

The latest AME & NuBase nuclear data tables: how well do we know the basic nuclear physics properties?

F.G. Kondev Physics Division, Argonne National Laboratory

kondev@anl.gov

Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory, Experiment and Evaluation, Trieste IT 2022

Atomic Mass Evaluation & NuBase

Correlations

- ✓ pairing
- 🗸 p-n
- Binding energy
 - ✓ mass models
 - ✓ shell structure
- Reaction & decay phase space
 - 🗸 Q values
 - ✓ reaction probabilities
- The limits of existence
 drip lines

General Physics Physics & Atomic fundam. constants Chemistry Physics test of CP basic information 5m/m ≤ 1.10-1 binding energy. required QED in HCI m/m > 1-10* $\delta m/m \le 1.10$ atomic Applications Weighing masses Sm/m < 1-10 Nuclear Weak Interactions Physics mass formulae, Astrosymmetry tests, models, halo **CVC** hypothsis physics 6m/m = 1-10 nuclear synthesis. 5m/m < 1-10 r-, rp-process

- Nuclear astrophysics
 - ✓ nucleosynthesis pathways & scenarios
- Fundamental symmetries
- Metrology

post COVID-19

Shell structure - example

Theory & Astrophysics - examples

M.R. Mumpower et al., J. Phys. G: Nucl. Part. Phys. 42, 034027 (2015)

- beneficial to theory development
 - models agree (to some extent) in region where data exist
 - diverge wildly outside the recommended AME data

beneficial to nucleosynthesis modeling –
 basic nuclear data: *m*, T_{1/2}, BR, P_n, *etc.* –
 AME & NuBase provide complete, up-to date, credible & properly referenced
 data

J. Covan et al., Rev. Mod. Phys. 93 (2021) 015002

Metrology - New International System of Units

6.85

6.9

6.8

6.95

 $[h/(10^{-34} \text{ J s})-6.6260]$

7.05

 10^{5}

7.1

Historical Perspective

"Doing this job makes us see almost all aspects of the nuclear physics problems and many also beyond. Often, we have the privilege to be the first ones to see new phenomena."

A. Wapstra & G. Audi

1943	S. Flügge and J.H.E.	1955	A.H. Wapstra and J.R. Huizenga	1971	A.H. Wapstra and M.B.
1944	Mattauch G. Seaborg	1956	J. Mattauch et al.	1977	Gove A.H. Wapstra and K. Bos
1946	G. Seaborg	1957	J.H.E. Mattauch and F. Everling	1985	A.H. Wapstra and G. Audi
1946	J. Suruque	1960	F. Everling <i>et al</i> .	1993	G. Audi and A.H. Wapstra
1948	A.H. wapstra	1962	L.A. König et al.	2003	G. Audi et al.
1953	A.H. Wapstra	1965	J.H.E. Mattauch et al.		

AME2020 & NUBASE2020 - just published

coordinated by M. Wang (AME) and F.G. Kondev (NuBase)

The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

Science since March 5, 2021 28000 downloads! The Ame2020 atomic mass evaluation **

(I). Evaluation of input data, and adjustment procedures

W.J. Huang (黄文嘉)^{1,2,3,4} Meng Wang (王猛)^{1,5,*} F.G. Kondev⁶ G. Audi (欧乔治)³ S. Naimi⁷

The Ame2020 atomic mass evaluation **

(II). Tables, graphs and references

Meng Wang (王猛)^{1,2,*} W.J. Huang(黄文嘉)^{1,3,4,5} F.G. Kondev⁶ G. Audi (欧乔治)⁵ S. Naimi⁷

Where to find the data

pdf & ascii: https://www.anl.gov/phy/atomic-mass-data-resources (ANL) https://www-nds.iaea.org/amdc/ (IAEA) http://amdc.impcas.ac.cn (IMP) **JAVA-AME** J. Chen stand-alone & www Table of Atomic Mass Evaluation JANIS Atomic Mass Table **+NUBASE** NUBASE1997-2020 References ● AME2020 ○ AME2016 ○ AME2012 Nuclide ? 177/u Get 🚺 rounded Nicolas Soppera FA NUBASE2020 International Atomic Energy Agency 177Lu71 (AME+NUBASE2020) --- rounded Nuclear Data Services 0(b-) = 496.8 + / - 0.8Marco Varpelli Q(ec) = -1397.5 + / - 1.2Provided by the Nuclear Data Section C EC, Betta C Beta-C Alpha C IT C SF C p C n C Stable C Winknown C No data **0(b+) = -2419.5 + / - 1.2 (see note) Sa Se Se 2Se 38 73 Se [₽]Se₃ ²Se Se 71 Se 3 S(n) = 7072.89 + / - 0.1635.5 s 6 =-54182.4 8+=188 41.1 m 0+ -61929.9(3 0+=100% S(p) = 6181.6 + / - 1.20(a) = 1447 + - 556 AS As As a AS 38 As a SAS 32 33AS BAS : S(2n) = 13360.86 + / - 0.222.5 ± 15/3 =-56587.2 8+=100% S(2p) = 14650 + / - 50Q(ep) = -10300 + / - 10032 Ge 38 Ge Ge 3 Ge Ge₃ 2Ge Ge 2Ge Q(b-n) = -5878.8 + / - 0.92.25 h 0 6=61687.8(9+=100% 71.05 d 6 -66978.8(c=1805 0(2b) = -669 + / - 31 - Hydroger
2 - Helium
3 - Lithium
4 - Beryllium mass = 176943763.6 +/- 1.3 Ga Ga Ga Ga 51 Ga 38 Ga Ga Ga (micro-u) 4 - Beryilum 5 - Boron 6 - Carbon 7 - Nitrogen 8 - Oxygen 9 - Fluorine 10 - Neon 11 - Sodium with the second se B.E./A = 8053.450(check) +/- 0.007 1.2617 d 3/2 5-66879.2(1 M Excess = -52383.9 +/- 1.2 2**Zn** 32 54 Zn 34 SZn : 56 Zn 36 30 Zn 37 58 Zn 38 8Zn 3 SZn: 0(4b) = -6115 + / - 28Q(d,a) = 13022.5 + / - 1.212 - Magnesius 12 - Magnesun 13 - Aluminium 14 - Silicon 15 - Phosphoru 16 - Sulphur 0(p,a) = 9424.7 + / - 1.2Cu 3 ²Cu 63 29 CU 34 65 29 **Cu** 36 Cu a ⁷2Cu 38 Cu Q(n,a) = 7130 + / - 4017 - Chlorine 18 - Argon 19 - Potassium 20 - Calcium Energy = 0.0JPI = 7/2+* 60 28 **Ni** 32 28 Ni 33 62 28 Ni 34 53 Ni 34 28 Ni 36 66 Ni 38 8N1 39 T1/2 = 6.6443 d 0.0009 DecavMode = B-=100 Q(b-)=1397.5 +/- 1.2 27 CO 32 ⁶⁰27**CO** 33 61 27 CO : 2**CO** 39 3**CO** 36 Co 5 CO 38 56 CO 39 **Incorporated into LiveChart** prev=177Yb 0(ec)=-3420# +/- 200# 1.649 h 7/3 h=-62898.218 β=100% next=177Hf Q(b-)=-1166 +/- 3 & standalone app 0(ec)=-496.8 +/- 0.8 58 Fe 32 8Fe 33 60 Fe 34 51 Fe 34 Fe a 63 Fe 3 6 Fe 38 55 Fe **:here 0(b+)=0(ec)-2*510.999 keV Q(b+)=Q(ec) defined in AME and ENSDF

Experimental (Input) Data - compilation

- TOF & MR-TOF (very fast BUT low precision & resolution)
- Storage Rings (fast & many nuclei at once)
- Penning Traps (relatively "slow" BUT high precision and high resolution)

Indirect methods - reaction and decay energies

- Reaction Energies
 - (n,γ) and (p,γ) are the backbone
 - self-calibrated A(a,b)B vs. C(a,b)D
 - close to stability
- **Decay Energies** in β -, β +, α and p decays
 - far from stability α and p (heavy or proton-
 - rich nuclei) & $Q_{\beta_{-}}$ neutron-rich nuclei

Adjustments to the Input Data

...just a few examples ...

- 13812 experimental data, but not all made it to the final adjustments, for example:
 - ▶ 6023 (U less weight)
 - 997 (o old data from the same group)
- statistical analysis of data of the same kind
- reject some experimental results & replace with systematics – 78 cases
- take into account isomers
- adjust uncertainties in the mass spectrometry data

least-squares fit approach

- 2201 primary data determine the masses of 1304 nuclides
 - 1135 reactions & decays
 - 1066 mass spectrometry

The Ame2020 atomic mass evaluation **

(I). Evaluation of input data, and adjustment procedures

W.J. Huang (黄文嘉)^{1,2,3,4} Meng Wang (王猛)^{1,5,*} F.G. Kondev⁶ G. Audi (欧乔治)³ S. Naimi⁷

Chinese Physics C Vol. 45, No. 3 (2021) 030002

Table I. Comparison of input data and adjusted values (continued, Explanation of Table on page 030002-30)

Item		Input va	alue	Adjusted value		vi	Dg	Signf.	Main infl.	Lab	F	Reference	e
15													
⁴⁵ Cl-u		-19690	140	-19610	150	0.4	0			GA4	1.5	00Sa21	
		-20300	700			0.7	U			TO3	1.5	90Tu01	
		-19850	460			0.4	0			GA5	1.5	00Sa21	
		-19710	107			0.7	2			GA7	1.5	07Ju03	
15		-19098	236			-1.4	2			GA8	1.5	12Ga45	
⁴⁵ V-u		-34225.7	9.7	-34231.5	0.9	-0.6	U			LZ1	1.0	11Tu09	
		-34230	11			-0.1	U			LZ1	1.0	18Zh29	
⁴⁵ Cr-u		-20390	540	-20950	40	-0.7	U			GT1	1.5	04St05	*
15 00		-20950	38				2			LZ1	1.0	12Zh34	*
$^{45}Ar - ^{39}K_{1.154}$		9922.45	0.55				2			MA8	1.0	03B117	
${}^{45}\text{K} - {}^{39}\text{K}_{1.154}$		2574.21	0.56				2			MA8	1.0	07 Ya08	
⁴⁵ V- ⁴⁵ Ti		7647.74	0.23	7647.74	0.23	-0.0	1	100	100 ⁴⁵ V	JY1	1.0	14Ka22	
⁴⁵ Sc(p,α) ⁴² Ca		2343	8	2339.0	0.7	-0.5	U			MIT		64Sp12	
45 Sc(d, α) 43 Ca		8028	12	8047.4	0.7	1.6	U			MIT		64Sp12	
		8059	12			-1.0	U			Kop		67Ha.A	
⁴³ Ca(³ He,p) ⁴⁵ Sc		10310	20	10305.7	0.7	-0.2	U			Hei		70Sc22	
45Fe(2p)43Cr		1140	40	1800#	200#	16.5	0					02Gi09	
		1100	100			7.0	U					02Pf02	
		1154	16			40.4	D					05Do20	*
$^{44}Ca(n,\gamma)^{45}Ca$		7414.8	1.0	7414.82	0.17	0.0	U					69Ar.A	Ζ
		7414.83	0.3			-0.0	-			MMn		80Is02	Ζ
		7414.79	0.21			0.1	_			Bdn		06Fi.A	
⁴⁴ Ca(d,p) ⁴⁵ Ca		5184	4	5190.25	0.17	1.6	U			MIT		68Be36	
$^{44}Ca(n,\gamma)^{45}Ca$	ave.	7414.80	0.17	7414.82	0.17	0.1	1	99	97 ⁴⁵ Ca			average	
$^{44}Ca(p,\gamma)^{45}Sc$		6887.8	1.2	6892.6	0.7	4.0	В					74Sc02	Ζ
45 Sc(3 He, α) 44 Sc		9249	15	9250.0	1.9	0.1	U			MIT		71Ra09	
$^{45}Sc(d.t)^{44}Sc^{i}$		-7846	10	-7848.1	2.6	-0.2	U					71Oh01	*
$^{45}V^{i}(p)^{44}Ti$		3190	50	3170	9	-0.4	U					74Ja10	*
47		3170	9				3			Bor		07Do17	*
${}^{45}\text{K}(\beta^{-}){}^{45}\text{Ca}$		4180	200	4196.6	0.6	0.1	U					64Mo18	
$^{45}Ca(\beta^{-})^{45}Sc$		258	2	260.1	0.7	1.0	1	14	11 ⁴⁵ Sc			65Fr12	
$^{45}\text{Ti}(\beta^+)^{45}\text{Sc}$		2066	5	2062.1	0.5	-0.8	U					66Po04	
⁴⁵ Sc(p.n) ⁴⁵ Ti		-2844.2	4.	-2844.4	0.5	-0.1	U			Ric		55Br16	Y
([)		-2843.6	4.0			-0.2	Ū			Can		70Kn03	-
		-2844.4	0.5			-0.0	1	100	100 ⁴⁵ Ti	PTB		85Sc16	Z
⁴⁵ Sc(³ He t) ⁴⁵ Ti ⁱ		-6801	4	-6800	3	0.3	1	61	60 ⁴⁵ Ti ⁱ			71Be29	*
* ⁴⁵ S-u	Trends f	from Mass Sur	face TMS	suggest 45S 64	50 keV les	s bound		···	00 11			GAu	**
* ⁴⁵ Cr-11	M - A =	-18940(500) k	eV for mix	ture gs+m at	107(1) ke ³	V						Nub211	**
* ⁴⁵ Cr-11	Same re	sult in referen	re isi ilin	50 u								13Ya03	**
$*^{45}$ Fe(2n) ⁴³ Cr	Trends f	from Mass Sur	face TMS	suggest ⁴⁵ Fe 6	50 keV le	ss hound						GAu	sk sk
* ⁴⁵ Fe(2p) ⁴³ Cr	Trends f	from Mass Sur	face TMS	suggest ⁴⁵ Fe 6	550 keV le	ss bound						GAu	**

Penning Trap input data - example

Penning Trap measurements are NOT absolute!

in AME we compile the frequency ratios and use the latest data (both AME & atomic) for the reference nuclide (molecule) to determine the mass of the nuclide of interest

original publication ...

PHYSICAL REVIEW C 101, 041304(R) (2020)

Rapid Communications

Precision mass measurements of ⁶⁷Fe and ^{69,70}Co: Nuclear structure toward N = 40 and impact on *r*-process reaction rates

Nuclide	T _{1/2} (ms)	I^{π}	r	$\Delta_{\rm JYFL}$ (keV)	Δ_{lit} (keV)	Difference (keV)
⁶⁷ Fe	394(9)	$(1/2^{-})$	0.797874190(8)	-45709.1(3.8)	-45610(270)	-99(270)
⁶⁹ Co	180(20)	7/2-#	0.821649141(428) ^a	-50383(44)	-50280(140)	-103(147)
69 Co ^m	750(250)	$1/2^{-}$ #	0.821651504(291) ^a	-50207(36)	-49780(240)#	-430(240)#
⁷⁰ Co ^b	508(7) [50]	$(1^+, 2^+)$ [50]	0.833615937(21)	-46525(11)	-46430(360)#	-95(360)#

erratum ...

PHYSICAL REVIEW C 103, 029902(E) (2021)

Erratum: Precision mass measurements of ⁶⁷Fe and ^{69,70}Co: Nuclear structure toward N = 40 and impact on *r*-process reaction rates [Phys. Rev. C 101, 041304(R) (2020)]

Nuclide	<i>T</i> _{1/2} (ms)	Ιπ	r	Δ _{JYFL} (keV)	Δ _{lit} (keV)	Difference (keV)
⁶⁷ Fe ⁶⁹ Co ⁶⁹ Co ^m ⁷⁰ Co ^b	394(9) 180(20) 750(250) 508(7) [16]	$(1/2^{-})$ $7/2^{-}#$ $1/2^{-}#$ $(1^{+}, 2^{+})$ [16]	0.797874191(49) 0.82164916(110) ^a 0.82165149(64) ^a 0.83361594(15)	-45709.1(3.8) -50385(86) -50203(50) -46525(11)	-45610(270) -50280(140) -49780(240)# -46430(360)#	-99(270) -105(170) -423(250)# -95(360)#

AME2020 vs AME2016

777 new experimental data

- 477 mass spectrometry
- **300** decay energies
- masses for **74** nuclei measured for the first time
- significant impact at the n and p-rich sides
- impact in the region of heavy nuclei

 improved mass uncertainties for 857 nuclides
 worsen mass uncertainty for 313 nuclei – mostly derived from TMS (extrapolation), but some are for measured masses – *e.g.* ¹⁶⁷Lu (30 vs 37 keV)

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd ^{160,162}Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N = 98

D. J. Hartley,¹ F. G. Kondev,² R. Orford,^{2,3} J. A. Clark,^{2,4} G. Savard,^{2,5} A. D. Ayangeakaa,^{2,*} S. Bottoni,^{2,†} F. Buchinger,³ M. T. Burkey,^{2,5} M. P. Carpenter,² P. Copp,^{2,6} D. A. Gorelov,^{2,4} K. Hicks,¹ C. R. Hoffman,² C. Hu,⁷ R. V. F. Janssens,^{2,‡} J. W. Klimes,² T. Lauritsen,² J. Sethi,^{2,8} D. Seweryniak,² K. S. Sharma,⁹ H. Zhang,⁷ S. Zhu,² and Y. Zhu⁷

160 Tb 95 65 Tb 95 Δ=-67835.5 (1.8) β-=100%	$ \begin{array}{c} 161 \textbf{Tb} \\ 65 \textbf{Tb} \\ 96 \\ \hline \\ \Delta = -67460.8 \ (1.8) \\ \beta - = 100\% \end{array} $	162 Tb 97 65 Tb 97 ^{7.60 m (1-)} Δ=-65670 (40) β-=100%		164 Tb 99 3.0 m (5+) Δ=-62080 (100) β-=100%	$ \begin{array}{c} 165 \ \textbf{Tb} \\ 65 \ \textbf{Tb} \\ 100 \\ \\ 2.11 \ \text{m} \ 3/2 + \# \\ \Delta = -60570 \# \ (200 \#) \\ \beta - = 100\% \end{array} $	166 Tb 101 65 Tb 101 25.1 s (2-) Δ=-57880 (70) β-=100%	į,
159 GC 95 18.479 h 3/2- Δ=-68560.8 (1.6) β-=100%	160 GC 96 5table >31E> 0+ Δ=-67940.9 (1.) Abndnc=21.86% (19) 2β- ?	$\begin{array}{c} 161 \ \textbf{GC} \ 97 \\ 3.646 \ \text{m} \ 5/2- \\ \Delta = -65505.0 \ (2.0) \\ \beta = 100\% \end{array}$	162 GC 98 64 GC 98 Δ=-64280 (* β-=100%	163 GC 99 68 s 7/2+# Δ=-61314 (8) β-=100%	164 GC 100 45 s 0+ Δ=-59770# (200#) β-=100%	$\begin{array}{c} 165 \ \textbf{GC} \ 101 \\ \\ 10.3 \ \text{s} \ 1/2 - \# \\ \Delta = -56490 \# \ (300 \#) \\ \beta - = 100 \% \end{array}$	
¹⁵⁸ EU 95 45.9 m (1-) Δ=-67255 (10) β-=100%	159 EU 96 18.1 m 5/2+ $\Delta = -66043$ (4) $\beta = 100\%$	160 63 EU 97 38 s (1)(-#) Δ=-63480 (10) β-=100%	161 EU 98 26 5 5/2+# Δ=-61792 (10) β-=100%	162 EU 99 63 EU 99 Δ=-58690 (60) β-=100%	163 EU 100 7.7 s 5/2+# Δ=-56640 (70) β-=100%	164 63 EU 101 4.2 s Δ=-53330# (210#) β-=100%	`````

CPT: mass measurements

R = m/Δm ~ 20,000,000

phase-imaging ion-cyclotron-resonance (PI-ICR) technique

- faster measurements nuclei with shorter lifetimes
- improved sensitivity & accuracy resolving isomers

PHYSICAL REVIEW LETTERS 120, 262701 (2018)

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for *r*-Process Calculations

M. Vilen,^{1,*} J. M. Kelly,^{2,†} A. Kankainen,¹ M. Brodeur,² A. Aprahamian,² L. Canete,¹ T. Eronen,¹ A. Jokinen,¹

T. Kuta,² I. D. Moore,¹ M. R. Mumpower,^{2,3} D. A. Nesterenko,¹ H. Penttilä,¹ I. Pohjalainen,¹

W. S. Porter,² S. Rinta-Antila,¹ R. Surman,² A. Voss,¹ and J. Äystö¹

Isotope	Reference	$ME_{REF}(keV)$	$r = u_{c,ref} / u_c$	ME_{JYFL} (keV)	$ME_{AME16}(\text{keV})$	$\Delta M E_{JYFL-AME16}$ (keV)
¹⁵⁶ Nd	¹³⁶ Xe	-86429.159(7)	$1.147 \ 366 \ 924(19)$	-60210(2)	-60470(200)	260(200)
¹⁵⁸ Nd	¹³⁶ Xe	-86429.159(7)	1.162 132 772(290)	-53897(37)	-54060(200)#	160(200)#
¹⁵⁸ Pm	¹⁵⁸ Gd	-70689.5(12)	1.000 078 752(9)	-59104(2)	-59089(13)	-15(13)
160 Pm	¹³⁶ Xe	-86429.159(7)	$1.176\ 857\ 014(130)$	-52851(16)	-53000(200)#	149(201)#
162 Sm	$136 X_{e}$	_86420 150(7)	1 101 560 014(30)	-54381(5)	-54530(200)#	140(200)#
¹⁶² Eu	¹³⁶ Xe	-86429.159(7)	$1.191\ 527\ 132(28)$	-58658(4)	-58700(40)	42(40)
¹⁰³ Eu	¹⁰³ Dy	-66381.2(8)	$1.000\ 065\ 633(23)$	-56420(4)	-56480(70)	60(70)
¹⁶³ Gd	¹⁶³ Dy	-66381.2(8)	$1.000\ 034\ 135(22)$	$-61200(4)^{a}$	-61314(8)	114(9)
^{164}Gd	¹⁷¹ Yb	-59306.810(13)	$0.959\ 046\ 522(14)$	-59694(3)	-59770(100)#	76(100)#
165 Gd	¹⁷¹ Yb	-59306.810(13)	1.058 489 243(23) ^b	-56522(4)	-56450(120)#	-72(120)#
166 Gd	¹³⁶ Xe	-86429.159(7)	1.220 992 828(29)	-54387(4)	-54530(200)#	143(200)#
¹⁶⁴ Tb	¹⁷¹ Yb	-59306.810(13)	$0.959\ 031\ 473(21)$	-62090(4)	-62080(100)	-10(100)

TOF-ICR

Connection to Nuclear Structure

Beware of Isomers Do we have the right relation? Excitation energy Lifetime Decay mode

(9/2)

3.4s

The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

What is NuBase?

- masses (Ex) for isomers (T_{1/2}>100 ns) and their method of deduction – integral part of AME
- T_{1/2}, Jπ, decay modes and BR for both ground states (**3558**) and isomers (**1983**)
- properties of **205** Isobar Analog States (IAS)

162Eu _	58722.9	13				~ 10	s	1+#	07 17Wu04	т	1987	$\beta^{-} = 100$	
162Eum _4	58565.0	13	158.0	17	MD	15.0	\$ 0.5	(6+)	07 18Ha19	TI	2016	$\beta^{-}=100$	
162Gd -6	64281	4	10010	•••	ML	8.4	m 0.2	0+	07		1967	$B^{-}=100$	
162Th	65879 5	2.0				7 60	m 0.15	(1-)	16		1965	$\beta^{-}=100$	
162Tbm _(65594.0	2.5	286	3		10#	m	4-#	20Or03	EI	2020	$\beta = 100$ $\beta = 2 \cdot 17^{\circ}$	
162Dv _(68181.2	07	200	5		STARLE	m	0+	07	Lø	1934	IS=25.475.36	
¹⁶² Dy ^m _(65993 1	0.8	2188-1	03		83	us 0 3	8+	11Sw02	FTI	2011	IT=100	
162Ho _f	66041	3	2100.1	0.5		15.0	m 1.0	1+*	07	DIL	1957	$\beta^{+}=100$	
¹⁶² Ho ^m -6	65935	3	105 87	0.06		67.0	m 0.7	6-*	07		1961	$T = 62^{\circ}\beta^{+} = 38$	
162Er _(66334 2	0.8	105.07	0.00		STARLE	>140Tv	0+	07 56Po16	т	1938	$11-02, p^{-}=30$ IS=0.139.5: α . 7:2 β ⁺ .7	*
162Erm _(64308 2	0.8	2026.01	0.13		88	ns 16	7(-)	07 12Sw01	т	1936	II = 100	· ·
¹⁶² Tm _(61477	26	2020.01	0.15		21 70	m 0 19	1=*	07	1.	1963	$\beta^{+}=100$	
162 Tmm (61350	50	130	40		21.70	e 17	5+	07 74De47	EDI	1905	P = 100 TT=81 4:8+-10 4	
162 Yh _f	50821	15	150	40		18 87	s 1.7 m () 19	0+	07 /40047	EDJ	1963	R_{+-100}^{R+-100}	*
1621 1 6	52830	80			*	1 37	m 0.02	1-*	07		1078	$\beta^{+}=100$ $\beta^{+}=100$	
162Lum (52850 52710#	220#	120#	200#	*	1.57	m 0.02	1 ∓ ∧−#	07		1976	$p^{+} = 100$ $R^{+} \sim 100$ · IT 2	
162 m 6	52520#	220#	200#	200#	EU.	1.5	m	4 # 0-#	07		1080	$p \sim 100, 11$	
162 LU - J	32330# 40169	220#	300#	200#	EU	1.9	m - 00	9 # 0 ⁺	07		1980	β^+ (11 (*
162m	49108	9			*	39.4	\$ 0.9	0· 2-#	0/		1982	$\beta^+ = 99.9921; \alpha = 0.0081$	
162 m m (39/80	60	100#	500	*	3.37	\$ 0.12	3 #	16		1985	$\beta^{+}=99.926\ 10;\alpha=0.074\ 10$	
162 Tam - 3	39660#	80#	120#	50#	不	5#	s	7*#			1070	β^+ ?;II?; α ?	
¹⁰² W -3	33999	18				1.19	s 0.12	0+	16		1973	β^+ ?; α =45.2 16	
162 Re -2	22450#	200#				107	ms 13	(2)-	07		1979	$\alpha = 946; \beta^{+}?$	
$^{162}\text{Re}^{m} -2$	22280#	200#	175	9	AD	77	ms 9	(9)+	07		1979	$\alpha = 915; \beta^+?$	
¹⁶² Os -1	14500#	300#				2.1	ms 0.1	0+	07		1989	$\alpha = 100$	
* ¹⁶² Sm ^m 7	T: other 17	Pa25=1.7(0.2)											**
* ¹⁶² Eu 7	T: 17Wu04	=11.8(1.4) 87G	r12=10.6(1.0	but valu	les include be	oth gs and	isomer						**
* ¹⁶² Eu J	J : from 18I	Ha19; conf p5/2[[413]n7/2[63	33],K=1+									**
* ¹⁶² Er 7	T: the lowe	er limit is for α d	lecay										**
* ¹⁶² Tm ^m F	E: from 66.	.90+x keV; x<12	25 keV from	1 74De47									**
* ¹⁶² Lu ⁿ I	I : existence	e is tentative and	needs confi	rmation									**

Why NuBase?

- **complete** include all measured quantities and their uncertainties
- up-to-date include results from all recent publications
- **credible and reliable** identify and resolve contradictory results that exist in the scientific literature, as well as in other nuclear physics databases, *e.g.* **ENSDF**
- properly referenced provide comprehensive bibliographical information for all included properties.

The NUBASE2020 evaluation of nuclear physics properties**

F.G. Kondev^{1,*}, M. Wang (王猛)^{2,3,*}, W.J. Huang (黄文嘉)^{2,4,5,6}, S. Naimi⁷, G. Audi (欧乔治)⁶

3558 ground states: 256 not in ENSDF 1983 isomers: 241 not in ENSDF

How is NuBase updated?

- directly from the literature by compiling and evaluating data published in primary and secondary references
- by consulting, and when merited by adopting, recommendations made in topical evaluations
- by consulting, and when merited by adopting, recommendations made in ENSDF

ENSDF is a **treasure** to the NP community

- becoming increasingly outdated
- non-uniform in coverage & subjectivity

A=179 decay chain

NUBASE

ENSDF

- (11/2)825# 480 ms 179**T** $(11/2^{-})$ 230 ms 0+X 1.41 ms 1/2+* 1.5 ms $(1/2^{+})$ 2009 2 (11/2)167# $(11/2^{-})$ 0+X ¹⁷⁵Au 156 ms 136 ms 200 ms $(1/2^{+})$ 2004 1/2+ 0 (11/2)167# 3.2 s (11/2)0+X ¹⁷¹Ir 1.2 s $(1/2^{+})$ 1.5 s 3.5 s 2018 1/2+ 0 5.9 s $(9/2^{-})$ 3.4 s 1/2+ 128# 5.9 s 0+X 2 ¹⁶⁷Re 11/2-2000 9/2⁻ 4 3.4 s 0 9/2-140# 11 s (9/2)0+X ¹⁶³Ta 11 s 10# s 2 0 1/2+ 0 2010 11/2# 12 s (11/2)100# 0+X 12 s ¹⁵⁹Lu 2 10# s $1/2^{+}$ 0 2012 11/2-45 s 41 ¹⁵⁵Tm (11/2)25 s 45 s ? 41 0 1/2+ 22 s 0 2019 17 s47 s 11/2-* ¹⁵¹Ho (11/2)0 (1/2+) 41 1/2+* 41 35 s 35 s
- recommended values for the basic NP properties for ground states and isomers (T_{1/2}>100 ns)
 m, E_x,T_{1/2}, Jπ, BR
- resolve isomers
 - excitation energies
 - ▶ lifetimes, *e.g.* ¹⁷⁵Au & ¹⁷⁹TI
 - ▶ ordering *e.g.* ¹⁵⁵Tm
- consistent Jπ assignment
 - shape changes

Isomers

1983 isomers with $T_{1/2} > 100$ ns

- Excitation energy (E_x) & $T_{1/2}$
- E_x=160#(40#) keV in NuBase, but +X(+Y, ...) in ENSDF
- T_{1/2} "#" from systematics Trend in Neighboring Nuclei (TNN) - e.g.T_{1/2}(²³³Th^m)=2# s – from the known BE3 for ²³⁵U^m the same configuration change
- not clear which state is the ground state or the isomer
 - **' in col [59:59] ∆E_x>E_x/2
 - '&' in col [60:60]
- previous assignments in doubt
 - ► EU in col [61:62] **11** cases,
 - *e.g.* ¹³⁸Pm^m (10 s) gs in ENSDF
 - RN in col [61:62] 9 cases, e.g. ¹⁸¹Pb^m
- uncertainties are symmetrized X(+ΔX₁-ΔX₂) to Y(ΔY)

Directly measured spins

NuBase: Jπ=1/2-*

- directly measured spins a wealth of new information using "in-source" (*e.g.* RILS at ISOLDE and TRILIS at TRIUMF) and "collinear" (*e.g.* CRIS at ISOLDE) laser spectroscopy
- parity from other spectroscopic data

Decay branching ratios

ENSDF: EC=β⁺ + ε %a=60; %EC=40%

- often not clear which one was measured
 - systematics or theory

NuBase: $\beta^+=e^+ + \epsilon$

• %α=60; %β+=40

%α=60; %β+ ?

complete, up-to-date & reliable information about the beta-delayed emission probabilities

Conclusions & Outlook

 the new AME & NuBase evaluations have been just released – complete, up-todate & reliable information about the basic NP properties

https://www-nds.iaea.org/amdc/ (IAEA) http://amdc.impcas.ac.cn (IMP) https://www.anl.gov/phy/atomic-mass-data-resources (ANL)

 if you spot a typo or error or if something is not clear please let us know: <u>kondev@anl.gov</u> (F.G. Kondev) and/or <u>wangm@impcas.ac.cn</u> (M. Wang)

future additions & improvements

- extension to other NP properties magnetic & quadrupole moments, charge radii & isotope shifts, cross sections needed for astrophysics simulations & other properties needed to various applications
- improving treatment of data correlations & extrapolations