

Internal conversion coefficients, BrIcc, BrIccMixing and decay scheme normalisation

T. Kibêdi (ANU)

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

- □ Electromagnetic decays in atomic nuclei
- □ Internal conversion coefficients, mixed multipolarities
- □ Electric monopole transitions
- □ BrIcc Calculation of conversion coefficient
- BrIccMixing multipole mixing ratios from conversion electron data
- □ GABS normalisation of decay scheme

Afternoon practice session by Filip Kondev on installation and detailed use of the codes

Electromagnetic Decay Processes

EM decay: energy and momentum carried away

Electromagnetic Decay Processes γ-ray emission

Gamma-rays E (1 st order)	γ
λ_γ	

γ-ray

Energetics Gamma $E_{\gamma} = E_i - E_f + T_r$

Electromagnetic Decay Processes Multipolarity

 γ -ray

	ΔL	Δπ	•
E1	-1, 0, +1	yes	
M1	-1, 0, +1	no	K
E2	-2, -1, 0, +1, +2	no	Ŷ
M2	-2, -1, 0, +1, +2	yes	
E3	-3, -2, -1, 0, +1, +2, +3	yes	
M3	-3, -2, -1, 0, +1, +2, +3	no	

Electromagnetic Decay Processes Conversion electron emission

Electromagnetic Decay Processes Electron-positron pair emission

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Transition probabilities and conversion coefficients

$$\begin{array}{l} \underline{Transition\ probability}}{\lambda_{T}} &= \lambda_{\gamma} + \lambda_{K} + \lambda_{L} + \lambda_{M} \dots + \lambda_{PF} \\ \lambda_{T} &= \lambda_{\gamma} \times (\mathbf{1} + \alpha_{total}) \end{array}$$

$$\begin{array}{l} Conversion\ coefficient\ and\ total\ intensity} \\ \mathbf{I}_{total} = \mathbf{I}_{\gamma} \times (\mathbf{1} + \alpha_{total}) \end{array}$$

The knowledge of conversion coefficients essential to evaluate the <u>total transition probabilities</u>

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BrIcc - Calculation of theoretical the AUSTRALIAN NATIONAL UNIVERSITY BrIcc - Calculation of theoretical conversion coefficients

ICC calculations Atomic model

ICTP-IAEA ENSDF workshop, Trieste, October 2022

ICC calculations Atomic model

- Relativistic Dirac-Fock method
- One-electron approximation
- ≻ Free neutral atom
- \succ Screening of the nuclear field by the atomic electrons
- Spherically symmetric atomic potential
 - Relativistic electron wave functions
- Experimental electron binding energies

ICC calculations Nuclear model

Finite nuclear size

Dynamic (penetration) effects incorporated using the Surface Current model

Spherically symmetric nucleus; most abundant isotope

- Atomic many body correlations: factor ~2 for E_{kin}(ce) < 1 keV</p>
- Partially filled valence shell: non-spherical atomic field
- Binding energy uncertainty: <0.5% for E_{kin}(ce) > 10 keV

Chemical effects: <<1%

RAINE code by Band et al., 2002Ba85 Overall accuracy ~1% 2008KiZV

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Theoretical conversion coefficients (L>O)

Selection *rules* (
$$\pi L$$
)
|L-j_i| $\leq j_f \leq L+j_i$
 $\pi = (-1)^L$ for EL
 $\pi = (-1)^{L+1}$ for ML

	Δ π =+1		Δπ=-1	
πL	M1 M3		E1	E3
π' Ľ	E2	E4	M2	M4

Special case: mixed transitions
with 3 multipolarities:
$$^{184}W 536.674(15) \text{ keV}$$

E1+M2+E3,
ME(M2/E1)=+0.070(6),
MR(E3/M2)=-0.025(4)
 λ =-2.1(2);

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Example: 2⁺ to 1⁺ transition,
$$\Delta J = -1$$

 \Box pure M1 ($\Delta J = -1, 0, +1$)
 \Box pure E2 ($\Delta J = -2, -1, 0, +1, +2$)
 \Box mixed M1+E2 ($\Delta J = -1, 0, +1$)

γ-ray transition probability: $\lambda_{\gamma}(\pi'L'/\pi L) = \lambda_{\gamma}(\pi'L') + \lambda_{\gamma}(\pi,L)$

Mixing ratio (MR) $\delta^2(\pi'L'/\pi L) = \frac{\lambda_\gamma(\pi'L')}{\lambda_\gamma(\pi L)}$

Conversion coefficient for CE and PF

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

Measuring conversion coefficients

Defi

Experimental determination of ICC

nition:
$$\alpha_{exp} = rac{I_{CE,PF}}{I_{\gamma}}$$

Review of methods (~16): J.H. Hamilton 1975, Ch 11, The Electromagnetic Interaction in Nuclear Spectroscopy, North-Holland

<u>NPG:</u> - normalised relative CE or PF $(I_{CE,PF})$ and γ (I_{γ}) intensities; normalisation factor, N from a known transition multipolarity, using theoretical ICC

$$\alpha_{exp} = N \times \frac{I_{CE,PF}}{I_{\gamma}} \qquad \frac{Check \text{ if the most recent theoretical ICC was used!}}{I_{\gamma}}$$

<u>XPG:</u> - X-ray (I_{KX}) to γ -ray (I_{γ}) intensity ratio, using K-shell fluorescence yield ($\omega_{\rm K}$)

$$\alpha_{exp} = \frac{I_{KX}}{I_{\gamma}} \times \frac{\epsilon_{\gamma}}{\epsilon_{KX}} \times \frac{1}{\omega_{K}} \qquad \frac{Check \text{ if the most recent } \omega_{K} \text{ was used!}}{\omega_{K}}$$

Intensity balance of two cascading transitions $(\mathbf{I}_{\gamma 1}, \mathbf{I}_{\gamma 2})$ $I_{\gamma 1} \times (1 + \alpha_{tot1}) = I_{\gamma 2} \times (1 + \alpha_{tot2})$ <u>Check if the most recent theoretical ICC was used!</u> $\gamma 2$

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

94.70%

 $Q_{\beta} = 1176 \text{ keV}$

 $5/2^{+}$

7/2+

 $11/2^{-1}$

3/2+

M1

F3

M4

¹³⁷Ba

 $7/2^{+}$

¹³⁷Cs

30.08 years

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

ICTP-IAEA ENSDF workshop, Trieste, October 2022

1294 keV

1252 keV

2.552 min

662 keV

0 keV

E2

M2

EM decay: energy and momentum carried away

```
Selection rules (\pi L)

j_i = j_f

\Delta \pi = 0
```

Pure EO

- NO gamma-ray
- □ Only CE or PF

<u>References:</u> 1997Wo07 J.L. Wood et al., NP **A651** (1999) 323 2022Ki03 T. Kibèdi, A.B. Garnsworthy, J.L. Wood, Prog. Part. Nucl. Phys. 123 (2022) 103930

E0 conversion coefficient NOT DEFINED $\alpha(E0) = \lambda_{CE,PF}(E0) / \lambda_{\gamma}(E0)$

E0 transition rate $\lambda_{CE,PF}(E0) = \rho^2(E0) \Omega_{CE,PF}(E0)$

 $\rho(\text{EO})$ – monopole strength parameter, contains all nuclear structure information

 $\Omega_{CE,PF}(EO)$ - theoretical EO electronic factor (BrIcc)

E0 reduced transition rate B(E0) = $\rho^2(E0) e^2 R_0^4$

Experimental determination $\rho^{2}(E0) = 1/[\Omega_{CE}(E0) + \Omega_{PF}(E0)] \times \tau(E0)$

Conversion coefficients vs. EO electronic factors

 α (M1,E2): from BrIcc (2008Ki07);

 $(\Gamma \alpha), (2 \alpha 2 \alpha \beta - \alpha 1)$

- \Box EO conversion on nS_{1/2} and $nP_{1/2}$ shells only □ Energy dependence
 - α(M1,E2): 🔽 up 14 orders of magnitude
 - Ω(E0): 🚺 2-3 orders of magnitude
 - Opposite for pair conversion
- Atomic shells (K, L, M

Always decreasing

Transition rates

$$\begin{array}{c} \text{E0 conversion on } nS_{1/2} \\ \text{and } nP_{1/2} \text{ shells only} \\ \text{Denergy dependence} \\ -\alpha(M1,E2): \bigcirc \text{up 14} \\ \text{orders of magnitude} \\ -\Omega(E0): \bigcirc 2-3 \\ \text{orders of magnitude} \\ \text{Opposite for pair conversion} \\ \text{Denois shells } (K, L, M): \\ \text{Always decreasing} \\ \text{Dranition rates} \\ \hline I_{CE}(E0) = \rho^2(E0) \times \Omega(E0) \\$$

Transition energy [keV]

$$I_{CE}(M1 + E2) = I_{\gamma}(M1 + E2) \times \alpha(M1 + E2)$$

Z=40:

\ A /

ρ²(EO) from experiments Pure EO

From level half life and EO branching

$$\varrho^2(E0) = \frac{1}{[\Omega_{CE}(E0) + \Omega_{PF}(E0)] \times \tau(E0)}$$

0,+ 2,+ 2,f

excited O⁺ band

From E2 absolute transition rate and E0/E2 branching

g.s. band

$$\varrho^2(E0) = q_K^2(E0/E2) \times \frac{\alpha_K(E2)}{\Omega_K(E0)} \times \frac{1}{\tau_{\gamma}(E2)}$$

MR(EO/E2) mixing ratio - defined for a particular shell (K)

 π

$$q_K^2(E0/E2) = \frac{\lambda_K(E0)}{\lambda_K(E2)}$$
$$q_K^2(E0/E2) = q_{PF}^2(E0/E2) \frac{\Omega_K(E0)}{\Omega_{PF}(E0)}$$

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Remember: $Ω_{CE,PF}(EO) \sim λ_{CE,PF}(EO)$

$\rho^2(EO)$ from experiments E0+E2+M1 mixed transitions

 $\lambda_{\gamma}(E2) + \lambda_{CE}(E2) + \lambda_{PF}(E2) +$

 $\lambda_{\gamma}(M1) + \lambda_{CE}(M1) + \lambda_{PF}(M1)$

 $\delta^{0}(E2/M1) = \frac{\lambda_{\gamma}(E2)}{\lambda_{\nu}(M1)}$

 $p_{q_K^2(E0/E2)} = \frac{\lambda_K(E0)}{\lambda_K(E2)}$

 $\underline{\alpha_K(M1) + \delta^2 \times [1 + q_K^2] \times \alpha_K(E2)}$

 $1 + \delta^2$

Transition probability: EM decay: energy and momentum carried away $\lambda(E0+E2+M1) = \lambda_{CF}(E0) + \lambda_{PF}(E0) +$ Selection *rules* (πL) $\mathbf{j}_i = \mathbf{j}_f$ MR(E2/M1) mixing ratio $\Delta \pi = 0$ 2⁺ to 2⁺ transition EO competite with E2+M1 MR(E0/E2) mixing ratio Conversion coefficient (K-shell) $\alpha_{\kappa}(E0 + E2 + M1) =$

 $\rho^{2}(EO)$ can be determined if both E2/M1 and EO/E2 mixing ratios and level half life are known (E0/E2 mixing ratio from $\alpha_{\rm K}$)

BrIcc 2008Ki07

Available online at www.sciencedirect.com

e to calculate theoretical (conversion	231	Available online at www.sciencedirect.com		firect.com	NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH
S. TO CUICULUTE THEORETICULE		LSEVIER	Juclear Instruments and Methods in	1 Physics Resear-	rch A 589 (2008) 202–229	Section A www.elsevier.com/locate/nima
; ticients		Evaluatio	n of theoretical c	conversi	ion coefficients us	ing BrIcc
a tables:		T. Kibédi ^{a,*} , T.W	/. Burrows ^b , M.B. Trz!	haskovsk?	aya ^c , P.M. Davidson ^a ,	C.W. Nestor Jr. ^d
Reference		Z	Shells or IPF	L	Transition ene	ergy [keV] ^a
version Coefficient (ICC)						
Based on the model using the 'Frozen Orbitals' approxi	imation of <u>2002Ba85</u> and <u>2002Ra45</u>	5-110	All shells	1-5	ε _{ic} +1-6000	
Based on the model using the 'No Hole' approximation	of <u>2002Ba85</u> and <u>2002Ra45</u>	5-110	All shells	1-5	ε _{ic} +1-6000	
sion Coefficient (PCC)						
<u>1979Sc31</u>		0-100 ^b	IPF	1-3	1100-8000	
<u>1996Ho21</u>		50-100	IPF	1-3	1100-8000	
ctor Ω(E0) ^c						
<u>1969Ha61</u>		30-42	K ^d ,L ₁ ^e ,L ₂ ^f	0	ε _{ic} +6-1500	
<u>1970Be87</u>		40-102	К	0	51 ^f -2555	
		40-102	L ₁ ,L ₂	0	51-2555	
<u>1986PaZM</u>		8-40	K ^e	0	511-12775	
		8-40	IPF	0	1431-12775	
Inding energy for the ic-shell		· ⊥				
< 50	Under developme	2NT				
actors are only calculated for even Z values at present	^t 2012Ki04: extension of BrIccFO (Z=111-126)					26)
< 40 58: 51.1 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1	2020Do01: new Electronic factor tables (Z=4- 100)					Z=4-
	s: to calculate theoretical c ficients a tables: Reference version Coefficient (ICC) Based on the model using the 'Frozen Orbitals' approxi Based on the model using the 'No Hole' approximation ion Coefficient (PCC) 1979Sc31 1996Ho21 ctor Ω(E0) ^C 1969Ha61 1970Be87 1986PaZM nding energy for the ic-shell < 50 actors are only calculated for even Z values at present < 40 58: 51.1 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1	s: to calculate theoretical conversion ficients a tables: Reference version Coefficient (ICC) Based on the model using the 'Frozen Orbitals' approximation of 2002Ba85 and 2002Ra45 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 ion Coefficient (PCC) 1979Sc31 1996Ho21 tor Ω(E0) ^C 1969Ha61 1970Be87 1986PaZM nding energy for the ic-shell < 50 actors are only calculated for even Z values at present < 40 58: 51.1 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1 100)	s: to calculate theoretical conversion ficients a tables: T. Kikedr**, T.W Reference z version Coefficient (ICC) Based on the model using the 'Frozen Orbitals' approximation of 2002Ba85 and 2002Ra45 5-110 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 ion Coefficient (PCC) 1979Sc31 0-100 ^b 1996Ho21 50-100 tor $\Omega(E0)^{C}$ 1969Ha61 30-42 1970Be87 40-102 1986PaZM 8-40 nding energy for the ic-shell < 50 actors are only calculated for even Z values at present < 40 55 5.11 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1	s: to calculate theoretical conversion ficients a tables: Reference Z Shells or IPF version Coefficient (ICC) Based on the model using the 'Frozen Orbitals' approximation of 2002Ba85 and 2002Ra45 5-110 All shells Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells bion Coefficient (PCC) 1979Sc31 0-100 ^b IPF 1996Ha61 30-42 K ^d , L ₁ ^e , L ₂ ^f 1970Be87 40-102 K 40-102 L ₁ -L ₂ 1986Pa2M 8-40 K ^e 8-40 IPF nding energy for the ic-shell < 50 actors are only calculated for even Z values at present < 40 55: 51.1 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1	S: to calculate theoretical conversion ficients a tables: Reference 2 Shells or IPF L ersion Coefficient (ICC) Based on the model using the 'Frozen Orbitals' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 Based on the model using the 'Frozen Orbitals' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 Based on the model using the 'No Hole' approximation of 2002Ba85 and 2002Ra45 5-110 All shells 1-5 ion Coefficient (PCC) 1979Sc31 0-100 PF 1-3 1996Ho21 50-100 PF 1-3 tor $\Omega(E0)^{C}$ 1969Ha61 30-42 K ^d ₁ L ₁ ^e , L ₂ ^f 0 1970Be87 40-102 K 0 40-102 L ₁ /L ₂ 0 1986Pa2M 8-40 K ^e 0 8-40 PF 0 nding energy for the ic-shell < 50 actors are only calculated for even Z values at present < 50 actors are only calculated for even Z values at present < 50 actors are only calculated for even Z values at present < 50 actors are only calculated for even Z values at present < 40 8: 51.1 keV; for Z=60-82: 102.2 keV; for Z=84-96: 1 	S: to calculate theoretical conversion ficients a tables: Textual Conversion of theoretical conversion of the conversion of the conversion coefficients us a tables: Textual conversion of the conversion of the conversion of the conversion coefficients us Textual conversion of the conversion coefficients us Textual conversion of the conversion coefficients us Textual conversion coefficients us Textual conversion of the conversion coefficients us Textual conversion coefficients us Tex

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BrIcc 2008Ki07

- Install files (code, data files, manual) into one directory, defined with the <u>BrIccHome</u> environment variable
- □ Working with ENSDF files is a TWO step process
 - Bricc (ENSDF file) creates calculation report BrIcc.lst) and new Grecords (Cards.new)
 - 2) Bricc < ENSDF file> merge insert/replace/delete G, S_G records
- □ Always check ENSDF file for errors (use FMTCHK) before running BrIcc
- □ Uncertainty on theoretical ICC: 1.4% (1% theory, 0.4% interpolation)
- If MR is empty, BrIcc uses assumed mixing ratios: for E2/M1: MR= 1.00
 - for M3/E2, E4/M3, M5/E4, M2/E1, M4/E3, E5/M4: MR= 0.10

for E3/M2: MR= 1.00

- □ Installation and use: talk by Filip Kondev this afternoon
- □ More information in NimA 589 (2008) 202 and BrIcc Manual
- □ Report problems and or comments: <u>Tibor.Kibedi@anu.edu.au</u>

□ Web interface: <u>https://bricc.anu.edu.au</u>

••• • • · < >	D bricc.a	anu.edu.au Č	Û +	ſ
🛃 В	ricc - BRICC - ANU		Post Attendee - Zoom	
Australian National University	BRICC CONVERSION COEFFI CALCULATOR Research School of Physics ANU College of Science	CIENT	Search ANU web, staff & maps Q	
Home Grapher	Documentaion Download About			

Bricc Conversion Coefficient Calculator

The **BrIcc** program calculates the conversion electron (α IC), electron–positron pair conversion coefficients (α \pi) and the E0 electronic factors (Ω IC, π (E0)).

Z *	са
Energy *	234.5
Energy uncertainty	+3-2
Multipolarity	M1+E2
δ	-0.19
δ uncerntainty	+4-5
Subshells Data set	BriccFO \$

Calculate

BrIccS v2.3	3 (9-Dec-2011)							
Z=20 (Ca, Calcium)								
γ-energy: 234.5 (+3 -2) keV								
Mixing Rati	ο δ: -0.19 (+4 -5)						
Data Sets:	BrIccF0							
Shell	E(ce)	M1	E2	Mixed ICC				
Tot		1.587E-03	9.932E-03	0.00188 (17)				
к	230.46	1.445E-03	9.044E-03	0.00171 (16)				
L1	234.06	1.235E-04	7.579E-04	0.000146 (13)				
L2	234.15	1.345E-06	1.347E-05	1.77E-6 (24)				
L3	234.15	7.731E-07	1.832E-05	1.4E-6 (4)				
L-tot	234.06	1.257E-04	7.897E-04	0.000149 (14)				
K/L		1.150E+01	1.145E+01	11.5 (15)				
M1	234.46	1.469E-05	8.990E-05	1.73E-5 (15)				
M2	234.47	1.425E-07	1.425E-06	1.9E-7 (3)				
МЗ	234.47	8.180E-08	1.939E-06	1.5E-7 (4)				
M-tot	234.46	1.491E-05	9.327E-05	1.76E-5 (16)				
L/M		8.428E+00	8.466E+00	8.4 (11)				
N1	234.50	8.393E-07	5.136E-06	9.9E-7 (9)				
N-tot	234.50	8.393E-07	5.136E-06	9.9E-7 (9)				
L/N		1.497E+02	1.537E+02	150 (19)				

BrIcc Grapher

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

5 min break

BrIccMixing

\Box Aim to deduce multipole mixing ratio (MR or δ) from

- Conversion coefficients
- Ratios of CE intensities or ICC

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

BrIccMixing

 \Box Aim to deduce multipole mixing ratio (MR or δ) from

- Conversion coefficients
- Ratios of CE intensities or ICC values (relative)

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

NOTE: CE data only gives absolute value of δ

Mixing ratios from γ-ray measurements (γ-ray angular distribution of γγ angular correlation)
 NOTE: Not sensitive for magnetic or electric character

BrIccMixing

######################################	####### ta	##########	*#######	#########	****	#####
99TC G 140	.511	1 100	M1+E2	+0.1	.3 4 ENSD	F <u>title</u>
########## 99Tc 140.51	####### 1 1	######################################	*####### <mark> #1</mark> - Z	########## & transit	############# ion energy	#####
M1+E2 0.13	1.0	<u>Contro</u>	<u> #2</u> - m	ultipolari	ty, initial N	٨R
# NsrKey	Shell	IccVal	Unc	Туре		
1969Ag04	L1/L2	12	4	R		
1969Ag04	L1/L3	18	7	R Input	values - ro	<u>atio</u>
1969Ag04	L2/L3	1.7	7	R		
1974Ga01	MR	+0.118	6	A		
1981Ge05	K	0.097	3	A Inpu	t values – I	<u>.CC & MR</u>
1981Ge05	Т	0.119	3	Α		
*NEW ######	#######	######################################	######################################	######### , L1, L2, . .2/L3	########### , L12)	####

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

BrIccMixing - solution

BrIccMixing - solution

ICTP-IAEA ENSDF workshop, Trieste, October 2022

BrIccMixing - solution

<u>Command:</u> briccmixing <InputFile> :

- □ BrIcc need to be installed, put BrIccMixing executable into the same folder
- $\hfill \Box$ Gnuplot need to be installed and executable need to be in the PATH
- No new G-record is prepared. Document input data in G-comment record, put new MR on G-record
- Limitations:
 - Input data could not be a limit or have asymmetric uncertainties
 - Could not handle M1+E2+E0 multipolarities
 - Experimental ICC with uncertainty should not be outside of the two multipolarities
 - ICC energy dependent and there are cases, when different multipolarities overlap
 - Uncertainty may not be well defined if χ -squared minimum is \gg (>10) Alternative method is under development
 - Minuit solution systematically underestimate uncertainty

Decay scheme normalisation and absolute intensities

NORMALISATION RECORD:

- NR: Multiplier for converting relative photon intensity (RI in the GAMMA record) to photons per 100 decays of the parent through the decay branch
- BR: Branching ratio multiplier for converting intensity per 100 decays through this decay branch to intensity per 100 decays of the parent nuclide.
- NB: Multiplier for converting relative β and EC intensities (IB in the B- record; IB, IE, TI in the EC record) to intensities per 100 decays through this decay branch.
- **IGS**: fraction (%) of direct β and EC feeding to the g.s.

GABS calculates

- □ <u>Single Data Set:</u> NR from RI, CC, TI (if given), BR and IGS
- Multiple Data Set: NR and BR from RI, CC, TI (if given), and IGS

Simple decay scheme

Simple decay scheme

1986Br21 uses G, the fraction of NOT populating the g.s. GABS: Fractional g.s. feeding, IGS

$$G = \frac{100 - IGS}{100}$$

Definitions:

1

- □ Total transition intensity: TI=RI*(1+CC)
- Absolute γ-photon intensity: %IG=NR*BR*RI per 100 decays
- \Box NR and BR not independent quantities:

GABS: Calculates NR only!

$$TI = RI^{*}(1+CC)$$

$$N=NR^{*}BR$$

$$00 = BR \times [IGS + NR \times \sum_{i} TI(i)]$$

$$NR = \frac{100 - IGS}{100 \times \sum_{i} TI(i)}$$
%IG = RI^{*}NR^{*}BR

Complex decay scheme

Complex decay scheme with g.s. feeding

Assuming all RI's are on the same scale or from the same experiment

ICTP-IAEA ENSDF workshop, Trieste, October 2022

GABS - input ENSDF file

Gamma-rays for normalisation

- Must feed to the ground state
- \Box RI or TI must be given; DRI or DTI could be blank, but $\Sigma(DTI(i)^2) > 0!$
- □ "X" in column 79
- **IGS=** on "2 N" record to specify α , β , EC decay branch feeding to g.s.; given in %.

GABS -normalization mode

Usage

gabs -F ENSDF file

- □ NR need to be blank in the input file
- NR and BR will be obtained from a fit (using G`s marked with "X"; Ground state feeding: IGS=)
- □ New ENSDF & calculation report file created
- □ G-continuation records created with %IG=<Absolute photon Intensity>
 - -C Calculate %TI using NR & BR from the N-record NOTE:
 - -M Mark transitions going to the g.s. with "X" if RI>O or TI>O gabs? for quick help

GABS - calculation mode

Usage

gabs -C ENSDF file

- □ G-continuation records created with %IG=<Absolute photon Intensity>
- Uncertainty in %IG could be overestimated for transitions used for normalisation

GABS – marking transitions for normalisation

Usage

gabs - M ENSDF file

- □ Transitions must have RI>0 or TI>0
- Output file created, ready to be used for normalisation

□ GABS uses CC on G field to calculate TI

Use BrIcc to populate CC on G-record before running GABS

- \Box Put executable in a directory within the PATH.
- No additional data file needed
- No written manual, use GABS ? To get general help. Consult with sample input/output files.

Thanks