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Biophysics
Motivation, examples, focus



Why biophysics?

We can SEE cells and biomolecules under the microscope

We can MEASURE their physical properties (forces, position, etc.)



Cells

100 μm

Human cells

Bacteria

Virus

0.1 μm



Life under the microscope
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Cell division



Cell division

Iva Tolic lab (Ruder Boskovic Institute, Zagreb, Croatia)
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Classical mechanics: Newton’s laws
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Muscle contraction at the microscale

Cross-bridge cycle



“I hydrolyze ATP and I move”

Vesicle transport by Kinesins
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“I hydrolyze ATP and I move”

ATP     ADP + Pi ΔG = -14 kB T

Vesicle transport by Kinesins

Kinesin



The mesoscale

Orders of magnitude
Nanometers (10-9 m) 
Microsecnds (10-6 s) 
ZeptoJoules (10-21 J)

Two-side challenge: natural and artificial

Understand nature: molecular motors  
Build artificial nanomachines 
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bead inside the solid gel bulk, as sketched in Fig. 1(a).
After 180 s, the laser power is suddenly decreased again to
20 mW so that the temperature is homogenized by heat
diffusion into the bulk in less than 1 ms resulting in a very
efficient quench of the droplet to the final temperature
T < Tgel. At T the liquid inside the droplet solidifies in
about 1 h and the particle, trapped in the center of the drop
by the focused beam, is a probe of this relaxation dynam-
ics. The quenching procedure is repeated 60 times in order
to perform the proper ensemble averages.

Immediately after the quench we record the time evolu-
tion of the x position [see Fig. 1(a)] of the trapped particle
measured by a position sensitive detector whose output is
sampled at 8 kHz and acquired by a computer. The reso-
lution of the measurement of x is better than 1 nm [10,12].
In order to characterize the particle dynamics we measure,
using active microrheology [10], the time evolution of the
viscous drag coefficient !0 of the particle and the largest
correlation time "0 of the fluid. This is done by measuring
the response of the bead at a time-dependent sinusoidal
force F of amplitude 87 fN and frequency f applied to the
bead. The force F ¼ kx0 is obtained through the modula-
tion of the beam focus position x0. The results for !0 and
k"0, measured at f ¼ 5 Hz, are shown in Fig. 1(b). First,
for t & 200 s after the quench there is a transient regime
where the droplet is purely viscous, "0 ’ 0, whereas !0

increases in time. In this regime !0 and "0 do not depend
on f. For t > 200 s the liquid gelatin inside the drop has a
behavior similar to that observed in macroscopic samples
[6,9]; i.e., the liquid drop is actually undergoing gelation.
We will study the nonequilibrium statistical properties of
the bead dynamics in the very first 200 s after the quench
where the liquid gelatin inside the drop is mainly viscous
and the elasticity is negligible with respect to k, as shown
in the inset of 1(b), where we plot k"0=!0 as a function of
time.

We begin by analyzing the variance #xðtÞ2 of x at time t
after the quench. #xðtÞ2 is computed over 60 independent
quenches and over a short time window $t ¼ 0:1 s around
each value of t in order to improve the statistics, as de-
picted in Fig. 2(a). The time evolution of #xðtÞ2 is plotted
in Fig. 2(b). At the beginning, #xðtÞ2 is almost 3 times the
equipartition value kBT=k that would be obtained at equi-
librium. This shows the presence of a stochastic force on
the particle due to the transient formation of the gel net-
work. This force weakens compared to the thermal fluctu-
ations becoming negligible at $20 s so that #xðtÞ2 slowly
decreases in time, reaching the equilibrium value for t *
20 s. This relaxation time scale is 2 orders of magnitude
larger than the initial viscous relaxation time of the parti-
cle: "k ¼ !0=k ¼ 65 ms. Finally for t * 200 s, #xðtÞ2
starts again to decrease because of the appearance of a
strong elastic component of the gel confirming the direct
measure of !0, "0, shown in Fig. 1(b), and justifying that
for t % 200 s the gelatin elasticity is negligible. During
this relaxation process x remains Gaussian as shown in the
inset of Fig. 2(b).
In Fig. 2(b) we also plot the time evolution of #xðtÞ2

measured, after the same quenching procedure, in a
Newtonian fluid (glycerol 60 wt% in water) with the
same viscosity of the initial sol phase of gelatin. In this
case, the particle dynamics must settle into an equilibrium
state in a time $"k after the quench [13]. Indeed in
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FIG. 2 (color online). (a) Time evolution of x after a quench.
#xðtÞ2 is computed over $t ¼ 0:1 s and over 60 independent
quenches. (b) Time evolution of #xðtÞ2 (normalized by kBT=k)
after the quenches performed in gelatin (&) and glycerol (dashed
line). Inset: Probability density of x at t ¼ 0:5 and 50 s for the
quench in gelatin. The solid lines are Gaussian fits.

FIG. 1 (color online). (a) Schematic representation of the
experimental setup to perform a local quench in a sol droplet
around a trapped particle in the gel bulk. (b) Time evolution of
the viscous drag coefficient !0 of the particle and the correlation
time "0 of the gelatin droplet measured after the quench at
f ¼ 5 Hz. Inset: k"0=!0 as a function of time.
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Brownian motion is a stochastic process 
Each realization of the same experiment produces a different 
output trajectory, even if the initial condition is the same 
 

We study the particle position not as a “number” but as a 
probability density 

1827

1905

x ! ⇢(x)

Statistical nature
1D 2D
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Minimal stochastic 
models in biophysics

Molecular motors and beyond



Biophysics YouTube lectures 
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Ion channels

Open Close



Biopolymer dynamics
Actin polymerization and depolymerization



Biopolymer dynamics
Microtubule growth and shrinkage



Molecular motors
New J. Phys. 22 (2020) 123038 A Guillet et al

Figure 1. (a) Sketch of a one-dimensional (1D) biased random walk with hopping rates k+ and k− with displacement X.
(b) Example of a trajectory X(t) (black), its maximum Xmax(t) (red), minimum Xmin(t) (blue) and its average over many
realizations 〈X(t)〉 (thick grey) as a function of time t. The trajectories are obtained from a numerical simulation of a 1D biased
random walk with hopping rates k+ = 1.05 and k− = 0.95 in the positive and negative direction, respectively. The entropy
production along the trajectory X(t) is S(t) = AX(t), with A = ln(k+/k−) = 0.1.

An individual trajectory of a motor starting from a reference state X(0) = 0 at time t = 0 is denoted by
X[0,t] = {X(s)}t

s=0. It contains jumps j = 1, 2, . . . from state x−j to state x+
j that occur at stochastic times tj.

The entropy production in unit of kB associated with this trajectory is S(t) = ln[P(X[0,t])/
P(X̃[0,t])] = AX(t) [31]. Here P is the path probability and X̃[0,t] = {X(t − s)}t

s=0 is the time reversed path.
Thus, the entropy production S(t) is a stochastic variable that undergoes a biased random walk of step size
A with trajectories S[0,t] = AX[0,t]. For A positive, both the average velocity
v = 〈X(t)〉/t = (k+ − k−) = 2ν sinh(A/2) and the average rate of entropy production σ = 〈S(t)〉/t = vA
are positive. Here and in the following we denote by 〈·〉 averages over many realizations of the process X(t).
However, due to fluctuations, the stochastic variables X(t) and S(t) can in principle take any value with
finite probability and even become negative.

We now derive exact expressions for the statistics of the minimum Xmin(t) = minτ∈[0,t] X(τ) and the
maximum Xmax(t) = maxτ∈[0,t] X(τ) of the position of the motor with respect to its initial position, see
figure 1(b) for illustrations. We also discuss the global minimum and maximum of the stochastic entropy
production S(t) = AX(t) denoted by Smin(t) and Smax(t), respectively. We first discuss the statistics of the
global extrema of the position Xmin ≡ limt→∞ Xmin(t) and Xmax ≡ limt→∞ Xmax(t), and of the entropy
production, Smin and Smax. The probability that the global minimum of the discrete position is −x, with
x ! 0, is P(Xmin = −x) = Pabs(−x) − Pabs(−x − 1), where Pabs(−x) = e−Ax [31] is the probability that X(t)
reaches an absorbing site in −x at a finite time. Thus, the global minimum follows a geometric distribution

P(Xmin = −x) = P(Smin = −Ax) = e−Ax(1 − e−A), (3)

for x ! 0 and P(Xmin = x) = P(Smin = Ax) = 0 for x < 0. From equation (3) we obtain the mean global
minimum of a 1D biased random walk and of its associated entropy production:

〈Xmin〉 =
−1

eA − 1
, 〈Smin〉 =

−A
eA − 1

. (4)

Therefore, the global minimum of the position diverges in the limit of a small bias A whereas the entropy
production minimum is bounded for all A ! 0 and obeys the infimum law 〈Smin〉 ! −1 [31]. This bound is
saturated in the limit of small affinity, which corresponds to the diffusion limit [60]. Because S(t) and X(t)
have positive drift, the average global maxima of entropy production and displacement are not defined.
However the difference limt→∞[〈Smax(t)〉 − 〈S(t)〉] = A/(eA − 1) is finite and obeys symmetry properties
that we discuss below.

Finite-time extrema statistics of the 1D biased random walk may be obtained from the finite-time
absorption probabilities

P(Xmin(t) = −x) = P(Smin(t) = −Ax) (5)

= Pabs(−x; t) − Pabs(−x − 1; t),

3

Single-molecule experiments

Biased random walks

Collective effects

Flashing ratchets
Biophysical reviews 12.2 (2020): 419-423
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Enzymatic cycles

arXiv:1710.03499 (2017)

6

FIG. 4. Q for various motors as a function of f and [ATP]. A. Kinetic model for myosin-V consisting of three cycles F ,
E , and M [38]. Q(f, [ATP]) calculated at [ADP] = 70 µM and [Pi] = 1 mM (See also Fig. S11D for 2-D heat map). B.
(N = 7)-unicyclic kinetic model for cytoplasmic dynein, and the corresponding Q(f, [ATP]) calculated based on the kinetic
parameters provided in Ref. [39] at [ADP] = 70 µM and [Pi] = 1 mM (See also Fig.S13D for 2-D heat map). C. Q(f, [ATP])
at [ADP] = 70 µM and [Pi] = 1 mM (See also Fig.S13D for 2-D heat map) using the kinetic model for F1-ATPase from Ref.
[40]. Other quantities such as V , D, and A as a function of f and [ATP] are provided in Figs. S11, S13, S14. D. Q([ATP]) at
fixed f (upper panels) and Q(f) at fixed [ATP] (lower panels) for kinesin-1 (magenta), myosin-V (orange), and dynein (green).

100 µM . [ATP] . 1 mM, f . 1 pN). Thus, E-cycle can
be regarded a futile F-cycle, which is activated when
chemical driving force is balanced with a load f at low
[ATP]. Q(f, [ATP]) calculated at [ADP] = 70 µM and
[Pi] = 1 mM using the rate constants from Ref. [38] (see
SI for details and Fig. S11) reveals no local minimum
in this condition. However, at [ADP] = 0.1 µM and [Pi]
= 0.1 µM, which is the condition used in Ref. [38], a
local minimum with Q = 6.5 kBT is identified at f =
1.1 pN and [ATP] = 20 µM (Fig. S12D, Table I). Both
values of f and [ATP] at the suboptimal condition of
myosin-V are smaller than those of kinesin-1 (Table I).
In (N=2)-unicyclic model for myosin-V (Fig. S15) [47],
Q has local valley around f ⇠ 2 pN and [ATP] ⇠ 10

µM. Similar to the result from the multi-cyclic model
with [ADP] = 0.1 µM and [Pi] = 0.1 µM, the values of
f and [ATP] along the valley of Q are smaller than the
values optimizing Q for the kinesin-1 (Table I).

Dynein: Dynein is a family of (�)-end directed cy-
toskeletal motor. There are two groups of dyneins: cy-
toplasmic and axonemal dyneins. Cytoplasmic dyneins
involve the transport of cellular cargoes whereas axone-
mal dyneins are responsible for generating the beating
motion of cilia or flagella by sliding microtubles in the
axonemes. Here we study cytoplasmic dyneins whose lo-
comotion along microtubules is pertinent to the issue dis-
cussed here.
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Membrane-free compartments
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 [yellow in (D)] into (green) versus posterior ^^^^^H^^^HHB^BSBH^h^^^^^SE^CML^
 The average flux per embryo (mean ^^^^^^^^^^H^^BB?^^^^H^^^H?K^i^feft^2??l^fl?flBvi1
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 Position along AP axis Relative probability
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 Position along AP axis

 GFP-PGL-1 spdS(RNAi)
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 Time relative to growth onset [min]
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 Time relative to peak [min]

 Fig. 2. Spatiotemporal
 changes in P granule size.
 (A) P granules through
 out the one-cell embryo
 are initially dissolving;
 blue and red traces are
 intensities of individual
 GFP::PGL-l-labeled P
 granules in the anterior
 and posterior, respective
 ly. Trajectories in the mid
 dle (black) are omitted
 for clarity. (B) mex-5(RNA?)
 (n = 5 embryos, blue
 curve) abrogates the an
 terior dissolution seen in

 WT GFP::PGL-1 embryos
 (n = 8, red curve),
 whereas par-l(RNAi)
 (n = 6, green curve)
 gives rise to dissolution
 throughout the embryo,
 as with spdS(RNAi) em
 bryos before symmetry
 breaking (n = 8, black curve). Data are shown as the mean ? SEM. (C) Example
 anterior (A) and posterior (P) GFP::PGL-l-labeled P granule (each recentered),
 showing anterior dissolution, and posterior dissolution followed by condensation.
 (D) Time sequence of GFP::PGL-1 embryo treated with spdS(RNAi) for >24 hours
 to delay symmetry breaking. P granules completely dissolve, but then reform

 upon symmetry breaking. (E) Fluorescence intensity in anterior (A) versus posterior
 (P) regions of a confocal slice through the middle of the embryo, after complete
 P granule dissolution in spdS(RNAi) GFP::PGL-1 embryos. Regions of measure
 ments indicated (mean ? SEAA, n = 8). (F) The growth rate of P granules in the
 embryo posterior (arrow).
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 REPORTS I
 may reflect a higher concentration of soluble compo
 nents due to complete dissolution (Fig. 2F) (9). These
 observations suggest a localization mechanism in
 which the condensation point is lowered in the pos
 terior, causing condensation of components released
 by dissolved anterior P granules (see below).

 A clue to the molecular control of this behavior

 comes from the proteins MEX-5 and PAR-1, which
 are implicated in the degradation of P granule
 components and P granule stability (6-8). The

 MEX-5 concentration is high throughout the em
 bryo before symmetry breaking (75, 14), when

 we found negative values of cj across the AP axis
 [Fig. 2B, spd-5(RNAi)]. Upon symmetry breaking,

 PAR-1 reduces the concentration of MEX-5 in the

 posterior (13-15); the resulting MEX-5 concen
 tration gradient was opposite to the dissolution/
 condensation gradient, cj (fig. S3). Thus, high MEX-5

 levels correlate in space and time with P granule
 dissolution. Consistent with this, when we de
 pleted embryos of MEX-5, the value of ? ap
 proached zero across the embryo, indicating
 weakened P granule dissolution [Fig. 2B, mex
 5/6(RNAi)]. In embryos depleted of PAR-1, which
 have uniform, high levels of MEX-5 (13-15), the
 value of cj was strongly negative across the AP
 axis [Fig. 2B, par-1(RNAi)], and P granules dis
 solved throughout (6) (movie S6). Thus, PAR-1 and

 MEX-5 may localize P granules mainly by con
 trolling their dissolution and condensation, rather
 than by spatially regulating degradation.

 Our results thus far imply that localization of
 P granules depends on the ability of subunits to
 transition between a soluble form and a condensed

 phase, which appears to be spherical. P granules
 became nonspherical when they reattached to the
 nucleus at the four-cell stage, when they appeared
 similar to liquid drops wetting a surface (fig. S8
 and movie S9). Together with the observation that
 P granules occasionally fused with one another, this
 suggests that the protein/RNA mixture comprising

 P granules may behave as a liquid. Indeed, the
 modularity and weak RNA affinity exhibited by
 RNA-binding proteins (16) would enable rapid
 molecular rearrangements that could give rise to
 liquid-like behavior.

 For a simple liquid (e.g., water), applied shear
 stresses induce flows, unlike an elastic solid, which

 maintains a constant deformed shape under stress
 (17). We induced shear stresses across the large
 nuclear-associated P granules within the tube-like
 worm gonad (fig. S2) (9). P granules flowed off
 nuclei, dripped, and often fused into one larger
 drop; these are classic liquid behaviors (Fig. 3, A
 and B, and movies S7 to S9). Germ granules in
 zebrafish may show similar behaviors (18).

 Liquids exhibit such flow behavior owing to
 fast internal molecular rearrangements. Consistent
 with this, when we selectively bleached half of
 large GFP::PGL-1 P granules at the eight-cell
 stage, we observed fluorescence recovery on a
 rapid time scale, t = 5.9 ? 0.6 s (SEM, n = 5
 GFP::PGL-1 P granules); concomitantly, the
 adjacent unbleached region decreased in fluo
 rescence intensity, suggesting rapid diffusion

 within the granule (Fig. 3D). Similar observa
 tions were made with GFP::GLH-1 embryos
 (movie S12). Using the length scale of these
 large granules, L ~ 4 um, we obtained a dif
 fusion coefficient on the order of D ~ L2li ~

 1 um2/s. By making the simplifying assump
 tion that they behave as equilibrium Newtonian
 liquids, we could use the Stokes-Einstein
 relation to obtain a rough estimate of P granule
 viscosity, x\ ~ 1 Pas (9). This is -1000 times as
 large as the viscosity of water, similar to that of
 glycerol, and comparable to values seen in

 2 3 4 5
 Size [^m]

 Fig. 3. P granules behave like liquids. (A) Jetting P granule (red outline) from a dissected GFP::PGL-1 germ
 line nucleus (lower left, not visible). Shear direction, white arrows. (B) Dripping P granules (red
 outline) from a dissected GFP::PGL-1 germ line. Nucleus (N), white line. (C) Time scale of drop
 breakup and fusion events in dissected germline and early embryos, as a function of droplet size. The
 black line is a linear fit, yielding a ratio of viscosity to surface tension (n/y) ? 2 s/um (D) Fluorescence
 recovery after photobleaching (FRAP) of a large nuclear-associated GFP::PGL-l-labeled P granule
 from an eight-cell embryo (upper left sequence; top to bottom = 20 s). Kymograph is along the black
 line in left sequence. Red denotes high intensity and blue, background intensity. The intensity
 decreases in the unbleached region (fluorescence loss in photobleaching, FLIP) as the bleached region
 recovers. From exponential fits, in the bleached region tFRAp = 4.7 s, and in the unbleached region
 tfl,p = 5.7 s.

 Pre- Symmetry Breaking  Post- Symmetry Breaking
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 Fig. 4. Proposed mechanism of P granule localization. (A) Concentration of soluble components
 versus position along AP axis (posterior to right). Before symmetry breaking, the condensation point C^t
 (dashed black line) is high across the embryo. The cytoplasmic concentration of P granule components

 Ccyt (green line) is much lower than C^t, and the embryo is undersaturated with P granule components
 everywhere. (B) Undersaturation leads to dissolution of P granules (large green spheres) into diffusing
 components (small green circles). (C) Symmetry breaking decreases C^t in the posterior, below C^. (D)
 Consequently, posterior P granules condense from soluble components, whereas anterior P granules
 continue dissolving. The spatial dependence of ?^ arises from gradients in polarity proteins, including
 MEX-5 (gray) and PAR-1 (blue).
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 distances. These NMR restraints were also supplemented
 by a limited number of intersubunit inter-residue
 distance restraints derived from disulfide mapping
 measurements that used single-cysteine mutant forms of
 DAGK. Care was taken to avoid possible motional
 complications to the disulfide mapping-derived
 distances. The structure was calculated using standard
 restrained molecular dynamics and simulated annealing
 protocols.
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 Germline P Granules Are Liquid
 Droplets That Localize by Controlled
 Dissolution/Condensation
 Clifford P. Brangwynne,1,2,3 Christian R. Eckmann,1 David S. Courson,3 Agata Rybarska,1
 Carsten Hoege,1 J?bin Gharakhani,2,3 Frank Jiilicher,2,3 Anthony A. Hyman1,3*

 In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm
 and eggs. In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich
 P granules localize to the posterior of the one-cell embryo. Localization of P granules and their
 physical nature remain poorly understood. Here we show that P granules exhibit liquid-like
 behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and
 surface tension. As with other liquids, P granules rapidly dissolved and condensed. Localization
 occurred by a biased increase in P granule condensation at the posterior. This process reflects a
 classic phase transition, in which polarity proteins vary the condensation point across the cell.
 Such phase transitions may represent a fundamental physicochemical mechanism for structuring
 the cytoplasm.

 Starting from the fertilized egg, the cells of a
 developing embryo differentiate to give
 rise to somatic tissues, as well as maintain

 ing an immortal germ line that will generate sperm
 and oocytes. Germ-cell specification is mediated
 in part by ribonucleoprotein granules assembled

 from RNA and RNA-binding proteins, although
 the precise function of these granules remains un
 known (1,2). In Caenorhabditis elegans, the germ
 granules are called P granules. P granules are ini
 tially distributed uniformly throughout the unpolar

 ized one-cell embryo. Upon symmetry breaking,
 the embryo polarizes along the anterior-posterior
 (AP) axis: Cortical and cytoplasmic flows devel

 op (3), the polarity proteins PAR-1 and PAR-2
 appear on the posterior cortex, and P granules
 become localized to the posterior half of the cell
 (Fig. 1A and movie SI; all embryos are -50 urn
 long); the embryo then divides, giving rise to a
 P granule-containing progenitor germ cell and
 a non-P granule-containing somatic sister cell.
 Two processes have been proposed to mediate
 this posterior localization: (i) P granule migra
 tion by cytoplasmic flow (4-6) and (ii) subse
 quent disassembly or degradation of remaining
 anterior P granules (5-8). However, evidence
 supporting either of these mechanisms is sparse.

 To study P granule localization in the one-cell
 embryo, we used three-dimensional (3D) particle
 tracking to monitor the movement and fluores
 cence levels of P granules labeled with green
 fluorescent protein (GFP)-tagged PGL-1 (9, 10)
 or GLH-1 (9,11), both constitutive P granule com
 ponents. We found that some P granules move into

 the embryo posterior; however, close to the cortex
 there was a flux of P granules into the anterior that

 was of similar magnitude to the posteriorly di
 rected flux (Fig. 1, D to F). This behavior closely

 matched the overall flow behavior of cytoplasmic
 material such as yolk granules (6), quantified by
 particle imaging velocimetry (PIV) (Fig. 1, B and
 C) (9). P granules cannot preferentially localize to
 the posterior by convection in the surrounding
 cytoplasm alone. Thus, flows have little or no role
 in P granule localization (9).

 We next examined intensity changes of in
 dividual P granules during localization. We found
 that P granule size is spatiotemporally controlled
 (Fig. 2 A). We determined the average rate of rel
 ative intensity change of a population of P granules,

 ?, at different points in space and time (9); neg
 ative c\ indicates P granule dissolution (i.e., shrink
 age) and positive c\ indicates P granule condensation
 (i.e., growth). Before symmetry breaking, c\ was
 negative across the entire embryo, indicating over
 all P granule dissolution (fig. SI). After the onset
 of symmetry breaking, ? stayed negative in the
 anterior but became positive in the posterior of the

 embryo, indicating posterior condensation [Fig. 2,
 B (WT, wild type) and C]. As predicted from this
 analysis, if we delayed symmetry breaking using
 RNA interference (RNAi) to deplete the centro
 somal protein SPD-5 (12), ? stayed negative across
 the whole embryo, and P granules appeared to
 dissolve completely [Fig. 2B, spd-5(RNAi)\ When
 these embryos eventually broke symmetry, P gran
 ules appeared to form de novo, in the vicinity of
 posterior PAR proteins (Fig. 2D and figs. S5 and
 S6). This occurred concomitant with a depletion
 of soluble P granule components from the an
 terior cytoplasm (Fig. 2E), and in the absence of
 notable cytoplasmic flows (movie S3). As with

 WT embryos, the rate of P granule condensation
 peaked before leveling off. The maximum of the
 posterior growth rate in spd-5(RNAi) embryos was
 three times as high as that in WT embryos, which

 1Max Planck Institute for Molecular Cell Biology and Genetics,
 01307 Dresden, Germany. 2Max Planck Institute for the Phys
 ics of Complex Systems, 01187 Dresden, Germany. 3Marine
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Endocytosis in human cells

Physics tools: 
  statistical physics, population dynamics

Imaging of endocytic vesicles (Zerial Lab)

intensity s. More precisely, n(s)Ds is the number of Rab5-
positive endosomes per cell for which the LDL fluorescence
intensity is in the interval between s and s + Ds (see Supple-
mental Experimental Procedures). Fluorescence intensity (FI)
is measured in arbitrary units. The total number of cargo-
carrying Rab5-positive endosomes per cell is N =

RN
0 nðsÞds

and the total LDL fluorescence in the endosomes is
F=

RN
0 snðsÞds. In the course of cargo uptake, the change

over time of n(s) reflects the collective endosome dynamics.
Figure 1 shows the experimentally measured cargo distribu-
tions n(s) at different times after addition of 2.5 mg/ml LDL in
semi-logarithmic (Figure 1E) and double-logarithmic scales
(Figure 1F) to better visualize the differences of distributions
over the wide range of cargo intensity and number of struc-
tures. At early times, the distribution n(s) is narrow and peaked
at a small intensity value whose amplitude increases with time,
showing that LDL initially enters many endosomes in small
quantities (Figure 1E). Subsequently the distribution n(s)
broadens, showing that LDL concentrates at higher amounts
in an increasing number of endosomes (Figure 1F). After about
30min, the distribution n(s) has reached steady state. Here, the
distribution of cargo amounts in individual endosomes has
a broad tail and ranges over three orders of magnitude of fluo-
rescence intensity (Figure 1F). Note that, due to the limited

A

B

C

Figure 2. Theoretical Description of Endosome Network
Dynamics

(A) Schematic representation of endosomal trafficking.
Degradative cargo enters via endocytosis and is distrib-
uted into a network of early Rab5-positive endosomes. It
is finally transferred to late Rab7-positive endosomes
and lysosomes.
(B) The schemes (a–f) represent the different processes
that govern the distribution of cargo in the early endo-
somes. The state of the endosomal network is described
by the number n(s,t)ds of endosomal objects per cell,
carrying the cargo amount in the interval between s and
s+dsat time t. Thecargodistributionn(s, t)obeysageneral
dynamic equation that accounts for the processes (a–f).
(a) Homotypic fusion of two endosomes carrying the
cargo amounts s and s0 leads to the replacement of the
two endosomes by a new one carrying the LDL amount
s + s0. Such fusion occurs at the rate K(s,s0). (b) Two
endosomes carrying the cargo amounts s and s0 can be
produced by the fission of endosomes carrying the cargo
amount s+ s0. Suchfissionoccursat the rateK0 (s,s0). (c)As
cargo flows, new endosomes carrying the amount s of
cargo appear at the rate A(s). (d) Early endosomes
disappear from the system by undergoing conversion to
late endosomes at the rate kd(s). Finally, endosomes can
take up additional cargo by fusingwith endocytic vesicles
(e) and can lose cargo by budding off vesicular structures
(f) [17, 18]. The currents vin(s) and vout(s) are the average
cargo amount per unit of time respectively gained and
lost by an endosome carrying the cargo amount s. Cargo
enters the network via the processes (b) and (e). The total
cargo influx is J =

RN
0 ðsAðsÞ+ ninðsÞnðsÞÞds.

(C) Choice of parameters defining the Entry-Fusion-Exit
model.

sensitivity of the light microscopy, the number
of endosomes with small amounts of LDL is
underestimated.

Theoretical Description of Endosomal
Dynamics
In order to understand the time-dependence
of n(s), we formulated a general theoretical

description of endosomal dynamics, which is based on the
idea that cargo distribution evolves over time as a result of
endosome fusion and fission in addition to the in-flux and
out-flux of cargo, see Figure 2A. If two endosomes fuse homo-
typically, they form a new endosome, which carries the com-
bined cargo of the original ones (Figure 2B, a). If an endosome
undergoes homotypic fission, the cargo is redistributed into
two newly formed endosomes (Figure 2B, b). The total cargo
influx into the early endosomal network denoted by J could
occur by the heterotypic fusion of cargo-carrying endocytic
CCV with Rab5-positive and cargo-carrying early endosomes
(Figure 2B, e). Alternatively, cargo-loadedRab5-positive endo-
somes may appear either by conversion or coalescence of
CCV or by their fusion with a pre-existing endosome devoid
of cargo (Figure 2B, c). Finally, cargo can leave the early endo-
somal network either when cargo-carrying Rab5-positive early
endosomes are converted into Rab7-positive late endosomes
(Figure 2B, d) or via the heterotypic fission of cargo-carrying
vesicles (Figure 2B, f). The evolution of the network over time
is described by a general kinetic equation for the cargo distri-
bution n(s), which accounts for all the key processes governing
the network (see Figure 2B). The parameters that enter such
equation are the rates at which each process occurs. The
equation of Figure 2B is a generalization of the Smoluchowski

Quantitative Study of Endosomal Network Dynamics
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Hearing in bullfrogs

Myosin 1c 
(Myosin 7a) 

The value of the coefficient !XX could be estimated from the
Brownian motion of a free fiber’s tip. The coefficient !!X,
however, was more difficult to determine. We assumed for
simplicity that the two coefficients were equal: !!X " ! # !XX.
Eq. 12 is then identical to Eq. 6.

Results
Spontaneous Hair-Bundle Oscillations. When bathed in artificial
endolymph, many of the $2,500 hair bundles in the sensory
epithelium of the bullfrog’s sacculus oscillated spontaneously.
As reported by the motion of a flexible fiber attached to the top
of an oscillating hair bundle, the motion consisted of alternating
slow components followed by fast strokes in the opposite direc-
tion (Fig. 1A). The probability distribution of the bundle’s
position was bimodal, with a local minimum near X % 0 (Fig.
1B). This distribution resembles that observed for sound pres-
sure at the frequency of an SOAE from the human ear (28).

Hair-bundle movements fluctuated both in amplitude and in
phase. To characterize these fluctuations, we computed the
autocorrelation function C(t) % &X(t)X(0)' and its Fourier
transform, C̃("), which defines the spectral density of bundle
motion at each frequency # % "!(2$). The spectral density
peaked at a nonzero frequency, here #0 % 8 Hz (Fig. 1C). The
width of the function at half its maximal value, !#0 % 2.8 Hz,
describes the frequency fluctuations around #0, which reflect a
loss in phase coherence of the bundle oscillation. This property
is clearly illustrated by the autocorrelation function (Fig. 1D):

C(t) assumes the form of a damped oscillation that decays
toward zero with a correlation time % % 1!($!#0), 115 ms in this
example.

Active vs. Passive Systems: The Fluctuation–Dissipation Theorem. Are
these properties alone sufficient to determine whether sponta-
neous hair-bundle oscillations are generated by an active pro-
cess? Stochastic displacements similar to those observed could in
principle occur at equilibrium in a system buffeted by thermal
forces. A definitive proof that the observed oscillation is active
must invoke the breakdown of a general thermodynamic prin-
ciple (29). The fluctuation–dissipation theorem (FDT) provides
a useful instance of such a principle that assumes no physical
properties of the system under investigation other than thermal
equilibrium. The theorem asserts that the autocorrelation func-
tion of a passive system is directly related to the system’s linear
responsiveness &(t) to small external forces. The relation may be
written for t ( 0 as

&)t* ' +
1

kBT
dC)t*

dt , [14]

in which kB is the Boltzmann constant and T the temperature
(reviewed in ref. 30).

The Fourier representation of Eq. 14 leads to

C̃)"* ' 2kBT
&̃,)"*

"
. [15]

Fig. 1. Properties of spontaneous oscillations at $8 Hz by a hair bundle from the sacculus of the bullfrog’s inner ear. (A) Monitoring the position of a glass
fiber attached at the hair bundle’s top measured the bundle’s spontaneous movement. This oscillation had a root–mean–square magnitude of 28 nm. The data
were smoothed by forming the running average of a number of points equal to one-fifth of a cycle, and drift in the baseline was subtracted. (B) The probability
distribution of bundle positions was bimodal, with a local minimum near the bundle’s mean position. This histogram is asymmetrical; the bundle spent more
time during negative than positive deflections. (C) The signal’s spectrum displayed a broad peak and was fitted by Eq. 21 (smooth curve). We found D ' 0.14
pN2!s, ( % 9 )N!s!m+1, k ' 80 )N!m+1, and #0 % "0!(2$) % 8 Hz; the ratio (!k ' 115 ms characterized the correlation time of the bundle’s movements. To obtain
the spectrum, we averaged the spectral densities computed from 15 measurements of bundle oscillations, each 2 s in length. The resulting spectrum was further
smoothed by forming the running average of the number of points sampling a 1-Hz frequency band. The error bars specify standard deviations from these mean
values. (D) The autocorrelation function of bundle motion, obtained as the inverse Fourier transform of the spectral density, revealed an average oscillation
frequency of $8 Hz. The signal’s envelope, which relaxed towards zero with an exponential time constant of 115 ms, reflected the period over which the
oscillation’s phase lost coherence. Analog signals were sampled at a frequency of 2.5 kHz. B, C, and D derive from the data shown in A.
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Fig. 4.1 Feynman’s ratchet
and pawl motor. Picture taken
from [12]

γ ẋ(t) = −α(t)
∂V (x(t))

∂x
+ ξ(t), (4.1)

where ξ(t) is a Gaussian white noise with zero mean and correlation 〈ξ(t)ξ(t ′)〉 =
2kT γ δ(t − t ′) and α(t) is a dihcotomic noise that takes two possible values 0 and
1 with the same probability. When α = 0, the particle is free and when α = 1 the
particle feels the periodic asymmetric potential described by

V (x) =
{

Vmax
a

x
L if 0 ≤ x

L ≤ a,

− Vmax
1−a

( x
L − a

)
+ Vmax if a ≤ x

L ≤ 1,
(4.2)

where Vmax is the maximum height of the potential, L is the period of the potential,
and a is a parameter that controls the asymmetry of the potential (only if α = 1/2
the potential is symmetric). Equation (4.2), together with the periodic boundary
condition V (x ±L) = V (x), describe a seesaw periodic asymmetric potential where
a net particle current can be observed in the negative direction if a > 1/2 and in the
positive direction if a < 1/2. In Fig. 4.2 we show the potential of the flashing ratchet
and the probability distribution of the position of the particle when the potential
is switched on and off. As it can be seen in the figure, if the potential is initially
switched on, the particle first equilibrates with the thermal bath and the distribution
of the position is peaked around the minimum of the potential. When the potential is
switched off, the particle diffuses freely and its distribution is Gaussian. Because of
the asymmetry of the potential, it is more likely that the particle jumps to the right in
the potential of Fig. 4.2. A net current to the right is induced in this case by switching
this potential randomly or periodically [13].

A discrete version of the flashing ratchet can be considered if we coarse-grain
the spatial dimension in bins of equal spacing &x . In this case, the position of the
Brownian particle can be labeled by a discrete variable indicating in which bin the
particle is located. By knowing the position in this coarse grained description and

1. Feynman, Leighton, Sands, Hafner, Am.J.Phys.33,750 (1965)  
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to find a one-to-one map that fully eliminates the correla-
tions of both the forward (x1, . . . , xn) and the backward
(xn, . . . , x1) time series. In that case, the removal of the
correlations in the backward series is enough to provide
a lower bound for �1:

�1 � kBfsD[p(⇠)||q(⇠)] ⌘ �̂1 , (4)

where fs = (�t)
�1 is the sampling frequency and

D[p(⇠)||q(⇠)] =
R

d⇠ p(⇠) ln[p(⇠)/q(⇠)] is the KL diver-
gence between the univariate distributions p(⇠) and q(⇠).
We estimate D[p(⇠)||q(⇠)] ' �

P
i p̂i ln(p̂i/q̂i) where p̂, q̂

are empirical densities, and the sum runs over the num-
ber of histogram bins. We introduce the prefactor � =

1�pKS  1, where pKS is the p-value of the Kolmogorov-
Smirnov statistic between p(⇠) and q(⇠), to correct the
statistical bias of our KL divergence estimate [41]. The
proof of the bound (4) and further details of the estimate
are found in Appendices A and B.

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [24], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [42].

value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [43].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
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right column) and are therefore i.i.d. processes in good
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We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [24], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
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Langevin equation ẋ = �V 0
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may provide additional information about timescales of
the underlying active process [43].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
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protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
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peroxisomes, organelles filled with NADH, flavins, and cyto-
chromes (Figure 3F). These organelles are required to satisfy
the heavy metabolic demands of the hair bundle and synaptic
machinery. Hair-bundle motion thus appeared to be linked to
light absorption by intracellular chromophores in mitochondria
and peroxisomes.

Thermal Pulses
A portion of the energy delivered to intracellular chromophores
by ultraviolet light might be released as heat. By measuring the
temperature with the calibrated resistance of a glass micropi-
pette (Yao et al., 2009), we sought to quantitate this effect
and determine whether it underlay light-evoked hair-bundle
motion (Figure S4). As expected from water’s low absorption
of ultraviolet light, irradiation of saline solution did not generate
a measurable temperature increase. Irradiation of 25 hair cells,
however, resulted in detectable local increases in temperature

(Figure 4A). The action spectrum of this effect matched that of
the hair bundle’s displacement, suggesting that the same mo-
lecular source mediated both bundle motion and heat produc-
tion (Figure 4B).
Measurements of the light-evoked temperature changes

along the sides of three dissociated hair cells revealed that the
locale of maximal heat production was near the cellular apex,
adjacent to the cuticular plate (Figure 4C). Furthermore, the tem-
perature gradient above a hair cell irradiated in the sensory
epitheliummatched amodel of heat diffusion frommitochondrial
sources (Figure 5). If heat arises from the irradiation of intracel-
lular absorbers, we might expect other cell types to experience
temperature changes as well. Indeed, ultraviolet illumination of
red blood cells and extramacular saccular cells also resulted in
local temperature increases (Figure S5A). Although the tempera-
ture increase produced by irradiation varied between cell types,
the action spectrum of the effect was similar among all cells,
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Figure 3. Localization and Action Spectrum of Intracellular Absorbers
(A) A schematic diagram portrays the optical pathway by means of which a digital micromirror device projected light patterns onto specific parts of an isolated

hair cell.

(B) The cell was held in a polished glass pipette with the apical end of the soma and the hair bundle protruding. The three colored rectangles outline the areas

irradiated for the correspondingly colored records in the following panel.

(C) Hair-bundle displacementwasmaximal when the largest area was illuminated (blue trace; blue rectangle in B). Irradiation of the hair bundle alone did not evoke

motion (magenta trace; magenta rectangle in B). Irradiation of the area immediately below the hair bundle elicited nearly maximal motion (orange trace; orange

rectangle in B), indicating that this region contained most of the light absorbers responsible for the response. Power densities: blue trace, 4.8 MW$m!2;

magenta trace, 4.3 MW$m!2; orange trace, 4.4 MW$m!2.

(D) The action spectrum of light-evoked hair-bundle motion shows a maximal response in the 400 nm wavelength band. The means and SDs for 11 cells are

plotted. The width of each wavelength band is indicated in the corresponding color along the abscissa. The average deflection in the 400 nm band was 35.2 nm,

whereas the RMS noise was 1.9 nm.

(E) Left: a differential-interference-contrast image shows a dissociated hair cell. Middle: ultraviolet illumination revealed the autofluorescence of intracellular

NADH in the same cell. Right: blue light excitation evoked the autofluorescence of cytochromes and oxidized flavins in the identical cell.

(F) A transmission electronmicrograph depicts a plane of section parallel with the apical surface of the saccular sensory epithelium. Densely packedmitochondria

surround the cuticular plate at the apex of a hair cell’s soma.
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and peroxisomes.
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A portion of the energy delivered to intracellular chromophores
by ultraviolet light might be released as heat. By measuring the
temperature with the calibrated resistance of a glass micropi-
pette (Yao et al., 2009), we sought to quantitate this effect
and determine whether it underlay light-evoked hair-bundle
motion (Figure S4). As expected from water’s low absorption
of ultraviolet light, irradiation of saline solution did not generate
a measurable temperature increase. Irradiation of 25 hair cells,
however, resulted in detectable local increases in temperature

(Figure 4A). The action spectrum of this effect matched that of
the hair bundle’s displacement, suggesting that the same mo-
lecular source mediated both bundle motion and heat produc-
tion (Figure 4B).
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adjacent to the cuticular plate (Figure 4C). Furthermore, the tem-
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light absorption by intracellular chromophores in mitochondria
and peroxisomes.
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A portion of the energy delivered to intracellular chromophores
by ultraviolet light might be released as heat. By measuring the
temperature with the calibrated resistance of a glass micropi-
pette (Yao et al., 2009), we sought to quantitate this effect
and determine whether it underlay light-evoked hair-bundle
motion (Figure S4). As expected from water’s low absorption
of ultraviolet light, irradiation of saline solution did not generate
a measurable temperature increase. Irradiation of 25 hair cells,
however, resulted in detectable local increases in temperature

(Figure 4A). The action spectrum of this effect matched that of
the hair bundle’s displacement, suggesting that the same mo-
lecular source mediated both bundle motion and heat produc-
tion (Figure 4B).
Measurements of the light-evoked temperature changes

along the sides of three dissociated hair cells revealed that the
locale of maximal heat production was near the cellular apex,
adjacent to the cuticular plate (Figure 4C). Furthermore, the tem-
perature gradient above a hair cell irradiated in the sensory
epitheliummatched amodel of heat diffusion frommitochondrial
sources (Figure 5). If heat arises from the irradiation of intracel-
lular absorbers, we might expect other cell types to experience
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local temperature increases (Figure S5A). Although the tempera-
ture increase produced by irradiation varied between cell types,
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photométrique est fixé sur une autre table optique placée au-dessus du microscope et 

indépendante de ce dernier afin de limiter les vibrations. 

B. 2. Stimulation d'une touffe ciliaire via une fibre de verre flexible 

 

B. 2. a. Principe général de stimulation mécanique d'une touffe ciliaire unique 

Pour stimuler mécaniquement une touffe ciliaire unique, nous avons utilisé des 

microfibres de verre dont l'extrémité flexible est accolée au bulbe kinociliaire (Figure II-6.A). 

Le déplacement ' de la base de la fibre induit un mouvement X de son extrémité, a priori 

différent de ' car la fibre est flexible (Figure II-6.B). ' est connu puisque c'est le déplacement 

imposé par le piézoélectrique. La position X est mesurée à l'aide du système photométrique. 

La raideur KF de la fibre est calibrée grâce à ses fluctuations browniennes (paragraphe II.B. 2. 

c). En négligeant les forces visqueuses, on peut estimer la force élastique ressentie par la 

touffe ciliaire par la simple loi de Hooke : 𝐹 = 𝐾 (∆ − 𝑋). C'est cette relation très simple qui 

nous permettra de mesurer la force générée par la touffe ciliaire tout au long de ce travail. 

 

Figure II-6 : Représentation schématique (A. vue de côté ; B. vue de dessus) de la stimulation 
mécanique d'une touffe ciliaire grâce à une fibre de verre dont l'extrémité est couplée au bulbe 
kinociliaire. 

 

B. 2. b. Fabrication des fibres flexible 

Un capillaire de borosilicate (R-series, World Precision Instrument) est tout d'abord 

allongé par une étireuse (Model P-9, Sutter Instrument Co.) pour réduire son diamètre de 

1.2 mm à quelques microns sur une distance d'environ 1 cm. Il est ensuite courbé à la flamme 

de 30 ° autour d'un point situé à ~2 cm de son extrémité, afin de permettre son positionnement 
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mammifère, ou subsister dans les organes vestibulaires. Dans le saccule de la grenouille, il 

sert à coupler mécaniquement la touffe ciliaire et la membrane otolithique qui transmet le 

stimulus mécanique mais n’est pas requis pour la mécano-transduction (Jacobs & Hudspeth, 

1990). 

La cohésion de la touffe ciliaire est assurée par différents types de liens protéiques. Il y 

a tout d’abord des liens horizontaux qui se répartissent tout le long des stéréocils. Il existe en 

plus un lien oblique qui relie le sommet d’un cil au flanc du cil le plus proche de la rangée 

supérieure et est appelé lien de bout de cil ou « tip-link » (Figure I-9.C). Contrairement aux 

autres, ce dernier lien est orienté exclusivement dans l’axe du  plan de symétrie. 

 

B. 1. c. Mouvement de la touffe ciliaire 

Lorsque l’on applique une force au sommet de la touffe ciliaire, les stéréocils ne 

flambent pas. Plus souples à leur base, ils pivotent à leur point d’insertion dans la plaque 

cuticulaire (Flock et al., 1977 ; Crawford & Fettiplace, 1985) (Figure I-10.A). L’imagerie 

stroboscopique d’une touffe ciliaire (Karavitaki & Corey, 2010) ainsi que des mesures 

interférométriques (Kozlov et al., 2007) ont montré que les mouvements au sein de la touffe 

ciliaire sont presque parfaitement corrélés. La touffe ciliaire se déplace en masse, créant ainsi 

un cisaillement entre les stéréocils adjacents qui glissent l’un contre l’autre (Figure I-10.A). Il 

en résulte un étirement du lien de bout de cil, stimulus mécanique qui sera détecté par la 

cellule (Figure I-10.B). L’allure convexe de la plaque cuticulaire pourrait permettre aux 

stéréocils de rester solidaires. Néanmoins les liens latéraux jouent un rôle majeur dans la 

cohésion de la touffe ciliaire (Karavitaki & Corey, 2010). 

 

Figure I-10 : Vue de la touffe ciliaire dans son plan de symétrie. A. Les stéréocils pivotent à leur 
base lorsque la touffe ciliaire est défléchie (Jacobs & Hudspeth, 1990). B. Ce mouvement induit un 
cisaillement entre les stéréocils adjacents et étire les liens de bout de cil. 
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en résulte un étirement du lien de bout de cil, stimulus mécanique qui sera détecté par la 

cellule (Figure I-10.B). L’allure convexe de la plaque cuticulaire pourrait permettre aux 

stéréocils de rester solidaires. Néanmoins les liens latéraux jouent un rôle majeur dans la 

cohésion de la touffe ciliaire (Karavitaki & Corey, 2010). 

 

Figure I-10 : Vue de la touffe ciliaire dans son plan de symétrie. A. Les stéréocils pivotent à leur 
base lorsque la touffe ciliaire est défléchie (Jacobs & Hudspeth, 1990). B. Ce mouvement induit un 
cisaillement entre les stéréocils adjacents et étire les liens de bout de cil. 
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photométrique est fixé sur une autre table optique placée au-dessus du microscope et 

indépendante de ce dernier afin de limiter les vibrations. 

B. 2. Stimulation d'une touffe ciliaire via une fibre de verre flexible 
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Pour stimuler mécaniquement une touffe ciliaire unique, nous avons utilisé des 
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La raideur KF de la fibre est calibrée grâce à ses fluctuations browniennes (paragraphe II.B. 2. 

c). En négligeant les forces visqueuses, on peut estimer la force élastique ressentie par la 

touffe ciliaire par la simple loi de Hooke : 𝐹 = 𝐾 (∆ − 𝑋). C'est cette relation très simple qui 

nous permettra de mesurer la force générée par la touffe ciliaire tout au long de ce travail. 

 

Figure II-6 : Représentation schématique (A. vue de côté ; B. vue de dessus) de la stimulation 
mécanique d'une touffe ciliaire grâce à une fibre de verre dont l'extrémité est couplée au bulbe 
kinociliaire. 

 

B. 2. b. Fabrication des fibres flexible 

Un capillaire de borosilicate (R-series, World Precision Instrument) est tout d'abord 

allongé par une étireuse (Model P-9, Sutter Instrument Co.) pour réduire son diamètre de 

1.2 mm à quelques microns sur une distance d'environ 1 cm. Il est ensuite courbé à la flamme 

de 30 ° autour d'un point situé à ~2 cm de son extrémité, afin de permettre son positionnement 
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a tout d’abord des liens horizontaux qui se répartissent tout le long des stéréocils. Il existe en 
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autres, ce dernier lien est orienté exclusivement dans l’axe du  plan de symétrie. 

 

B. 1. c. Mouvement de la touffe ciliaire 

Lorsque l’on applique une force au sommet de la touffe ciliaire, les stéréocils ne 
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-

-2

0

2

X 
(a

.u
.)

-0.8

0

0.8

F

0 0.125 0.25
Time (s)

-2

0

2

X 
(a

.u
.)

0 0.125 0.25
Time (s)

-0.8

0

0.8

R

-1

0

1

2

X 
(a

.u
.)

-0.4

0

0.4

F

0 0.125 0.25
Time (s)

-1

0

1

2

X 
(a

.u
.)

0 0.125 0.25
Time (s)

-0.4

0

0.4

R

-1

0

1

X 
(a

.u
.)

-0.4

0

0.4

F

0 0.125 0.25
Time (s)

-1

0

1

X 
(a

.u
.)

0 0.125 0.25
Time (s)

-0.4

0

0.4

R

1 10
t (ms)

-0.5

0

0.5

1

C
x (t

)

1 10
t (ms)

-0.5

0

0.5

1

C
x (t

)

1 10
t (ms)

-0.2

0

0.2

0.4

0.6

0.8

1

C
x (t

)

A) 

B) Strongly irreversible 

C) Weakly irreversible

D) Reversible 

FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
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production) provide tight, optimal bounds to the finite-
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tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
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is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
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blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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photométrique est fixé sur une autre table optique placée au-dessus du microscope et 

indépendante de ce dernier afin de limiter les vibrations. 

B. 2. Stimulation d'une touffe ciliaire via une fibre de verre flexible 

 

B. 2. a. Principe général de stimulation mécanique d'une touffe ciliaire unique 

Pour stimuler mécaniquement une touffe ciliaire unique, nous avons utilisé des 

microfibres de verre dont l'extrémité flexible est accolée au bulbe kinociliaire (Figure II-6.A). 

Le déplacement ' de la base de la fibre induit un mouvement X de son extrémité, a priori 

différent de ' car la fibre est flexible (Figure II-6.B). ' est connu puisque c'est le déplacement 

imposé par le piézoélectrique. La position X est mesurée à l'aide du système photométrique. 

La raideur KF de la fibre est calibrée grâce à ses fluctuations browniennes (paragraphe II.B. 2. 

c). En négligeant les forces visqueuses, on peut estimer la force élastique ressentie par la 

touffe ciliaire par la simple loi de Hooke : 𝐹 = 𝐾 (∆ − 𝑋). C'est cette relation très simple qui 

nous permettra de mesurer la force générée par la touffe ciliaire tout au long de ce travail. 

 

Figure II-6 : Représentation schématique (A. vue de côté ; B. vue de dessus) de la stimulation 
mécanique d'une touffe ciliaire grâce à une fibre de verre dont l'extrémité est couplée au bulbe 
kinociliaire. 

 

B. 2. b. Fabrication des fibres flexible 

Un capillaire de borosilicate (R-series, World Precision Instrument) est tout d'abord 

allongé par une étireuse (Model P-9, Sutter Instrument Co.) pour réduire son diamètre de 

1.2 mm à quelques microns sur une distance d'environ 1 cm. Il est ensuite courbé à la flamme 

de 30 ° autour d'un point situé à ~2 cm de son extrémité, afin de permettre son positionnement 
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mammifère, ou subsister dans les organes vestibulaires. Dans le saccule de la grenouille, il 

sert à coupler mécaniquement la touffe ciliaire et la membrane otolithique qui transmet le 

stimulus mécanique mais n’est pas requis pour la mécano-transduction (Jacobs & Hudspeth, 

1990). 

La cohésion de la touffe ciliaire est assurée par différents types de liens protéiques. Il y 

a tout d’abord des liens horizontaux qui se répartissent tout le long des stéréocils. Il existe en 

plus un lien oblique qui relie le sommet d’un cil au flanc du cil le plus proche de la rangée 

supérieure et est appelé lien de bout de cil ou « tip-link » (Figure I-9.C). Contrairement aux 

autres, ce dernier lien est orienté exclusivement dans l’axe du  plan de symétrie. 

 

B. 1. c. Mouvement de la touffe ciliaire 

Lorsque l’on applique une force au sommet de la touffe ciliaire, les stéréocils ne 

flambent pas. Plus souples à leur base, ils pivotent à leur point d’insertion dans la plaque 

cuticulaire (Flock et al., 1977 ; Crawford & Fettiplace, 1985) (Figure I-10.A). L’imagerie 

stroboscopique d’une touffe ciliaire (Karavitaki & Corey, 2010) ainsi que des mesures 

interférométriques (Kozlov et al., 2007) ont montré que les mouvements au sein de la touffe 

ciliaire sont presque parfaitement corrélés. La touffe ciliaire se déplace en masse, créant ainsi 

un cisaillement entre les stéréocils adjacents qui glissent l’un contre l’autre (Figure I-10.A). Il 

en résulte un étirement du lien de bout de cil, stimulus mécanique qui sera détecté par la 

cellule (Figure I-10.B). L’allure convexe de la plaque cuticulaire pourrait permettre aux 

stéréocils de rester solidaires. Néanmoins les liens latéraux jouent un rôle majeur dans la 

cohésion de la touffe ciliaire (Karavitaki & Corey, 2010). 

 

Figure I-10 : Vue de la touffe ciliaire dans son plan de symétrie. A. Les stéréocils pivotent à leur 
base lorsque la touffe ciliaire est défléchie (Jacobs & Hudspeth, 1990). B. Ce mouvement induit un 
cisaillement entre les stéréocils adjacents et étire les liens de bout de cil. 
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].
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in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0
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tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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I. INTRODUCTION

Users of modern communication devices are annoyed
by any source of background hiss. Under certain circum-
stances, however, an extra dose of noise can in fact help
rather than hinder the performance of some devices.
There is now even a name for the phenomenon: stochas-
tic resonance. It is presently creating a buzz in fields such
as physics, chemistry, biomedical sciences, and engineer-
ing.

The mechanism of stochastic resonance is simple to
explain. Consider a heavily damped particle of mass m
and viscous friction g, moving in a symmetric double-
well potential V(x) [see Fig. 1(a)]. The particle is sub-
ject to fluctuational forces that are, for example, induced
by coupling to a heat bath. Such a model is archetypal
for investigations in reaction-rate theory (Hänggi,
Talkner, and Borkovec, 1990). The fluctuational forces
cause transitions between the neighboring potential
wells with a rate given by the famous Kramers rate
(Kramers, 1940), i.e.,

rK5
v0vb

2pg
expS 2

DV
D D . (1.1)

with v0
25V9(xm)/m being the squared angular fre-

quency of the potential in the potential minima at 6xm ,
and vb

25uV9(xb)/mu the squared angular frequency at
the top of the barrier, located at xb; DV is the height of

the potential barrier separating the two minima. The
noise strength D5kBT is related to the temperature T .

If we apply a weak periodic forcing to the particle, the
double-well potential is tilted asymmetrically up and
down, periodically raising and lowering the potential
barrier, as shown in Fig. 1(b). Although the periodic
forcing is too weak to let the particle roll periodically
from one potential well into the other one, noise-
induced hopping between the potential wells can be-
come synchronized with the weak periodic forcing. This
statistical synchronization takes place when the average
waiting time TK(D)51/rK between two noise-induced
interwell transitions is comparable with half the period
TV of the periodic forcing. This yields the time-scale
matching condition for stochastic resonance, i.e.,

2TK~D !5TV . (1.2)

In short, stochastic resonance in a symmetric double-
well potential manifests itself by a synchronization of
activated hopping events between the potential minima

FIG. 1. Stochastic resonance in a symmetric double well. (a)
Sketch of the double-well potential V(x)5(1/4)bx4

2(1/2)ax2. The minima are located at 6xm , where
xm5(a/b)1/2. These are separated by a potential barrier with
the height given by DV5a2/(4b). The barrier top is located at
xb50. In the presence of periodic driving, the double-well po-
tential V(x ,t)5V(x)2A0x cos(Vt) is tilted back and forth,
thereby raising and lowering successively the potential barriers
of the right and the left well, respectively, in an antisymmetric
manner. This cyclic variation is shown in our cartoon (b). A
suitable dose of noise (i.e., when the period of the driving
approximately equals twice the noise-induced escape time) will
make the ‘‘sad face’’ happy by allowing synchronized hopping
to the globally stable state (strictly speaking, this holds true
only in the statistical average).
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0
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tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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and X2. To which extent the bound (8) can be tight-
ened by finding optimal currents has become an active
area of research (see e.g. [53–57]). In particular, it has
been shown that currents containing "footprints of ir-
reversibility" (i.e. information about stochastic entropy
production) provide tight, optimal bounds to the finite-
time TURs [54, 56].

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate �1, which provides a lower bound to the total
steady-state entropy production rate �tot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ⇠Fi (⇠Ri ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ⇠

F
i

and ⇠
R
i (Fig. 1B-D, center column) obtained from the

whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure �̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(�̂1 > 0) from passive fluctuations of a bistable system
(�̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [59], we ob-
tain an exponential distribution of �̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ⇠ (200 � 600)Hz where its
value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [48].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (⇠ 5�150 Hz). The height
of the hair bundles is about ⇠ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ⇠Fi (top
middle), ⇠Ri (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ⇠Fi
(blue squares), and ⇠Ri (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = �V 0

(x)+
p
2D⇠, with the bistable po-

tential V (x) = �ax2/2+ bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [58].
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irreversibility obtained for these time series is indicated in
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of the irreversibility measure �̂1 is ⇠ 3kB/s. Inset: Empiri-
cal cumulative distribution function (CDF) of irreversibility
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ences in irreversibility, we apply the local irreversibility
measure defined as

ŝ1(⇠) ⌘ kBfs


p(⇠) ln

p(⇠)

q(⇠)
+ q(⇠)� p(⇠)

�
, (11)

which obeys ŝ1(⇠) � 0 for all ⇠ [60], and �̂1 =
R

d⇠ŝ1(⇠).
We find that for all the analyzed values of ⇠, the local
irreversibility of active oscillations is ⇠ 10

3 times larger
than for passive oscillations and experimental noise.

IV. ENTROPY PRODUCTION RATE OF
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now relate the estimate �̂1 of entropy production
from experimental recordings (Fig. 2B) to the entropy
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FIG. 3. (A) Examples of experimental traces for the tip posi-
tion of different mechanosensory hair bundles as a function of
time. Top: active hair bundles. Bottom: passive hair bundles,
i.e. when the channel blocker gentamicin is present (magenta,
green), and experimental noise trace (black). (B) Estimate of
the local irreversibility measure (11) obtained from single 30s
recordings of the oscillations shown in panel A as a function
of the residual value ⇠. The sampling rate was fs = 2.5 kHz.

production �tot which we obtain from stochastic sim-
ulations of hair-bundle oscillations. Spontaneous hair-
bundle oscillations are thought to result from an inter-
play between opening and closing of mechanosensitive ion
channels, activity of molecular motors that pull on the
channels, and fast calcium feedback. This interplay can
be described by two coupled stochastic differential equa-
tions for the position of the bundle X1 and of the center
of mass of a collection of molecular motors X2 [2, 59, 61]
(see Appendix D):

�1Ẋ1 = � @V

@X1
+

p
2kBT�1 ⇠1 (12)

�2Ẋ2 = � @V

@X2
� Fact +

p
2kBTe↵�2 ⇠2 . (13)

Here, �1 and �2 are friction coefficients and ⇠1 and ⇠2

in (12-13) are two independent Gaussian white noises
with zero mean h⇠i(t)i = 0 (i = 1, 2) and correlation
h⇠i(t)⇠j(t0)i = �ij�(t�t

0
), with i, j = 1, 2 and �ij the Kro-

necker’s delta. T is the temperature of the environment,
whereas the parameter Te↵ > T is an effective tempera-
ture that characterizes fluctuations of the motors. This
model can be interpreted as a system affected by two
nonequilibrium constraints: the active force Fact and its
fluctuations whose magnitude is described by an effective
temperature Te↵ that differs from the actual temperature
T . Recall, however, that the real system is at temper-
ature T and that the effective temperature Te↵ has the
same origin as the active force, which is the activity of the
motors. The conservative forces derive from the potential
associated with elastic elements and mechano-sensitive
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I. INTRODUCTION

Users of modern communication devices are annoyed
by any source of background hiss. Under certain circum-
stances, however, an extra dose of noise can in fact help
rather than hinder the performance of some devices.
There is now even a name for the phenomenon: stochas-
tic resonance. It is presently creating a buzz in fields such
as physics, chemistry, biomedical sciences, and engineer-
ing.

The mechanism of stochastic resonance is simple to
explain. Consider a heavily damped particle of mass m
and viscous friction g, moving in a symmetric double-
well potential V(x) [see Fig. 1(a)]. The particle is sub-
ject to fluctuational forces that are, for example, induced
by coupling to a heat bath. Such a model is archetypal
for investigations in reaction-rate theory (Hänggi,
Talkner, and Borkovec, 1990). The fluctuational forces
cause transitions between the neighboring potential
wells with a rate given by the famous Kramers rate
(Kramers, 1940), i.e.,

rK5
v0vb

2pg
expS 2

DV
D D . (1.1)

with v0
25V9(xm)/m being the squared angular fre-

quency of the potential in the potential minima at 6xm ,
and vb

25uV9(xb)/mu the squared angular frequency at
the top of the barrier, located at xb; DV is the height of

the potential barrier separating the two minima. The
noise strength D5kBT is related to the temperature T .

If we apply a weak periodic forcing to the particle, the
double-well potential is tilted asymmetrically up and
down, periodically raising and lowering the potential
barrier, as shown in Fig. 1(b). Although the periodic
forcing is too weak to let the particle roll periodically
from one potential well into the other one, noise-
induced hopping between the potential wells can be-
come synchronized with the weak periodic forcing. This
statistical synchronization takes place when the average
waiting time TK(D)51/rK between two noise-induced
interwell transitions is comparable with half the period
TV of the periodic forcing. This yields the time-scale
matching condition for stochastic resonance, i.e.,

2TK~D !5TV . (1.2)

In short, stochastic resonance in a symmetric double-
well potential manifests itself by a synchronization of
activated hopping events between the potential minima

FIG. 1. Stochastic resonance in a symmetric double well. (a)
Sketch of the double-well potential V(x)5(1/4)bx4

2(1/2)ax2. The minima are located at 6xm , where
xm5(a/b)1/2. These are separated by a potential barrier with
the height given by DV5a2/(4b). The barrier top is located at
xb50. In the presence of periodic driving, the double-well po-
tential V(x ,t)5V(x)2A0x cos(Vt) is tilted back and forth,
thereby raising and lowering successively the potential barriers
of the right and the left well, respectively, in an antisymmetric
manner. This cyclic variation is shown in our cartoon (b). A
suitable dose of noise (i.e., when the period of the driving
approximately equals twice the noise-induced escape time) will
make the ‘‘sad face’’ happy by allowing synchronized hopping
to the globally stable state (strictly speaking, this holds true
only in the statistical average).
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FIG. 5. Dynamical and thermodynamic features of spon-
taneous hair-bundle oscillations as a function the calcium-
feedback strength S and maximal motor force Fmax obtained
from numerical simulations of the model given by Eqs. (12-
13): (A) Quality factor Q; (B) Steady-state average of the
open channel probability hPoi; (C) Irreversibility measure �̂1;
(D) Steady-state entropy production rate �tot. In (B,C,D) we
indicate the parameter values for which hPoi = 0.1, 0.5 and
0.9 (white dashed lines from top to bottom, respectively) and
the parameter values used in Fig. 4 (black disk). The results
are obtained from numerical simulations of Eqs. (12-13) of to-
tal duration tsim = 300 s and sampling frequency fs = 1kHz.
The rest of the parameter values are the same as in Fig. 4.

V. THERMODYNAMIC UNCERTAINTY
RELATION IN THE EAR OF THE BULLFROG

Noisy limit-cycle oscillations in, for instance, a two-
dimensional phase space can reveal irreversibility in
the form of probability currents. As discussed in
Sec. II B, the so-called thermodynamic uncertainty re-
lations (TURs) provide lower bounds to the rate of en-
tropy production in terms of the mean and the variance
of empirical time-integrated currents (see e.g. [18, 19]).
Here, we apply the finite-time TUR (8) to predict how
much entropy production one can assess by measuring
two mesoscopic degrees of freedom: the tip position X1

of the hair bundle and the transduction current, normal-
ized to its maximum value, Po = I/Imax (see Eq. (16)).
Specifically, we analyze two-dimensional stochastic tra-
jectories �[0,⌧ ] ⌘ {(X1(s), Po(s))}⌧s=0 obtained from sim-
ulations of Eqs. (12-13) in the quiescent (Fig. 6A) and
oscillatory region (Fig. 6D) of the state diagram shown
in Fig. 5. These trajectories reveal a larger circulating
probability current within the oscillatory region, as ex-
pected, but also a smaller relative uncertainty.

To quantify these effects, we make use of the estimate
for entropy production (10) based on the finite-time TUR

applied to two different currents in the (X1, Po) plane.
More precisely, we analyze the fluctuations of the coun-
terclockwise current � and of the environmental entropy
change Senv, as described below. First, we map the dy-
namics into the complex plane z(t) = X̄1(t) + iP̄o(t)

and measure ✓(t) = �(t) + 2⇡N�(t), where �(t) =

tan
�1

(P̄o(t)/X̄1(t)) 2 [0, 2⇡] is the phase and N�(t) is the
net number of counterclockwise turns—the winding num-
ber. Here, X̄1(t) = X1(t) � hX1i, P̄o(t) = Po(t) � hPoi.
Using sample trajectories of duration ⌧ = 2s, we found
that the counterclockwise current j�(t) = �(t)/⌧ displays
both a larger absolute mean and a larger signal-to-noise
ratio, corresponding to more accurate currents, when the
system operates in the oscillatory (Figs. 6D) rather than
in the quiescent regime of the dynamics (Figs. 6B). We
show estimates �̂

�
2 for the two case studies in (Fig. 6G).

These estimates are obtained using the relative fluctua-
tions of the current, i.e. �̂�

2 is given by Eq. (10) applied to
the current �. For an example trajectory in the quiescent
regime of the dynamics, �̂�

2 ⇠ 1kB/s is of the same order
of magnitude as �̂1 (Fig. 6G, blue squares). Remarkably,
operating in the oscillatory regime instead yields an esti-
mate �̂

�
2 ⇠ 10

3
kB/s (Fig. 6G, red circles), which is three

orders of magnitude larger than �̂1 and only a few fold
smaller than �tot.

To get further insights on entropy production upon
varying the operating point in the state diagram of the
system, we plot �̂

�
2 as a function of the maximal motor

force Fmax which is a control parameter of the Hopf bi-
furcation at fixed S = 0.94 (Fig. 6H). In the quiescent re-
gion, Fmax < Fc ' 50pN, �̂�

2 is not significantly different
from �̂1, underestimating entropy production (⇠ 1kB/s)
by about one order of magnitude below �tot ⇠ 6kB/s.
Increasing Fmax, the two-variable irreversibility measure
�̂
�
2 and the total entropy production �tot both exhibit

a jump when the system enters the oscillatory region of
the dynamics, which is indicative of the underlying Hopf
bifurcation, as also observed for other oscillatory systems
e.g. in Refs. [69, 70]. We note here that there are mul-
tiple ways to define a current from measurements of X1

and I. In principle, one could develop an optimization
procedure to find the current that provides the tightest
bound to entropy production [54–57]. Although we did
not attempt here to employ such a procedure, it is use-
ful to compare �̂

�
2 to the estimate �̂

S
2 , which results from

the environmental entropy current jS(t) = Senv(t)/⌧ and
has been being proposed to provide a near-optimal esti-
mate [54, 56]. Here, Senv(t) is given by Eq. (9) for the
choice G1 = F1(X1, X2)/T and G2 = F2(X1, X2)/Te↵ .
In Fig. 6H we show that �̂�

2 and �̂
S
2 are similar in the os-

cillatory region (Fmax ⇠ 60pN), but that �̂
S
2 provides

a tighter bound for small (Fmax < 40pN) and large
(Fmax > 120pN) maximal motor force where the hair
bundle does not oscillate.
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blue lines) the same trajectories displayed in (B). Note that, even in the quiescent regime, we can detect a current in the
(X1, Po) space, revealing activity in the fluctuations. These current fluctuations show both smaller mean and larger relative
uncertainty compared to those obtained with simulations in the oscillatory regime. (C,F) Histograms of the cumulated current
up to ⌧ = 2s obtained from in the quiescent (blue bars, (C)) and the oscillatory (red bars, (F)) regimes. (G) Comparison
between the irreversibility estimate �̂2 from the thermodynamic uncertainty relation (TUR) (Eq. (10), symbols) and the total
entropy production rate �tot (Eq. (17), lines) as a function of the observation time ⌧ in the quiescent (blue squares, blue dotted
line) and oscillatory (red circles, red dashed line) regimes. (H) Comparison between the total entropy production rate �tot

(black diamonds), the one-variable irreversibility measure �̂1 (green squares), and the two-variable irreversibility measure from
the TUR (Eq. (10)), as a function of the maximum motor force Fmax. For the latter case, we employ the counterclockwise
current � (�̂�

2 , orange circles) and the environmental entropy change (�̂S
2 , red circles). In (G,H) the lines are a guide to the

eye. Simulations were run for a total duration of 300s at the two operating points with maximum motor force Fmax = 31pN
(A-C) and Fmax = 62pN (D-F), corresponding to quiescent and oscillatory regimes, respectively. The rest of the simulation
parameters were set to the same values as in Fig. 4.

VI. DISCUSSION

In this work, we have have shown that fluctuations
of active systems can reveal the arrow of time even in
the absence of net drifts or currents. The hierarchy of
measures of time irreversibility introduced here provides
lower bounds for the entropy production of an active pro-
cess. We have demonstrated the applicability of the ap-
proach by estimating entropy production associated with
experimental noisy oscillations of a single degree of free-
dom in the case of mechanosensory hair bundles from the
bullfrog’s ear. We have shown that quantifications of the
arrow of time can efficiently discriminate quiescent and
oscillatory hair bundles, as well as reaveal transitions be-
tween the two regimes in response to changes in a control
parameter (e.g. Calcium concentration as in Ref. [2]).

However, using a model of active hair bundle oscillations,
we also showed that estimating the rate of entropy pro-
duction with only one degree of freedom yields a lower
bound that can be orders of magnitude smaller than the
total entropy production rate in the system. In the case
of hair-bundle oscillations, we predict that measuring a
second degree of freedom, e.g. the transduction current,
would add sufficient information to get a tight bound.
With two degrees of freedoms, the current in the phase
space and its fluctuations can be used to bound entropy
production by means of thermodynamic uncertainty rela-
tions. Overall, our results show that irreversibility mea-
sures can quantify entropy production in active matter,
including living systems, from fluctuations of only a few
mesoscopic degrees of freedom.
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X` with ` > k, are at thermal equilibrium [35–37]. When
the missing variables are not at thermal equilibrium,
which is often the case in active systems, the estimate
�k  �tot yields only a lower bound for the entropy pro-
duction rate.

We now introduce a method to estimate the irre-
versibility measure �1 for any nonequilibrium steady
state from a single stationary time series xi = X(i�t)

(i = 1, . . . , n) of a single variable X that is even under
time reversal. We describe the technique for a single vari-
able, but it can be generalized to several variables X↵(t).
In discrete processes, the KL divergence in �1 can be
accurately measured from the statistics of sequences of
symbols [15, 16] and non-Markovian waiting time distri-
butions [17]. In continuous processes however, estimating
�1 is a herculean task due to the difficulties in sampling
the whole phase space of paths [38–40].

The key idea of the method is to exploit the invari-
ance of the KL divergence under one-to-one transfor-
mations. Suppose that there exists a one-to-one map
⇠i(x1, . . . , xn), i = 1, . . . , n, that transforms the original
time series and its time reversal into two new time series
⇠
F
i = ⇠i(x1, . . . , xn) and ⇠

R
i = ⇠i(xn, . . . , x1) that are in-

dependent and identically distributed (i.i.d.) processes.
Such a procedure is often called a whitening filter [41, 42].
Because the new series are i.i.d., the KL divergence is
now simple to calculate: it is given by the KL divergence
between two univariate distributions p(⇠) and q(⇠), cor-
responding to the stationary probability distribution of
⇠
F
i and ⇠

R
i , respectively [40]. In general, it is not possible

to find a one-to-one map that fully eliminates the correla-
tions of both the forward (x1, . . . , xn) and the backward
(xn, . . . , x1) time series. In that case, the removal of the
correlations in the backward series is enough to provide
a lower bound for �1:

�1 � kBfsD[p(⇠)||q(⇠)] ⌘ �̂1 , (4)

where fs = (�t)
�1 is the sampling frequency and

D[p(⇠)||q(⇠)] =
R

d⇠ p(⇠) ln[p(⇠)/q(⇠)] is the KL diver-
gence between the univariate distributions p(⇠) and q(⇠).
We estimate D[p(⇠)||q(⇠)] ' �

P
i p̂i ln(p̂i/q̂i) where p̂, q̂

are empirical densities, and the sum runs over the num-
ber of histogram bins. We introduce the prefactor � =

1�pKS  1, where pKS is the p-value of the Kolmogorov-
Smirnov statistic between p(⇠) and q(⇠), to correct the
statistical bias of our KL divergence estimate [43]. The
proof of the bound (4) and further details of the estimate
are found in Appendices A and B.

B. Estimates based on thermodynamic uncertainty
relations

We now consider the case in which one can measure
a set of k � 2 mesoscopic variables X1, . . . Xk that are
all even under time reversal. In this case, a measurable
signature of irreversible dynamics is the emergence of cur-
rents in the (X1, . . . Xk) plane. For Markovian nonequi-

librium stationary states, it has been shown that the rate
of entropy production can be computed analytically and
expressed in terms of forces and conjugated currents, see
e.g. [44–46]. For example, consider an isothermal over-
damped Langevin system described by two mesoscopic
variables,

Ẋ1 = µ1F1(X1, X2) +
p
2D1⇠1 (5)

Ẋ2 = µ2F2(X1, X2) +
p
2D2⇠2, (6)

where µk, Dk are the mobility and diffusion coefficient
of the k-th variable, and Fk(X1, X2) is a generic state-
dependent force. For this example, the entropy produc-
tion can be expressed in terms of forces Fk and currents
(velocities) Ẋk as follows

�tot = �2 =
kBµ1

D1

D
F1 � Ẋ1

E
+

kBµ2

D2

D
F2 � Ẋ2

E
. (7)

Here, h · i denote steady state averages, � the
Stratonovich product [47, 48] and we have used the short-
hand notation Fk ⌘ Fk(X1, X2). This result can be gen-
eralized to nonequilibrium overdamped Langevin dynam-
ics with more than two degrees of freedom, and similarly
to Markov-jump processes with an arbitrary number of
states [44, 46].

The TUR approach introduced in Refs. [18, 19], pro-
vides a bound to entropy production which is useful when
one has not access to the forces. For finite-time trajecto-
ries in stationary processes, the following TUR holds [49–
51]

�tot �
2kB

⌧

hj(⌧)i2

Var[j(⌧)]
, (8)

where Var[j(⌧)] = hj2(⌧)i�hj(⌧)i2 is the finite-time vari-
ance of any current, and ⌧ > 0 the observation time.
Equation (8) allows to bound from below the entropy
production rate of any nonequilibrium stationary state
with statistics of any current j which may contain par-
tial information about the dynamics of the system.

For the example of a 2D stochastic model described
in Eqs. (5-6), one can construct a family of currents as
follows

j
G
(t) =

Z t

0
G1(s) � Ẋ1(s) +

Z t

0
G2(s) � Ẋ2(s) , (9)

where G1(t) ⌘ G1(X1(t), X2(t)) and G2(t) ⌘
G2(X1(t), X2(t)), with G1(x, y) and G2(x, y) two arbi-
trary functions. For this model, the TUR (8) implies
that [52]

�2 � 2kB

⌧

hjG(⌧)i2

Var[jG(⌧)]
⌘ �̂2 , (10)

which holds for any observation time ⌧ and any choice
of the functions G1 and G2 that enter in Eq. (9). No-
tably, the bound (10) also applies for currents that are
obtained by coarse graining the phase space variables X1

One-variable irrev.
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