School on Information, Noise, and Physics of Life

United Nations Lucational, Scientific and Cultural Organization

IAEA

Welcome!

19 - 30 September 2022 Nis, Serbia

Further information: http://indico.ictp.it/event/9826/ smr3736@ictp.it

Introduction to Biophysics part I

Édgar Roldán

The Abdus Salam International Centre for Theoretical Physics (Trieste, Italy)

"School of Information, Noise, and Physics of Life"

Niš (Serbia), 19-9-2022

Biophysics

Motivation, examples, focus

Why biophysics?

We can **SEE** cells and biomolecules under the microscope We can **MEASURE** their physical properties (forces, position, etc.)

Human cells

Cells

Bacteria

Virus

Life under the microscope

Cellular motion

Cellular motion

Cellular motion

Cell division

MITOSIS

Cell division

Iva Tolic lab (Ruder Boskovic Institute, Zagreb, Croatia)

Macroscopic scale ("macroscale")

Deterministic Hamiltonian dynamics

Classical mechanics: Newton's laws

Macroscopic scale ("macroscale")

Deterministic Hamiltonian dynamics

Classical mechanics: Newton's laws

Mesoscopic scale ("mesoscale")

Stochastic dynamics

Noise and fluctuations

Macroscopic scale ("macroscale")

Deterministic Hamiltonian dynamics

Classical mechanics: Newton's laws

Mesoscopic scale ("mesoscale")

Stochastic dynamics

Noise and fluctuations

Atomic scale

Molecular dynamics simulations Quantum dynamics

Macroscopic scale ("macroscale")

Deterministic Hamiltonian dynamics

Classical mechanics: Newton's laws

Mesoscopic scale ("mesoscale")

Stochastic dynamics

Noise and fluctuations

Atomic scale

Molecular dynamics simulations Quantum dynamics

Cross-bridge cycle

Vesicle transport by Kinesins

"I hydrolyze ATP and I move"

Vesicle transport by Kinesins

"I hydrolyze ATP and I move"

Vesicle transport by Kinesins

"I hydrolyze ATP and I move"

The mesoscale

Orders of magnitude

Nanometers (10⁻⁹ m) Microsecnds (10⁻⁶ s) ZeptoJoules (10⁻²¹ J)

Two-side challenge: natural and artificial

Understand nature: molecular motors Build artificial nanomachines

The mesoscale

Orders of magnitude

Nanometers (10⁻⁹ m) Microsecnds (10⁻⁶ s) ZeptoJoules (10⁻²¹ J)

Two-side challenge: natural and artificial

Understand nature: molecular motors Build artificial nanomachines

Fluctuations are intrinsic to any small system

 $Q \sim kT$

Fluctuations are intrinsic to any small system

 $Q \sim kT$

Fluctuations are intrinsic to any small system

 $Q \sim kT$

Brownian motion

Robert Brown

Pollen grains (20 micrometers) under the microscope

Why do they move?

Brownian motion

Robert Brown

Pollen grains (20 micrometers) under the microscope

Why do they move?

Einstein's theory

1905

0.8

0.6

$$\langle x^2(t) \rangle = 2Dt = \frac{RT}{6\pi\eta RN_A}$$

Empirical evidence of molecular theory

Einstein's theory

1905

0.8

0.6

$$\langle x^2(t) \rangle = 2Dt = \frac{RT}{6\pi\eta RN_A}$$

Empirical evidence of molecular theory

Statistical nature

<section-header><section-header>

Brownian motion is a **stochastic** process Each realization of the <u>same</u> experiment produces a <u>different</u> output trajectory, even if the initial condition is the same

We study the particle position not as a "number" but as a probability density $x \to \rho(x)$

Rare events at the microscale

Physics

Biased random walks

Rare events at the microscale

Physics

Biased random walks

Rare events at the microscale

Physics

Biased random walks

Biology Molecular motor stepping

Minimal stochastic models in biophysics

Molecular motors and beyond
Biophysics YouTube lectures

J

Q

Х

🕒 YouTube ^{'''}

biophysics QLS-BIO

Reference textbooks

KURT JACOBS

Stochastic Processes for Physicists Understanding Noisy Systems

Interdisciplinary Applied Mathematics 41

Paul C. Bressloff

Stochastic Processes in Cell Biology

Reference textbooks

lon channels

Biopolymer dynamics

Actin polymerization and depolymerization

Biopolymer dynamics

Microtubule growth and shrinkage

Molecular motors

Molecular motors

Enzymatic cycles

arXiv:1710.03499 (2017)

F₁-ATPase

 k_{56}

5

MT+D*-ADP-Pi

Cell sensing

Further applications of biophysics Beyond motors

Development of C. Elegans embryo

Physics tools: classical fluid dynamics, differential geometry

Membrane-free compartments

Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation

Clifford P. Brangwynne,^{1,2,3} Christian R. Eckmann,¹ David S. Courson,³ Agata Rybarska,¹ Carsten Hoege,¹ Jöbin Gharakhani,^{2,3} Frank Jülicher,^{2,3} Anthony A. Hyman^{1,3*}

Physics tools: equilibrium thermodynamics, phase transitions

Endocytosis in human cells

Imaging of endocytic vesicles (Zerial Lab)

Physics tools:

statistical physics, population dynamics

Hearing in bullfrogs

Physics tools: dynamical systems, stochastic thermodynamics

A two-way journey Biophysics **Bioinformatics** Mathematical biology Ecology A **Biology Physics**

Active matter

Recent experimental insights

Feynman's Ratchet

Feynman, Leighton, Sands, Hafner, Am.J.Phys.**33**,750 (1965)

Feynman's Ratchet

Feynman, Leighton, Sands, Hafner, Am.J.Phys. **33**,750 (1965)

R. Di Leonardo et. al, PNAS 107 9541 (2010)

R. Di Leonardo et. al, PNAS 107 9541 (2010)

G Vizsnyiczai et. al, Nature Comms. 8 (1), 1-7(2017)

G Vizsnyiczai et. al, Nature Comms. 8 (1), 1-7(2017)

Sound *Mechanical stimuli*

Sound *Mechanical stimuli*

Sound Mechanical stimuli

Electric current *To the auditory nerve*

Epithelium bullfrog's sacculus (P. Martin Lab) Ear hair cell (A. J. Hudspeth)

Sound Mechanical stimuli

Electric current *To the auditory nerve*

Epithelium bullfrog's sacculus (P. Martin Lab) Ear hair cell (A. J. Hudspeth)

Light UV light

Electric current *To the auditory nerve*

Azimzadeh, Fabella, Kasteh, Hudspeth, Neuron (2018)

Stochastic thermodynamics

Searching for universal laws governing biological phenomena

Colloidal particle

"Passive" equilibrium dynamics Reversibility

Red-blood cell

"Active" nonequilibrium dynamics Irreversibility, heat dissipation

Colloidal particle

"Passive" equilibrium dynamics Reversibility

Red-blood cell

"Active" nonequilibrium dynamics Irreversibility, heat dissipation

Colloidal particle

"Passive" equilibrium dynamics Reversibility

Red-blood cell

"Active" nonequilibrium dynamics Irreversibility, heat dissipation
Nonequilibrium signatures of life?

Red Blood Cell: weak irreversibility

Swimming Clamydomonas: strong irreversibility

Nonequilibrium signatures of life?

Red Blood Cell: weak irreversibility

Swimming Clamydomonas: strong irreversibility

Fluctuation-response of red blood cells

H.Turlier et. al, Nature Phys. **12**, 513 (2016)

J. Barral, PhD Thesis (2014)

J. Barral, PhD Thesis (2014)

J. Barral, PhD Thesis (2014)

J. Barral, PhD Thesis (2014)

J. Barral, PhD Thesis (2014)

MANFRED

Experimental time series "Lothar" $(ing) \times (ing) = (ing) + (ing) +$

LOTHAR

Simulation: equilibrium fluctuations

ER, et al., New J. Phys. 23, 083013 (2021)

Energy dissipation

ER, et al., New J. Phys. 23, 083013 (2021)

Thanks for your attention!

Хвала на пажњи!