTION: What is the path                          that passes one and only one through 
all the cities and minimises the total cost?

Optimization problems

1, 2, ...N wij

E(i1, i2, ..., iN) =
∑

k

wik,ik+1

Wij J
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Discrete variable instance: the random colouring
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A special class ofoptimization problem obtained when
the cost function is a sum of Local TERMS

Each n de i 1 N can be colored with G CNM
9 colors Ji 1,2 q 6 tedgesPotts spins nodes

E E So D cost function countinghow manymonochromatic
edges connect 2nodes with theSAME

awht
0 if the two variables are different
o if the two variables have the same color

Tye eey studied on

Erol0S Renyi graph Connectivity is a Random VARIABLE E 2MIN

Random Regular graph Connectuity a fixed1



Considering the random coloring problem, the control parameter is the average connectivity. 

For low enough degree, all solutions belong to a single Gibbs state.

Above a critical connectivity the space of solutions splits into exponentially many different clusters.

Above Cs, no solutions exist anymore. The ground state energy is zero before and then grows continuously 
above this threshold.

F. Krzakala, J. Kurchan, Phys. Rev. E 76 (2007)
F. Krazakala, L Zdeborová, Phys. Rev. Lett. 102 (2009) 

The random colouring problem: phase diagram
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C MIN
M N as

with fixed

Ii exp N
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From discrete to continuous degrees of freedom

P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani. F. Zamponi, Annu. Rev. Condens. Matter Phys. 8 (2017)
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, Nature Communications 5, 3725 (2014)

Liquid phase: single smooth basin, reflecting the unbroken symmetry (ergodic phase);

Stable glass phase: many smooth and distinct basins characterizing the landscape

Marginal glass: infinitely broken phase             each basin breaks up into many (hierarchically organised) sub-basins.
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from the liquid to an entropically rigid solid.
From a fluid (high T, low density) to a glass (low 

T, large density).

   qualitatively different microscopic dynamics
(well-separated time and stress scales)

transition from an “entropic“
rigidity to a mechanical rigidity.

- neural networks
- optimization problems
- ecology  

interdisciplinary applications:

Jamming: a fundamental theoretical paradigm to investigate low-energy phases 
of glasses.

emergence of anomalous (soft) modes
marginal stability condition:

any small perturbation will push the glass into 
a new state ~ equivalent

Glass transition Jamming transition
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Elastic anomalies with respect to the Debye law associated with the Boson peak

D(!) = ⇢(�)
d�

d!
) D(!) = !d�1

D(!) ⇠ const.

ordinary solids 

jammed materials

1.

2. Highly universal behavior related to marginal stability  

a power law in the distribution of forces at small values

a similar scaling for the gaps between the particles: 

P (f) ⇠ f✓

g(h) ⇠ h��

✓ = 0.42311

� = 0.41269

3. Quantum fluctuations in low-temperature glasses 

M. Wyart, Ann. Pays. Fr. 30 (2005); M. Wyart, SR Nagel, TA Witten, Europhys. Lett. 72 (2005)
P. Charbonneau, E. I. Corwin, G. Parisi, F. Zamponi, PRL 109  (2012); 

P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5 (2014)
A. Altieri,  Jamming and Glass Transitions in Mean-Field Theory and Beyond, Springer Nature (2019)

Physical implication of jamming
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How to define an appropriate model for describing glassy phases?
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hµ ⌘ 1p
N

NX

i=1

⇠µi xi � � > 0 8µ = 1, ...,M

Let us consider a vector                                      such that                                  

Take additionally                    random vectors         with                

Define the gaps as: 

x = {x1, x2, ..., xN}
NX

i=1

x2
i = N

M = ↵N ⇠µ N (0, 1)

A path from computer science to jamming: the perceptron

SAT
O

~⇠1

~x
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E. Gardner, B. Derrida, J. Phys. A: Math. Gen. 21 (1988)
S. Franz, G. Parisi, J. Phys. A: Math. Theor. 49, 145001 (2016)                             
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positive bias: 
convex optimization regime

negative bias: 
non-convex, critical regime

same universality class of hard spheres (HS)
usual perceptron classifier

 in machine learning and computer science 

E. Gardner, B. Derrida, J. Phys. A: Math. Gen. 21 (1988)
S. Franz, G. Parisi, J. Phys. A: Math. Theor. 49, 145001 (2016)                             
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E. Gardner, B. Derrida, J. Phys. A: Math. Gen. 21 (1988)
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The energy cost due to the violated/satisfied clause is H =
✏

2

MX

µ=1

h2
µ✓(�hµ)
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How to sketch the allowed space of solutions?
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20 convex optimization REGIME

AEtIiIE9EE i
convex Domains

ALLOWED configurations

3
r

J 0 NON CONVEX OPTIMIZATION REGIME

Disconnected islands ofsolutions
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Back to the spherical model: connections with sphere systems



SOFT SPHERES PERCEPTRON 

x = {x1, x2, ..., xN}{xi}

H[{xi}] =
✏

2

X

hi,ji

h2
ij✓(�hij)

hij = xi · xj � � hµ = ⇠µ · x� �

H[x] =
✏

2

MX

µ=1

h2
µ✓(�hµ)

positions of the spheres  reference position

gap between two spheres gap between 
the reference particle 
and spherical obstacle

✏The tunable parameter      allows us to interpolate between the hard and the soft regime. 

Towards a new interpretation

Energy Energy cost
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Aim to investigate the effective behavior of such systems close to the jamming line & 
to study the vibrational spectrum as a signature of an excess of soft modes. 

↵ = M/N packing fraction � change the pressure
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e�G(~m) =

Z
d~xe

��H[~x]+
NP

i=1
ui(xi�mi)

G(~m) = �(~m, ~f) evaluated in
@�(~m, ~f)

@f
= 0 .

The fundamental quantity to start with is the partition function in which additional Lagrange 
multipliers are embedded to enforce the average value of particle positions:

Then, by extending the definition in the presence of both position variables and generalized forces, 
we have:

⌘

�(~m, ~f) =
NX

i=1

miui +
MX

µ=1

fµvµ � log

Z
d~xd~hd~̂he

��H[~h]+
NP

i=1
xiui+

MP
µ=1

iĥµvµ+
MP

µ=1
iĥµ(hµ(x)�hµ)

The effective potential in the spherical perceptron
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1.

2.

3.

Let us write down a high temperature/small coupling expansion [1, 2] of the potential 

In fully connected systems in the thermodynamic limit the expansion can be safely truncated after a 
finite number of terms

Once identified the minima of the potential, one can study their basin of attraction and their stability. 

Starting point to study marginal stability and the landscape of states: 
definition of an effective potential as a function of a local order parameter 

(average position/gap)

[1] T. Plefka, J. Phys. A: Math. Gen. 15 (1982)
[2] A. Georges, J.S. Yedidia, J. Phys. A: Math. Gen. 24 (1991)

How to derive an effective potential?

25oooo



Heff [x, h, ĥ] =
MX

µ=1


�

2
h2
µ✓(�hµ)� i⌘ĥµhµ(x) + iĥµ(hµ + �)

�

Let’s start defining the effective hamiltonian of our model

irrelevant in the SAT phase formal parameter of the expansion

Performing an expansion in      , we get this resulting expression at a mean-field level:⌘
non-interacting degree

8
><

>:

⌘ = 0

⌘ = 1 exact model

The effective potential in the spherical perceptron

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301 26



q = 1
N

P
i m

2
i , r = � 1

↵N

PM
µ=1 f

2
µ , r̃ = � 1

↵N

PM
µ=1hĥ2

µi

�(m, f) = �N

2
log(1� q) +

X

µ

�(fµ)�
X

i,µ

⇠µi fµmip
N

+
↵N

2
[(r̃ � r)(1� q)]

�(f)|minvµ
= f · v � log

"
1

2
Erfc

 
� � vp
2(1� q)

!#
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MX
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�

2
h2
µ✓(�hµ)� i⌘ĥµhµ(x) + iĥµ(hµ + �)

�

Let’s start defining the effective hamiltonian of our model

irrelevant in the SAT phase formal parameter of the expansion

entropic term effective Hamiltonian reaction term

Performing an expansion in      , we get this resulting expression at a mean-field level:⌘
non-interacting degree

8
><

>:

⌘ = 0

⌘ = 1 exact model

The effective potential in the spherical perceptron

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301 27Be



@�

@mi
= 0 ) mi

✓
1

1� q
� ↵(r̃ � r)

◆
=

X

µ

⇠µi fµp
N

,

@�

@fµ
= �

0
(fµ)�

X

i

⇠µi mip
N

+ (1� q)fµ = 0

Once the effective potential is well-defined, we might want to obtain the stationary equations. 

These Eqs. can be solved iteratively.
xi

iĥµ

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301 
A. Altieri, Phys. Rev. E 97, 012103 (2018).

Message passing equations and inference
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@�

@mi
= 0 ) mi

✓
1

1� q
� ↵(r̃ � r)

◆
=

X

µ

⇠µi fµp
N

,

@�

@fµ
= �

0
(fµ)�

X

i

⇠µi mip
N

+ (1� q)fµ = 0

Once the effective potential is well-defined, we might want to obtain the stationary equations. 

These Eqs. can be solved iteratively.

fµ = � 1p
1� q

H
0
⇣

��vµp
1�q

⌘

H

⇣
��vµp
1�q

⌘

xi

iĥµ

A. Altieri, S. Franz, G. Parisi, J. Stat. Mech. (2016) 093301 
A. Altieri, Phys. Rev. E 97, 012103 (2018).

Message passing equations and inference
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Fig: Effective forces as a function of random gaps.
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FULLY-CONNECTED MODEL  FINITE  CONNECTIVITY 

What is the actual role of higher-order corrections to the effective potential 
close to jamming?

Disordered systems on random lattices can mimic finite dimensional systems.

Clearly, in the thermodynamic limit      [dilute model] =     [Bethe] F F

Either in a random dilute version of the perceptron model or in finite-size systems, 
an analysis beyond mean-field might be relevant. 

Beyond the fully-connected model
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@
3�

@⌘3
= hHi@hHi

@⌘
+ hH⌥2i+ hH (H � hHi+⌥1)

2i

⌥n =
X

i

(si �mi)
@

@mi

✓
@
n�

@⌘n

◆

We aim to compute further corrections to the effective potential 
in order to investigate how it deviates from its critical trend upon increasing the distance from jamming.

The third order contribution in the Plefka-like approach reads:

Higher order corrections to the effective potential

31as
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We aim to compute further corrections to the effective potential 
in order to investigate how it deviates from its critical trend upon increasing the distance from jamming.

The third order contribution in the Plefka-like approach reads:

Higher order corrections to the effective potential

@
3�

@⌘3
= hH3

eff i+ hHeff ihH2
eff i � 2hHeff i3 � hHeff i↵Nr(1� q)� hHeff i↵Nq(r̃ � r)+

+

*
Heff

0

@�
X

i,µ

�xip
N

⇠
µ
i fµ

1

A
2+

+

*
Heff

0

@�
X

i,µ

�fµp
N

⇠
µ
i mi

1

A
2+

+

� 2

*
H

2
eff

 
X

i

�xi

X

µ

⇠
µ
i fµp
N

+
X

µ

�fµ

X

i

⇠
µ
i mip
N

!+

In the jamming limit, all these terms give a vanishing contribution, confirming that the potential is well 
described by binary interaction. 
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Thank you for your attention!

03
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Thank you for your attention!

Questions?

Bole
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