

Nuclear Data and Applied Nuclear Science

Libby McCutchan (NNDC,BNL) mccutchan@bnl.gov

Nuclear Data Program

Link between basic science and applications

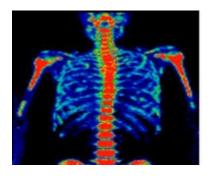
Nuclear Science Community

experiments

FRIB

theory

- **♦** compilation
- **♦** evaluation
- **♦** dissemination
- **♦** archival


Applications Community

needs data:

- **♦** complete
- **♦** organized
- **♦** traceable
- **→** readable

Applications of Nuclear Data

Nuclear Medicine
How can I produce and
use radioactive isotopes
in the body?

Nuclear Power

Is there new physics beyond the standard model and can we make the world safer?

Stockpile Stewardship

How do you ensure
something will work after
decades on the shelf?

Homeland Security

Space Exploration

How do I determine what's in something I can't see or touch?

Want more fun facts about nuclei?

National Nuclear Data Center @NNDC_BNL · Feb 14

Tritium (3-Hydrogen), combined with phosphor (a material that emits light when exposed to radiation), leads to radioluminescence. This glow can be used to illuminate the hands of sport watches. #NuclideSpotlight #ScienceValentines

Follow us on Twitter!!

@NNDC BNL

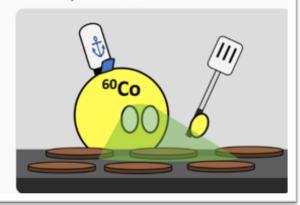
You make me glow

National Nuclear Data Center @NNDC_BNL · Nov 12, 2021

#NuclideSpotlight #History

95m- and 97-Technetium were discovered in 1937 during an investigation of irradiated cyclotron parts.

Neither isotope occurs naturally, which made this the first study of synthetic elements produced by human beings.



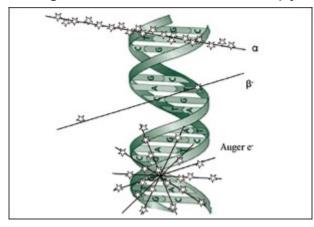
Gamma rays can be used to kill bacteria and extend the shelf-life of food products.

This process (called "food irradiation") commonly uses 60-Cobalt, which:

- has a long half-life
- emits high-intensity gamma rays
- does not easily dissolve into water

Nuclear Medicine

What can we use radioisotopes for in medicine?


Imaging

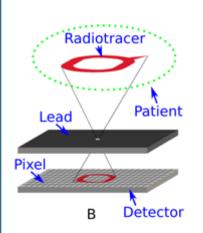
X-rays, gamma rays

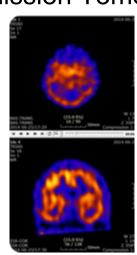
Therapy

Alphas, betas, Auger electrons

Targeted Radionuclide Therapy

M. Sadeghi et al., J Can Res Ther 2010;6:239

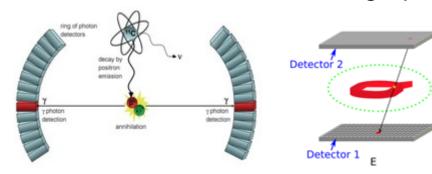

- lonizing radiation to kill cancer cells and shrink tumors
- Uses molecule labeled with radionuclide



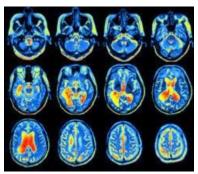
Diagnostic Imaging with Radioisotopes

SPECT

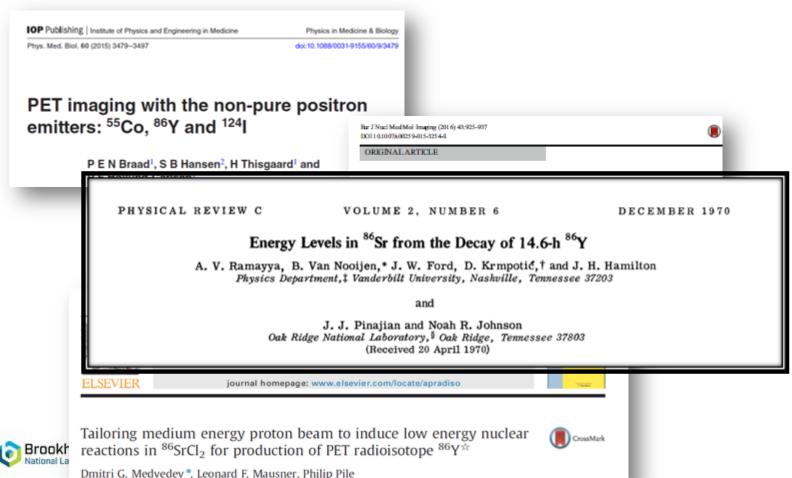
Single Photon Emission Tomography



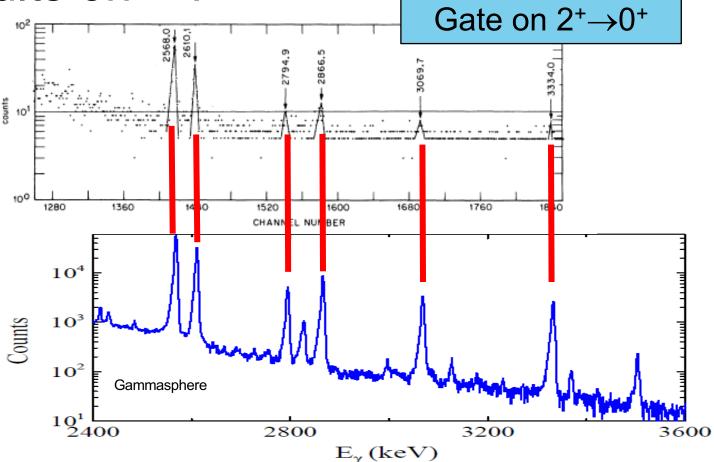
^{99m}Tc, ¹²³I, ¹²¹I, ⁶⁷Ga, ²⁰¹TI


PET

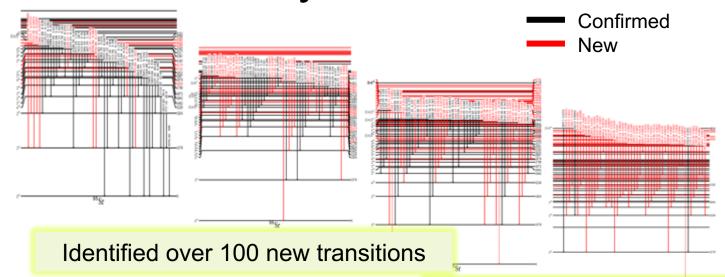
Positron Emission Tomography


Miller et. al. Angewandte Chem. Int. Ed. 47, 8998, 2008

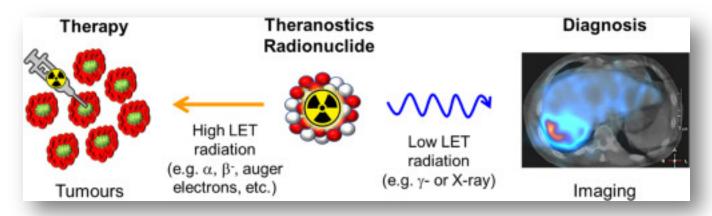
¹⁸F, ⁸²Rb, ¹³N, ⁶⁶Ga



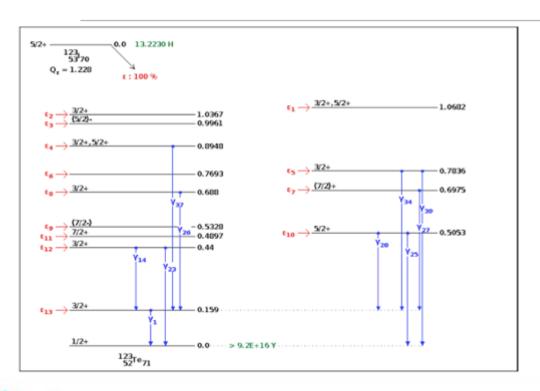
As an example: 86Y



Results on 86Y


Revised Decay Scheme for 86Y


511-keV intensity decreases by 15%!


The Future: Theranostics

H.Y. Tan et al., Nucl. Med. Biology 90, 55 (2020).

MIRD – yes we have an app for that ! Medical Internal Radiation Dosimetry

53-IODINE-123 Half-life = 13.2230 Hours Decay modes; ε References: 123I EC DECAY (13.2230 H)

Download as .csv

Radiations	γ(i) (Bq-s) ⁻¹	E(i) (MeV)	γ(i)×E(i)
Y1	8.36×10 ⁻¹	1.589×10 ⁻¹	1.32×10 ⁻¹
ce-Κ, γ ₁	1.34×10 ⁻¹	1.271×10 ⁻¹	1.71×10 ⁻²
ce-L, y ₁	1.74×10 ⁻²	1.540×10 ^{-1a}	2.69×10 ⁻³
ce-M, y ₁	3.48×10 ⁻³	1.579×10 ^{-1a}	5.50×10 ⁻⁴
Y14	7.19×10 ⁻⁴	2.810×10 ⁻¹	2.02×10 ⁻⁴
Y ₂₀	1.20×10 ⁻³	3.463×10 ⁻¹	4.15×10 ⁻⁴
Y23	3.88×10 ⁻³	4.400×10 ⁻¹	1.70×10 ⁻³
Y ₂₅	2.88×10 ⁻³	5.053×10 ⁻¹	1.45×10 ⁻³
Y26	1.27×10 ⁻²	5.289×10 ⁻¹	6.71×10 ⁻³
Y27	3.10×10 ⁻³	5.385×10 ⁻¹	1.66×10 ⁻³
Y34	7.80×10 ⁻⁴	6.245×10 ⁻¹	4.87×10 ⁻⁴
Y37	4.70×10 ⁻⁴	7.358×10 ⁻¹	3.45×10 ⁻⁴
Y39	5.30×10 ⁻⁴	7.835×10 ⁻¹	4.15×10 ⁻⁴
L X-ray	8.96×10 ⁻²	3.770×10 ^{-3*}	3.37×10 ⁻⁴
Ko2 X-ray	2.47×10 ⁻¹	2.720×10 ⁻²	6.71×10 ⁻³
Ka1 X-ray	4.56×10 ⁻¹	2.747×10 ⁻²	1.25×10 ⁻²
Kβ3 X-ray	4.20×10 ⁻²	3.094×10°2°	1.30×10 ⁻³

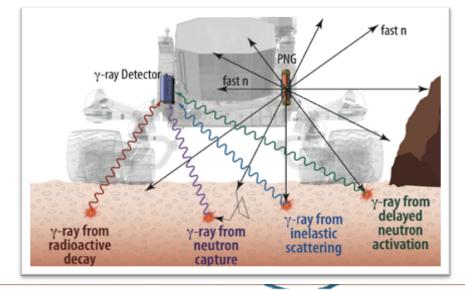
Active Interrogation with Neutrons

Compact DT neutron generators

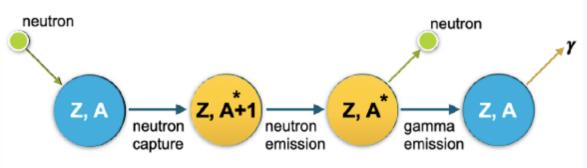
Fusion of deuterium and tritium is convenient way to produce high energy neutrons

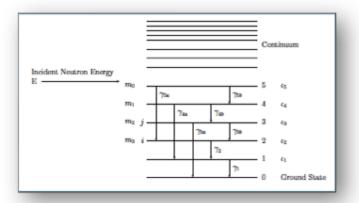
Using our Q-calc tool – what is the Q value for the reaction?

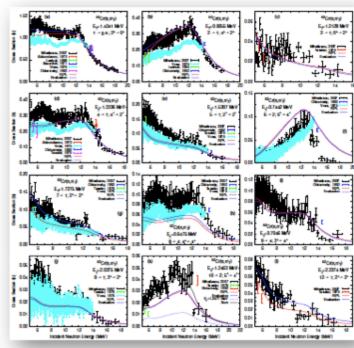
Summary	O Decay	 Reactions
Nuclide:	Parent:	Target:
[mass][symbol] ex. 235U, 40ca, 35CL	[mass][symbol] ex. 235U, 40ca, 35CL	[mass][symbol] ex. 235U, 40ca, 35CL
	Decay Mode: B-	Projectile:
	○ Ejectile:	4He, He-4, 2-he-4, a, alpha
	[mass][symbol]	2004
	ex. 18o, 6He	E _{lab} (MeV):
		O Exit Channel:
		a. nn. nn+p. 2nn+a. 2a+12d


Active Interrogation with Neutrons

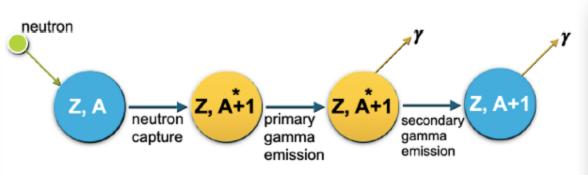
Compact DT neutron generators

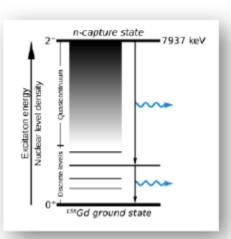

Use our Q-value calculator tool to find Q values for D+T and reaction products. What energy of neutrons are produced?

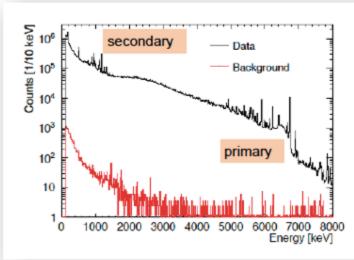

What reactions happen when one shoots MeV-ish neutrons at something?



Inelastic reaction gammas




G. Nobre et al., Nucl. Data Sheets 173: 1-41 (2021)


Decay from inelastic state is

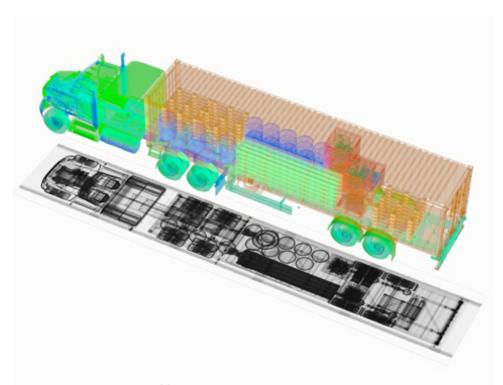
- · Initially populated by compound reaction
- · Cascade lower energy gammas
- · Provides a unique fingerprint for each isotope

Thermal neutron capture gammas

K. Hagiwara et al., Prog Theor. Exp. Phys. 0000, 2015

Decay from capture state is

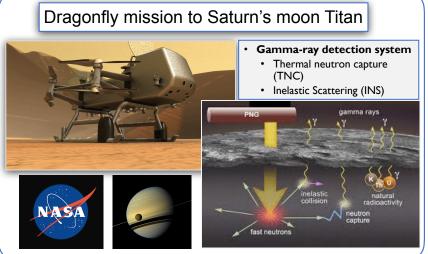
- First high energy gammas primary
- Followed by lower energy gammas –secondary
- Provides a unique fingerprint for each isotope

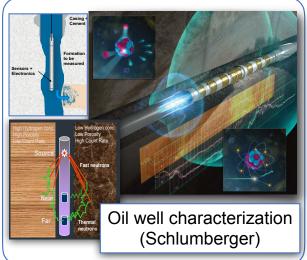

What's in the box?

Use a combination of

- Traditional x-rays
- Active neutron interrogation
- NRF

Complete characterization in few minutes





https://passportsystems.com
Slide from D. Brown

Some additional applications

* Images taken from <u>www.nasa.gov</u>, and from Unzueta's, and Mauborgne's talks in WANDA 2020

- Characterization of materials rely on measuring neutron-induced gammas
- These depend on:
 - Precise and thorough experimental knowledge
 - Incorporation of data into evaluated files
 - Proper handling through transport codes, so that information is not lost

CapGam Web Application –

Thermal Neutron Capture y's (CapGam)

Last Updated 12/ ar2019 12:20:50

About CapGam CapGam by Energy

CapGam by Target

The energy and photon intensity with uncertaintie of gamma rays as seen capture are presented in two tables, one in ascending select of games organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %Iy (per 100 n-captures) for the strongest transition is given, where known.

All data are taken from Evaluated Nuclear St. nuclear structure data and experimental Une by the National Nuclear Data Center, Brookha Data Program and Nuclear Structure and Dec the Nuclear Data Sheets, Elsevier. The data for

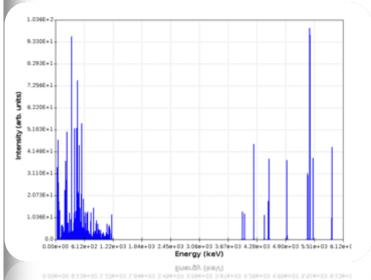
This research was supported by the Office of Energy.

Thermal Neutron Capture y's by Target

Last Updated: 12/10/2019 12:20:50

Ab	out Ca	pGam	Ca	pGam	by E	nergy	Ca	pGam	by Ta	rget								
0 N	1 H													2 He				
	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

1880s 890s 1900s 1910s 1920s 1930s



CapGam Web Application

Tabular data and option to download numerical values

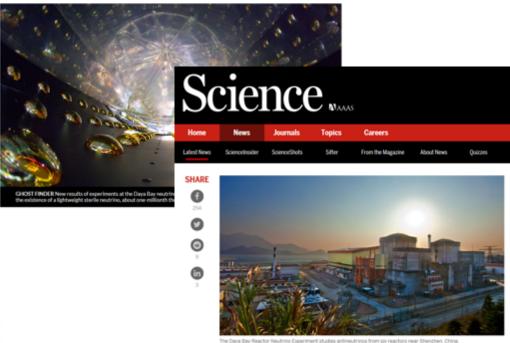
New feature: Histogram of intensity vs. energy

Download as .csv								
E(γ) (keV)	ΔE(γ) (keV)	l(γ)/l(γ) _{max} (%)	$\Delta(I(\gamma)/I(\gamma)_{max})$					
36.14	0.04	33.762	7.51					
59.08	0.03	46.945	10.43					
64.96	0.07	4.18	1.3					
66.55	0.04	26.688	6.01					
69.55	0.06	20.9	5.83					
95.27	0.04	13.505	2.98					
118.50	0.09	0.997	0.31					
122.47	0.07	0.932	0.23					
124.25	0.06	1.0611	0.26					
129.42	0.04	6.141	1.38					
132.16	0.05	2.958	0.7					
138.30	0.04	6.463	1.43					
147.12	0.04	6.817	1.51					
149.86	0.04	5.498	1.23					
162.74	0.09	1.0289	0.34					
164.03	0.04	5.723	1.28					
175.62	0.07	3.0868	0.79					
181.06	0.06	2.605	0.63					
181.06	0.06	2.605	0.63					

Transforming our vast body of data into something unexpected

What applications come to mind when you think of a nuclear reactor?

- Power
- Decay heat
- Medical isotope production
- Neutrino Oscillations
- Non proliferation



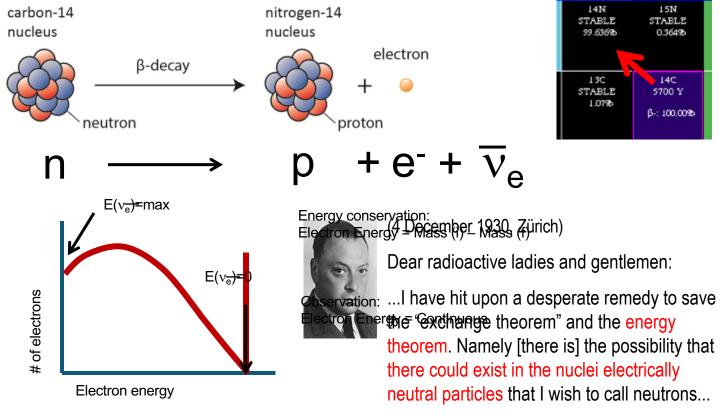
NEWS PARTICLE PHYSICS

Reactor data hint at existence of fourth neutrino

Deficit in antiparticle output exceeds theoretical expectations

Antineutrinos from a reactor are a really hot topic

Sterile neutrino search hits roadblock at reactors


A new result from the Daye Bay collaboration reveals both limitations and strengths of experiments studying antineutrinos at nuclear reactors.

Weird sterile neutrinos may not exist, suggest

new data from nuclear reactors

The Neutrino Hypothesis (1930's)

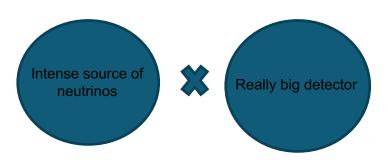
The ghost particle

Antineutrinos are produced in beta decay

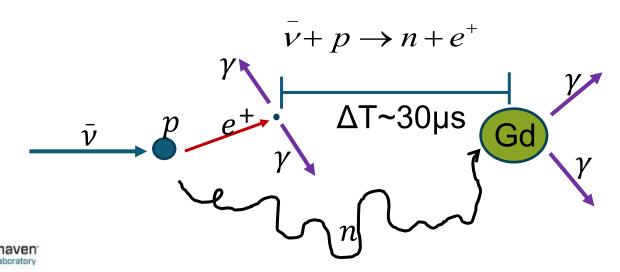
$$n \rightarrow p + e^- + \nu$$

How do you measure something with no electrical charge interacting only through weak interaction?

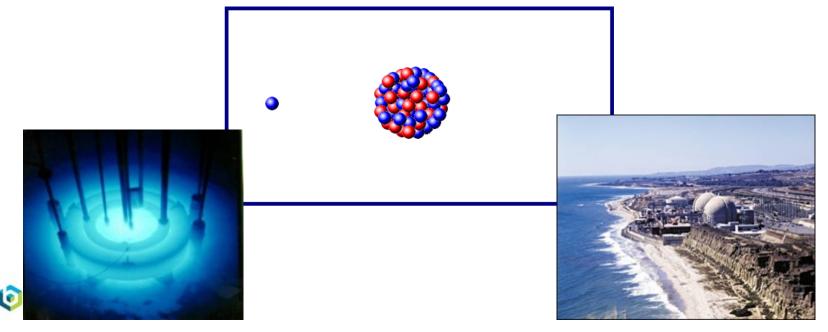
Bethe-Peierls (1934) – detection through inverse beta decay $\stackrel{-}{\nu}+p \rightarrow n+e^+$


The problem: cross section for reaction is ~10⁻⁴⁴ cm² !!! That's 10⁻²⁰ barns !!!

The chances of a neutrino actually hitting something as it trays the tage of state to the trays a ball bearing at random from a cruising 747 and hitting say, an egg sandwich"


Ghostbusting with Probability

How to detect the ghost particle?

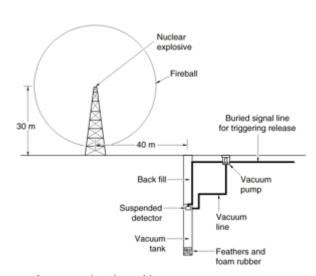


And some nuclear physics!

Nuclear Physics Powering a Reactor

- Fissile material, such as uranium or plutonium
- Neutrons are used to induce fission.
- Products of fission: 2 lighter nuclei and a few neutrons
- New neutrons carry on, and on, and on the process

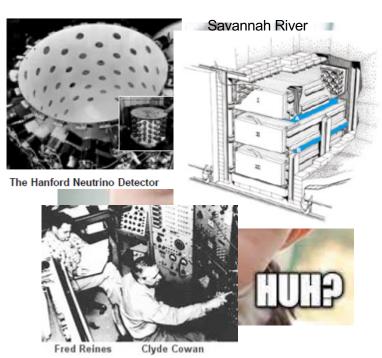
Yields of Fission Fragments

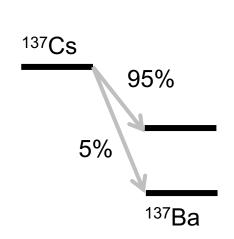


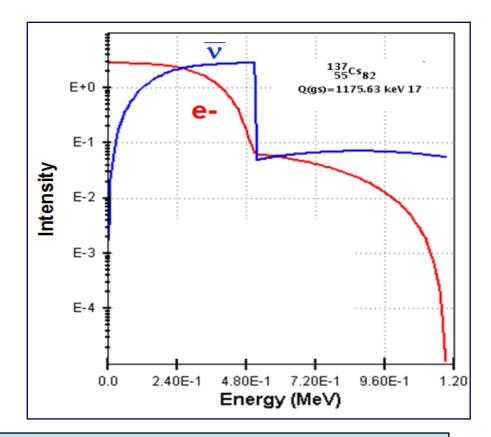
The Neutrino Discovery (1953)

Cowan and Reines:

1995 Nobel Prize for detection of the neutrino

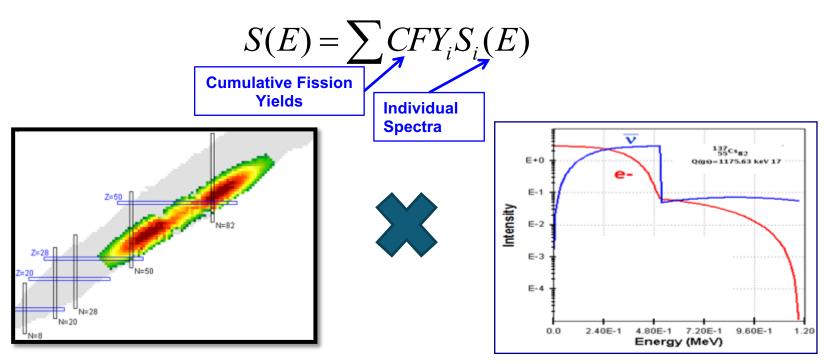

Outside the Box thinking


Approved at Los Alamos



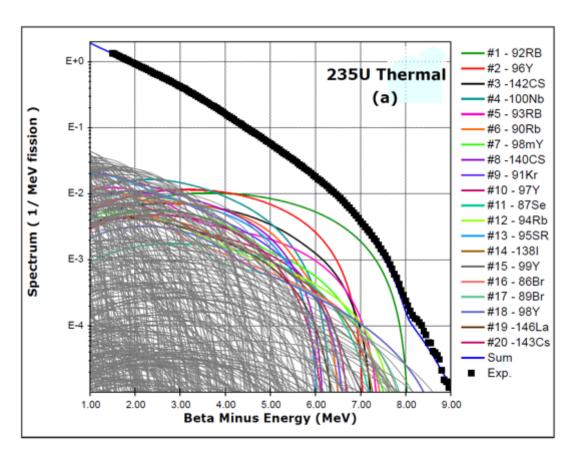
A saner approach : Nuclear Reactor

Simple Example: 137Cs



 $S(E)=N W (W^2-1)^{1/2}(W-W_0)^2 F(Z,W) C(Z,W)(1+\delta)$

The Summation Method



Low precision (~10 % uncertainty) but ...

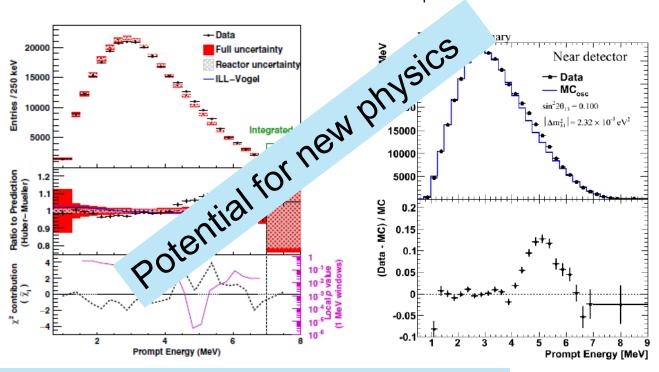
- Can calculate for any fissioning isotope
- Has direct link to underlying physics
 - Doesn't rely on a single measurement

Summation Calculations for ²³⁵U

A.A. Sonzogni, T.D. Johnson, E.A. McCutchan, Phys. Rev. C 91, 011301(R) (2015).

4

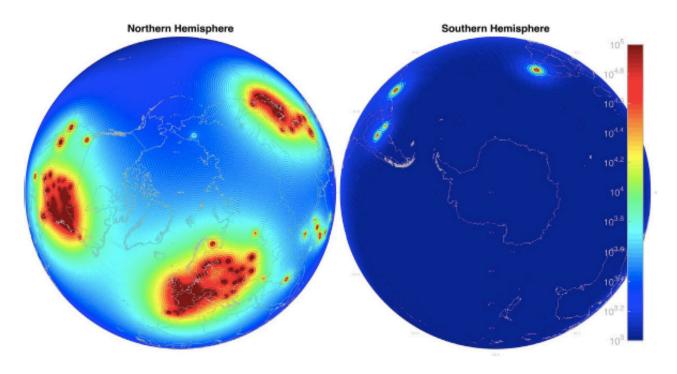
week ending PHYSICAL REVIEW LETTERS PRL 116, 061801 (2016) 12 FEBRUARY 2016 Š Potential for new physics Measurement of the Reactor Antineutrino Flux and Spectr a Bay Data/Prediction Previous data Daya Bay Global average 0.8 -σ Experiments Unc. 1-σ Model Unc. 0.6 10³ 10² 10 Distance (m)



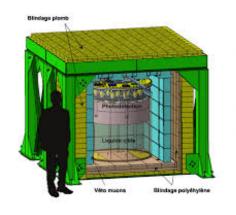
Data/prediction = 0.946+-0.022

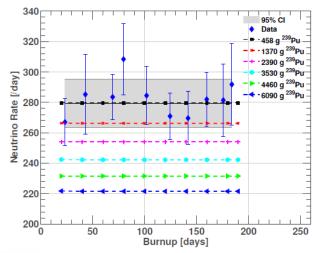
And more interesting

The "bump":


An excess of measured antineutrinos relative to predictions

F.P. An et al, Phys. Rev. Lett. 116, 061801 (2016)

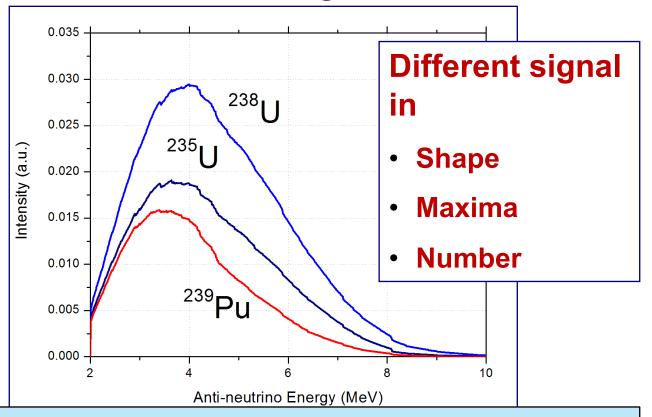

Back to Nuclear Power


AGM reactor flux at Earths surface - Nature 2015

Active and exciting developments worldwide

Many efforts

5.5 m


- USA UK
- Canada
 Korea

SoLid detector modules

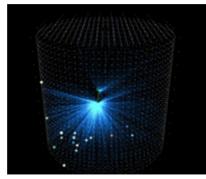
- Japan
- France
- Brazil
- Italy

Exploit differences in signal

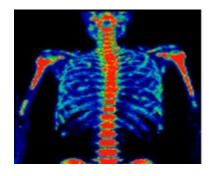
Can be used in non-proliferation and reactor monitoring Advantages: Non-intrusive, "real-time" measurements

Watchman experiment

The New York Times


How to Spot a Nuclear Bomb Program? Look for Ghostly Particles

The Boulby mine in northeast England will be home to the Watchman experiment, which aims to



- Collaboration between UK and USA
- Demonstrate sensitivity to fuel at 10's of k distance
- First results expected 2024

Applications of Nuclear Data

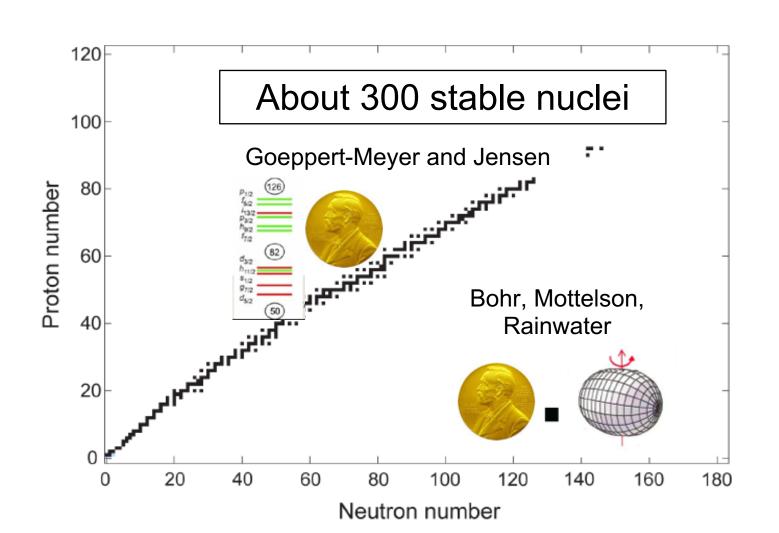
Nuclear Medicine
How can I produce and
use radioactive isotopes
in the body?

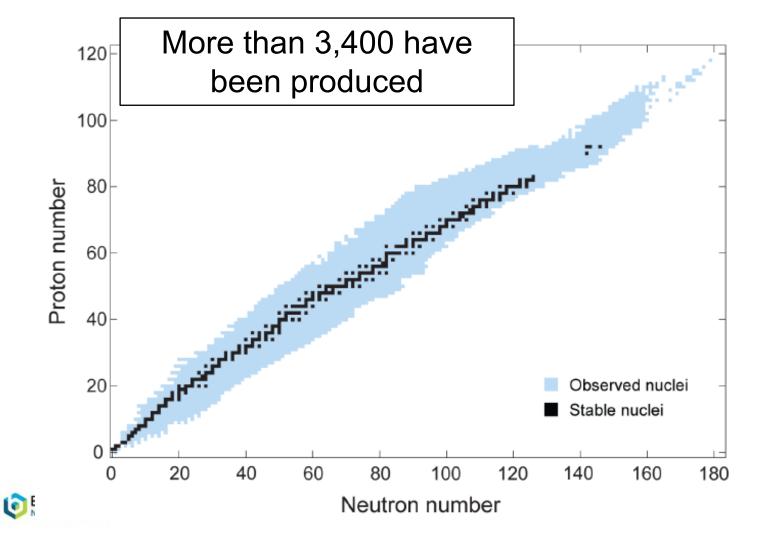
Nuclear Power

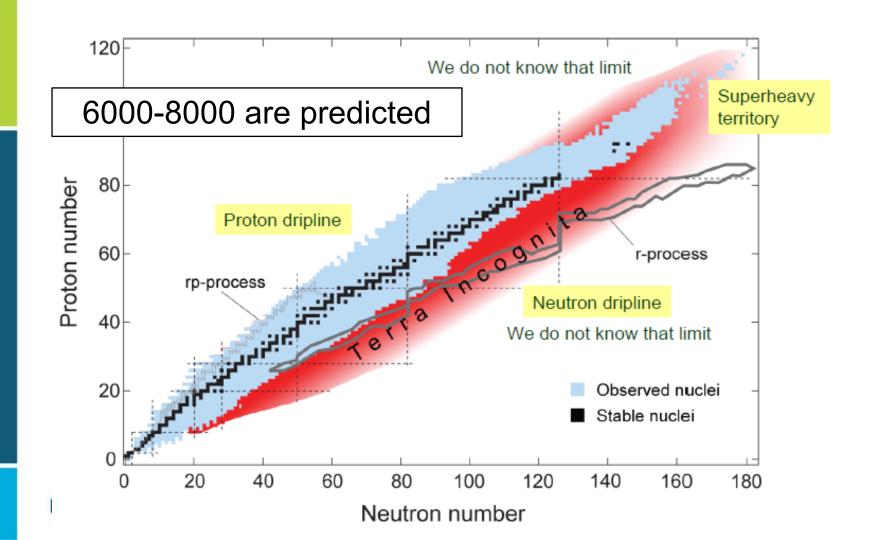
Is there new physics beyond the standard model and can we make the world safer?

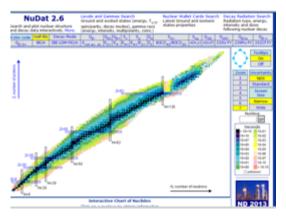
Stockpile Stewardship

How do you ensure
something will work after
decades on the shelf?


Homeland Security




Space Exploration


How do I determine what's in something I can't see or touch?

Take away message

Main thing to take away from this talk

- We work for YOU!!
- Comments/suggestions/criticisms are welcome
- You (should) shape the future of nuclear data