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Analysis of the dynamics in the equilibrium and out-of-equilibrium regime 

Let’s start applying a coarse-grained description.

Goal: ending up with the Langevin equations for the dynamics of the single degree of 
freedom (spin, density, species abundance, etc.)
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What is the starting point

Let's consider the simple example of a 1 din particle
oupeed to an external bath Cat temperature T

Goal obtaining the Langevin equations namely a

self consistent stochastic description for the single
degree offreedom



Coupling of a massive particle (1d) to the environment 
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Coupling of a massive particle (1d) to the environment 
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Hamiltonian equations: particle + thermal bath
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Hamiltonian equations: particle + thermal bath
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Hamiltonian equations: particle + thermal bath
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Langevin equation for the effective particle 
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From ordered models to disordered (highly heterogeneous) systems
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Let's consider a Hamiltonian of the form
Ji rio h ri ri te Tsingsems

where Ji are RANDOM VARIABLES extracted from a given

probability distribution Consider for instance
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Two classes of complex landscapes

In mean-field glassy models precise meaning of the free-energy landscape via the TAP formalism,  
or more generally through the analysis of critical points of given index.

SPIN GLASS LANDSCAPES

STRUCTURAL GLASS LANDSCAPES

q0

q1

• Sub-exponential number of free-energy minima;
• Sub-extensive barriers;
• Convergence of one-time observables to their equilibrium thermodynamic limit;
• Thermodynamic and dynamical transition temperature generally coincide.

• Exponential number of free-energy minima;
• Extensive barriers among stationary points;
• No convergence of one-time observables to the equilibrium value; 
• Nonetheless, long-time dynamics explores configurations with the largest & marginally stable basins 

(threshold states).
• Different dynamical and thermodynamic glass transition temperatures.
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Analysis of the dynamics
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Basics of Dynamical Mean-Fiel Theory (DMFT)
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DMFT traces its origins in condensed matter and strongly correlated electron systems 
with potential applications to high-T superconductors and cluster extensions.

More recently:
 

Aging of spin glasses, Rheology and amorphous materials, Ecology & Evolution, Inference. 

1) Identify the correct degrees of freedom and treat the rest of the system as a bath

2)  The bath is statistically equivalent to singled-out degree of freedom. 

H = Hsyst +Henv +Hint

Thermal bath

Equilibrium dynamics: response and correlation related by FDT;

Aging: extremely slow functions. The thermal bath is aging with the rest of the system. Then?



Why a self-consistent dynamical formalism?

Closed-form equations can be recovered only for a narrowed class of solvable models: 

spherical p-spin model with

truncated SK model (“soft-spin" version)

high-dimensional random manifold

p > 2 [Cugliandolo, Kurchan (1993); Crisanti, Horner, Sommers (1993); Barrat (1997)]

[Sompolinsky, Zippelius (1982); Bouchaud, Cugliandolo, Kurchan, Mézard (1997); 
Kennett, Chamon (2001); Cugliandolo-Kurchan (2007); Chamon, Cugliandolo (2007)]

[Franz, Mézard (1994); Cugliandolo, Kurchan, Le Doussal (1996);
Cugliandolo, Le Doussal (1996)]
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Why a self-consistent dynamical formalism?

Goal: determining the (local) asymptotic behaviour of dynamical systems without explicitly solving the equations.

dsi(t)

dt
= −

∂V

∂si
+

1

(p− 1)!

∑

i2...ip

Ji,i2...ipsi2 ...sip + ηi(t)

Closed-form equations can be recovered only for a narrowed class of solvable models: 

spherical p-spin model with

truncated SK model (“soft-spin" version)

high-dimensional random manifold

p > 2 [Cugliandolo, Kurchan (1993); Crisanti, Horner, Sommers (1993); Barrat (1997)]

[Sompolinsky, Zippelius (1982); Bouchaud, Cugliandolo, Kurchan, Mézard (1997); 
Kennett, Chamon (2001); Cugliandolo-Kurchan (2007); Chamon, Cugliandolo (2007)]

[Franz, Mézard (1994); Cugliandolo, Kurchan, Le Doussal (1996);
Cugliandolo, Le Doussal (1996)]

The dynamics we are focusing on is induced by the following Langevin equations:

White noiseMulti-spin interactions

P (Ji1...ip) =

√

Np−1

πp!
exp

(

−

J2

i1...ip
Np−1

p!

)
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〈ξ(t)ξ(t′)〉 = 2T δ(t− t′) +
p

2
Cp−1(t, t′)

C(t, t′) ≡ 〈s(t)s(t′)〉the correlation and the response functions being: ,

A mean-field treatment allows us to write

ds(t)

dt
= −

∂V (s(t))

∂s
+

p(p− 1)

2

∫ t

0

dt′R(t, t′)Cp−2(t, t′)s(t′) + ξ(t)

Disentanglement of  fast and slow timescales

R(t, t′) ≡
∂〈s(t)〉

∂h(t′)

∣

∣

∣

∣

∣

h=0
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∣

∣

∣

∣

∣

h=0

t− t
′
∼ O(1) t/t′ ∼ O(1)

C(t, t′) = (qd − q1)f1(t− t′) + q1f2

(

t

t′

)

C(t, t0)

t� t0

qd

aging

q1
TTI regime

TTI regime out-of-equilibrium
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t

0

dt
′′
R(t, t′′)Cp−2(t, t′′)s(t′′) !

t

t−τ
RTTI(t−t

′)
[

CTTI(t − t
′) + q1

]p−2
s(t′)dt′+

t−τ

0

RA(t, t′)Cp−2

A
(t, t′)s(t′)dt′
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0
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′′
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t

t−τ
RTTI(t−t

′)
[

CTTI(t − t
′) + q1

]p−2
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t−τ

0

RA(t, t′)Cp−2

A
(t, t′)s(t′)dt′

!

1

T (p− 1)

(

q
p−1

d − q
p−1

1

)

s(t)−
2

p(p− 1)

t

t−τ

νTTI(t− t′)ṡ(t′)dt′
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Effective process for the single variable

Similarly, for the noise-noise correlation function

〈ξTTI(t)ξTTI(t
′)〉 =

{

[CTTI(t− t′) + q1]
p−1−qp−1

1

}

p

2
+2T δ(t−t′) = T [νTTI(t− t′) + 2δ(t− t′)]

〈ξA(t)ξA(t
′)〉 =

p

2
Cp−1

A (t, t′)

A. Altieri, G. Biroli, C. Cammarota, J. Phys. A.: Math. Theor. 53 (2020).
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ṡ(t) ! −

∂V (s)

∂s
+

p

2T
(qp−1

d − qp−1

1
)s(t)−

t

t−τ

νTTI(t− t′)ṡ(t′)dt′+ ξTTI(t)+h(t)

The original equation can thus be rewritten as

h(t) ≡
p(p− 1)

2

t−τ

0

RA(t, t
′)Cp−2

A (t, t′)s(t′)dt′ + ξA(t) Slowly evolving effective field
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ṡ(t) ! −

∂V (s)

∂s
+

p

2T
(qp−1

d − qp−1

1
)s(t)−

t

t−τ
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Similar results obtained for a particle in a random potential
*[Cugliandolo, Kurchan, J. Phys. Soc. Japan (2000)]

Mapping into a stochastic frictional process for the single spin subject to a quasi-stationary effective potential

P (s|h(t)) =
1

Z(h)
exp

[

−
V(s, h(t))

T

]

V(s, h(t)) = V (s)−
p

4T
(qp−1

d − q
p−1

1
)s2 − h(t)s

The Boltzmann-Gibbs distribution at a given temperature.



Effective process for the single variable

Mapping between a stochastic frictional process for the single spin and a quasi-stationary probability distribution

P (s|h(t)) =
1

Z(h)
exp

[

−
V(s, h(t))

T

]

V(s, h(t)) = V (s)−
p

4T
(qp−1

d − q
p−1

1
)s2 − h(t)s

Boltzmann-Gibbs distribution at a fixed external temperature.

qd

q1

25A. Altieri, G. Biroli, C. Cammarota, J. Phys. A.: Math. Theor. 53 (2020).

What do the overlap parameters represent? 

What is their role in the statics?
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Mapping with the statics
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qd

q1

q1

q1

q0

q0

n

q1

The mutual correlation functions

at the initial and five times

can be elated to the

overlae PARAMETERS tgd.gs
of the Parisi solution

gd Self overlap
91 innermost block overlap IRSB parametrization

90 off diagonal valve

e



Physical requirement for aging: the dynamics in the TTI sector has to be marginal,        
i.e. the relaxation to the plateau occurs via a power-law.

Write an equation the inverse response function (Dyson):

RTTI(ω) =
1

R
−1

0
(ω)− Σ(ω)

t

−∞

R−1

0
(t− t′)s(t′)dt′ = −

∂V (s)

∂s
+ ξTTI(t) + h(t)

27

Aging regime: one slow timescale
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Aging regime: one slow timescale

The condition accounting for the existence of a marginal dynamics is

∂R−1
TTI(ω)

∂ω
=

−i− ∂Σ(ω)/∂ω

1− p(p−1)
2 qp−2

1 R2
TTI(ω)

lim
ω→0

∂R
−1

TTI
(ω)

∂ω
= ∞

The condition accounting for the existence of a marginal dynamics is

∂R−1
TTI(ω)

∂ω
=

−i− ∂Σ(ω)/∂ω

1− p(p−1)
2 qp−2

1 R2
TTI(ω)

lim
ω→0

∂R
−1

TTI
(ω)

∂ω
= ∞
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Aging regime: one slow timescale

The condition accounting for the existence of a marginal dynamics is

∂R−1
TTI(ω)

∂ω
=

−i− ∂Σ(ω)/∂ω

1− p(p−1)
2 qp−2

1 R2
TTI(ω)

lim
ω→0

∂R
−1

TTI
(ω)
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= ∞

The condition accounting for the existence of a marginal dynamics is

∂R−1
TTI(ω)

∂ω
=

−i− ∂Σ(ω)/∂ω

1− p(p−1)
2 qp−2

1 R2
TTI(ω)

lim
ω→0

∂R
−1

TTI
(ω)

∂ω
= ∞

Able to recover the missing equation on the effective temperature / onset of non-ergodicity.

The denominator is singular for

corresponding to a vanishing eigenvalue of the stability matrix.

1 =
p(p− 1)

2
q
p−2

1

(

〈s2〉 − 〈s〉2

T

)2

A. Altieri, G. Biroli, C. Cammarota, J. Phys. A.: Math. Theor. 53 (2020).



Equilibrium versus non-equilibrium

The continuous line with a breaking point corresponds to a systems, 

like the p-spin spherical model (only one effective T).

The dot-dashed line corresponds to a case with an infinite number of 
timescales (aka infinite effective temperatures).
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Interdisciplinary applications 



Inference problems

Agoritsas, Biroli, Urbani, Zamponi  J. Phys. A (2018)                          
Mannelli, Biroli, Cammarota, Krzakala, Urbani, Zdeborová, PRX (2020)  

Mignacco, Krzakala, Urbani, Zdeborová, J. Stat. Mech. (2021) 32

In inference, it is usually important to identify the condition for which the gradient 
flow has a positive correlation with the signal. 

h



Inference problems

x
∗

ξ1

Agoritsas, Biroli, Urbani, Zamponi  J. Phys. A (2018)                          
Mannelli, Biroli, Cammarota, Krzakala, Urbani, Zdeborová, PRX (2020)  

Mignacco, Krzakala, Urbani, Zdeborová, J. Stat. Mech. (2021) 33

In inference, it is usually important to identify the condition for which the gradient 
flow has a positive correlation with the signal. 

L1(x
∗) =

1

M

M∑

µ=1

φ(ξµ · x∗)

Evidence of very rough energy landscapes with many spurious minima, which can trap the dynamics.

However, gradient descent/SGD are often observed to work well even far away from the “easy” region of 
the landscapes.

Goal: 

deriving the algorithmic threshold 
of the gradient flow.

Loss function:



        with                         (growth rate/carrying capacity).

noise immigration rate

Main assumptions:

Demographic fluctuations modelled by Gaussian white noise with                      and                                                    

Complex behaviour described by random interactions         with                        ,                             ,                                                   αij

M. Barbier, J.F. Arnoldi, G. Bunin, M. Loreau, PNAS 115 (2018)
G. Bunin, Phys. Rev. E 95 (2017)

A. Altieri, F. Roy, C. Cammarota, G. Biroli, Phys. Rev. Lett.  126 (2021)

Dynamical equations for the relative species abundances                , withNi ≥ 0

ρi = ri/Ki

i = 1, ..., S

Vi(Ni) = −ρi

(

KiNi −

N2

i

2

)

〈ηi(t)ηj(t
′)〉 = 2T δijδ(t− t′)

dNi

dt
= −Ni



∇Ni
Vi(Ni) +

∑

j(j !=i)

αijNj



+
√

Niηi(t) + λi

〈ηi(t)〉 = 0

〈αij〉 = µ/S 〈αijαji〉c = γ〈α2

ij〉c〈α2

ij〉c = σ2/S

34

The random Lotka-Volterra equations for species-rich ecosystems

Ṅ = N

{

1−N − µ〈N(t)〉 − ση(t) + γσ2
t

0

ds 〈χ(t, s)〉N(s) +H(t)

}

DMFT formalism:

a



Conclusions and Perspectives

New approach proposed to deal with cases whose resulting integro-differential equations on the    
correlation and response functions DO NOT simplify. 

Definition of self-consistent stochastic process for the single degree of freedom in a thermal bath;

Determination of a marginal stability criterion in models with one slow timescale;

Equation for the slow degrees of freedom with an infinite # of timescales;

Mapping with the statics & determination of the main quantities of interest
(violation parameter/effective temperature, overlaps, distribution of the effective fields in the F-RSB ansatz).
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Thank you for your attention!


