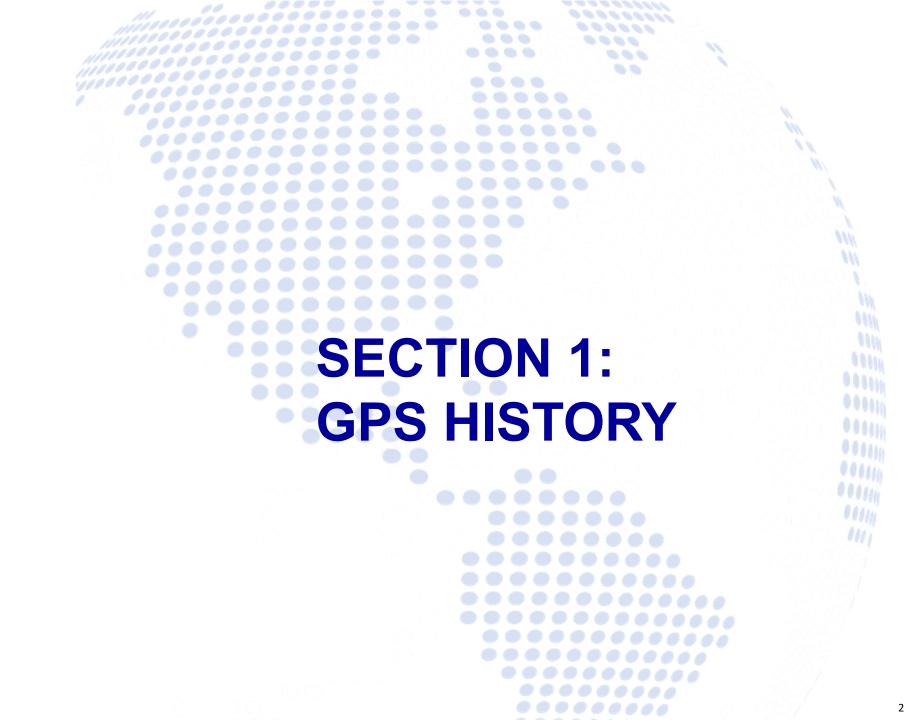


GNSS Fundamentals



African Capacity Building Workshop on Space Weather Effects on GNSS6 Oct 2022

Dr. John F. Raquet Director, IS4S-Dayton Integrated Solutions for Systems

GPS History

- Navigation technology has always been a military (and commercial) asset
 - Example: Seagoing clock¹
- Ability to determine position from satellites known since Sputnik

Predecessors to GPS

- Navy TRANSIT system
 - Measured Doppler shift of satellites in polar orbits
 - Required stationary (or slowly moving) vehicles
- NRL TIMATION satellites
 - First to orbit precise clocks
 - Provided precise time transfer between points on the Earth
 - Provided side-tone ranging capability
- Air Force Project 621B
 - Demonstrated ranging based on pseudorandom noise (PRN)
 - Allowed all satellites to transmit at same frequency

• GPS Joint Program Office (JPO) formed in 1973

 Combining TIMATION with Project 621B created the Navigation Technology Satellite (NTS-1 & NTS-2) (Note: NTS-2 was designated the first GPS Phase I SV)

¹Info can be found at http://www.oldnewspublishing.com/harrison.htm ²Image from https://www.patrick.af.mil/heritage/6555th/6555ch4/images/wcgtsz.jpg ³Images from http://code8200.nrl.navy.mil/nts.html

SECTION 2: TIME-OF-ARRIVAL POSITIONING (TRILATERATION)

How can a receiver figure out where it is?

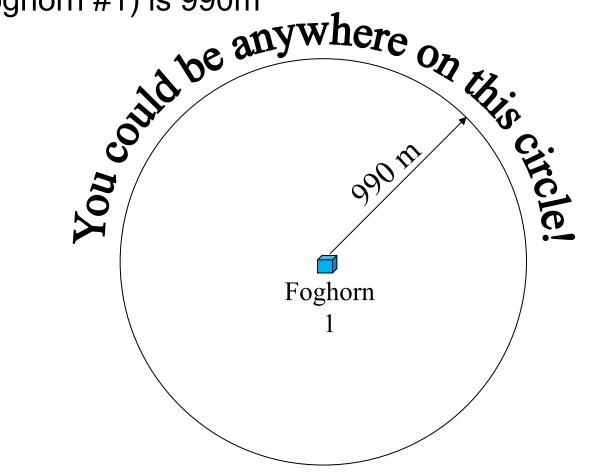
00000

000000 00000

Ranging Using Time-Of-Arrival

- Time-of-arrival (TOA) is one method that can be used to perform positioning
- Basic concept
 - You must know
 - When a signal was transmitted
 - How fast the signal travels
 - Time that the signal was received
 - Then you can determine how far away you are from the signal emitter

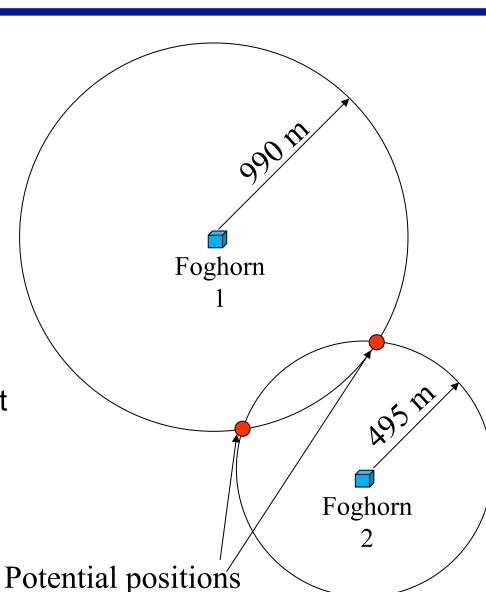
Foghorn example



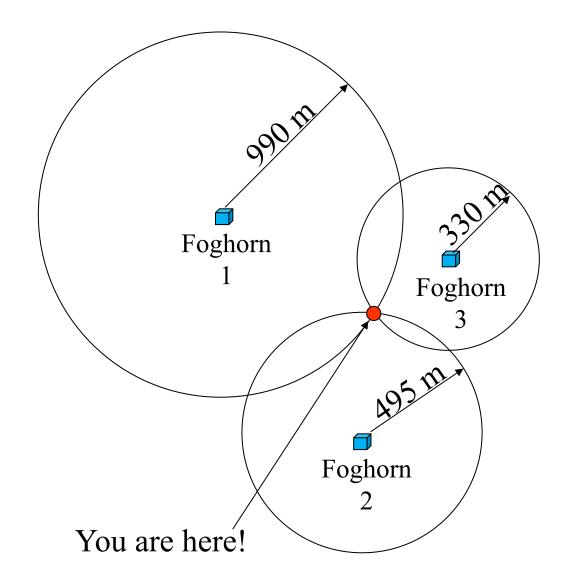
By Drw25 at the English-language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4950551

- Assume there is a foghorn that goes off at exactly 12:00:00 noon every day
- You know that the velocity of sound around the foghorn is 330 m/sec
- You have a device that measures the time when the foghorn blast is received, and it says it heard a foghorn blast at 12:00:03
- What is the distance between the foghorn and the foghorn "receiver"?
- Now that you know how far you are from the foghorn, the question is, "Where are you?"

Two-Dimensional Positioning Using Single Range Measurement


Range between you and the foghorn (we'll call it foghorn #1) is 990m

Unable to determine exact position in this case


Two-Dimensional Ranging Using Two Measurements

- Now, you take a measurement from foghorn #2 at 12:00:01.5 (for a range of 495 m)
- Yields two potential solutions
 - How would you determine the correct solution?

Resolving Position Ambiguity Using Three Measurements

- You get a third measurement from foghorn #3 at 12:00:01 (Range = 330 m)
 - Now there's a unique solution

Receiver Clock Errors (one way time transfer)

- The foghorn example assumed that the foghorn "receiver" had a perfectly synchronized clock, so the measurements were perfect
- What happens if there is an unknown receiver clock error?
- Effect on range measurement
 - Without clock error

R = range

 $R = v_{sound} \Delta t$

 v_{sound} = velocity of sound

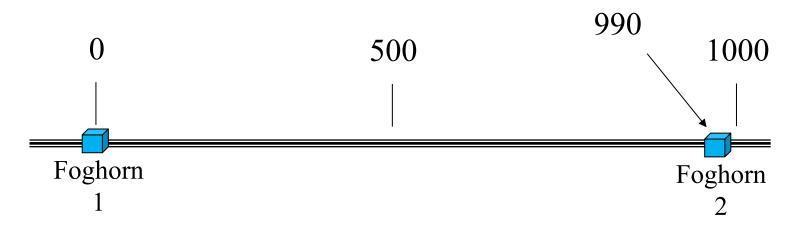
 $\Delta t = \text{transmit/receive time difference}$

- With clock error δt

$$R' = v_{sound} (\Delta t + \delta t)$$

where
$$R' = \text{range with error (pseudo - range)}$$

Receiver Clock Errors One-Dimensional Example (1/3)


- Now, we'll look at the foghorn example, except in only one dimension
 - The foghorn(s) and receiver are constrained to be along a line
 - We want to determine the position of the receiver on that line

- If the receiver measured a signal at 12:00:10, where is it on the line?
- Now, assume an unknown clock bias δt in the clock used by the foghorn receiver
 - Your foghorn receiver measures a foghorn blast at 12:00:10
 - What can you say about where you are?

Receiver Clock Errors One-Dimensional Example (2/3)

- Clearly, more information is needed
- Assume that there is a second foghorn located 990 m away from the first

- You receive a signal from the second foghorn at 12:00:09
- What can you tell about where you are at this point?

Receiver Clock Errors One-Dimensional Example (3/3)

• Here are the measurements we have:

Pseudorange $1 = 330 \times 10 = 3300 = R'_1$ Pseudorange $2 = 330 \times 9 = 2970 = R'_2$

• From the pseudorange equation:

$$R'_{1} = v_{sound} \left(\Delta t_{1} + \delta t \right) = x + v_{sound} \delta t = 3300$$
$$R'_{2} = v_{sound} \left(\Delta t_{2} + \delta t \right) = 990 - x + v_{sound} \delta t = 2970$$

• Rearranging terms we get

$$x + v_{sound} \,\delta t = 3300$$
$$x - v_{sound} \,\delta t = -1980$$

• We can then solve for the two unknowns

$$\delta t = 8$$
 seconds Does this work?
 $x = 660$ m

Receiver Clock Errors Extending to Three Dimensions

In the single-dimensional case

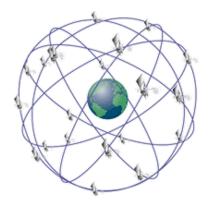
- We needed two measurements to solve for the two unknowns, x and δt .
- The quantities x and (990 x) were the "distances" between the position of the receiver and the two foghorns.

In three-dimensional case

- We need four measurements to solve for the four unknowns, x, y, z, and δt .
- The distances between receiver and satellite are not linear equations (as was case in single-dimensional case).
- The four equations to be solved simultaneously, for pseudorange measurements $R_1'...R_4'$ and transmitter positions $(x_1,y_1,z_1)...(x_4,y_4,z_4)$:

$$R'_{1} = \sqrt{(x - x_{1})^{2} + (y - y_{1})^{2} + (z - z_{1})^{2}} + c\delta t$$

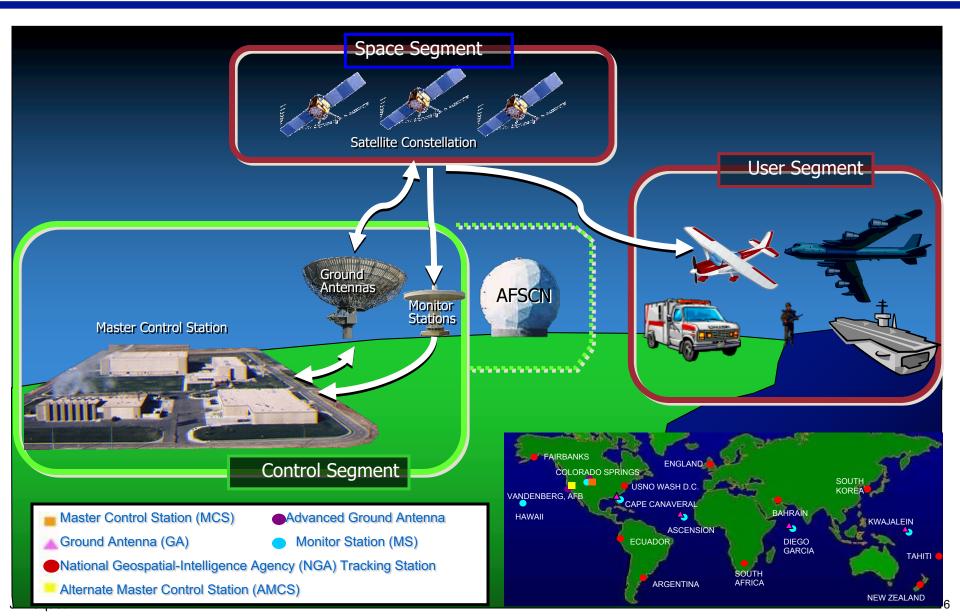
$$R'_{2} = \sqrt{(x - x_{2})^{2} + (y - y_{2})^{2} + (z - z_{2})^{2}} + c\delta t$$


$$R'_{3} = \sqrt{(x - x_{3})^{2} + (y - y_{3})^{2} + (z - z_{3})^{2}} + c\delta t$$

$$R'_{4} = \sqrt{(x - x_{4})^{2} + (y - y_{4})^{2} + (z - z_{4})^{2}} + c\delta t$$

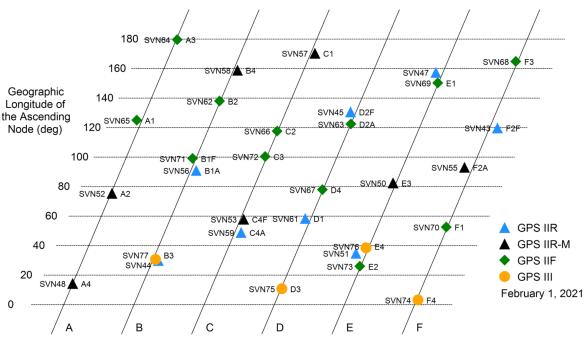
Things You Need to Know/Assumptions

- Positions of the transmitters
- Speed of the signal
- All signals received at the same time (so is a single receiver clock error)
- Transmit time of the signal (including accounting for transmitter clock errors)


SECTION 3: GPS SYSTEM OVERVIEW

- Three segments of GPS system
- Differential GPS
- GPS performance

10000


GPS Overview: Three Interactive Segments

GPS - Space Segment

Nominally, there are 24 active satellites

- Originally "21 operational and 3 active spares" (but distinction not really made any more)
- Current Constellation described as the "24+3"
- Have been 30+ satellites recently
- Orbit characteristics
 - Six orbital planes
 - Four SVs per plane nominally
 - 55° inclination angle

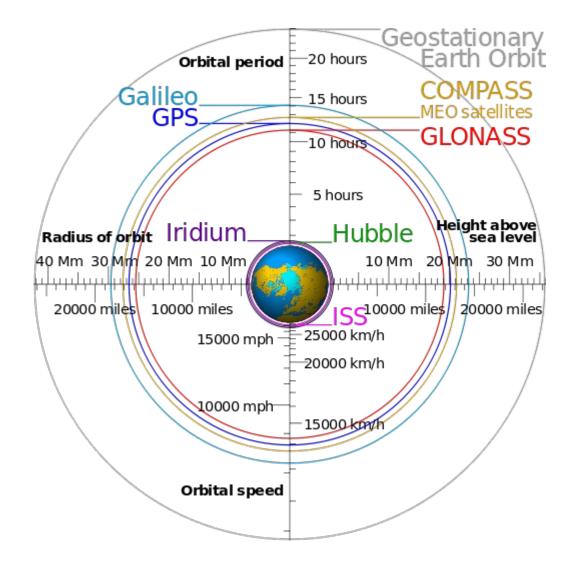
GPS Orbital Planes

https://www.navcen.uscg.gov/pdf/gps/current.pdf

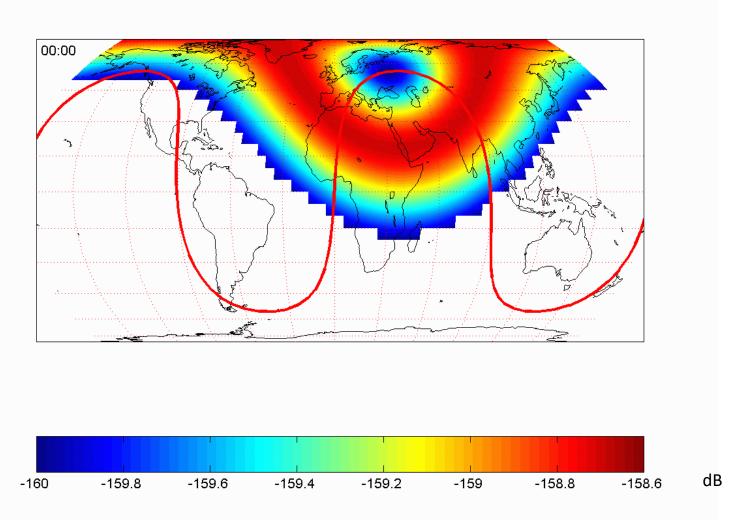
Space Segment – Satellite Characteristics


	II/IIA	IIR	IIR-M	IIF	III
Number SV's	28	13	8	12	32
First/Last Launch	1990-1997	1997-2004	2005-2009	2010-2016	2018-present
Satellite Weight (Kg)	900	1100	1100	844	2161
Power (W)	1100	1700	1700		
Design Life (Years)	7.5	7.5	7.5	12	15
In Use (as of Aug 2021)	0	8	7	12	4
L1 Signals	C/A, P(Y)	C/A, P(Y)	C/A, P(Y), M	C/A, P(Y), M	C/A, P(Y), M, L1C
L2 Signals	P(Y)	P(Y)	P(Y), L2C, M	P(Y), L2C, M	P(Y), L2C, M
L5 Signals	-	-	-	L5	L5

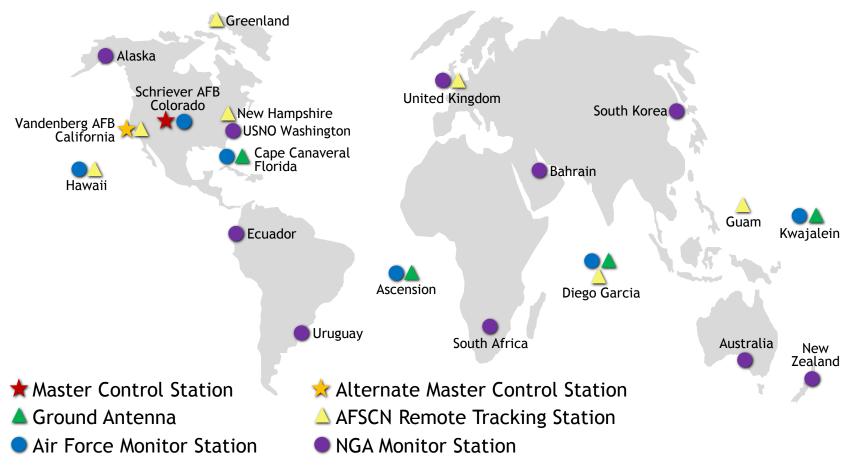
*Estimates


Sources: ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt Misra and Enge, *Global Positioning System: Signals, Measurements, and Performance, 2001* http://www.deagel.com/C3ISTAR-Satellites/GPS-Block-IIR_a000238003.aspx http://www.deagel.com/C3ISTAR-Satellites/GPS-Block-IIF_a000238004.aspx https://www.gps.gov/systems/gps/space

J. Raquet


Space Segment – GPS Constellation as Viewed from Space

Comparison of GPS to Other Satellite Orbits



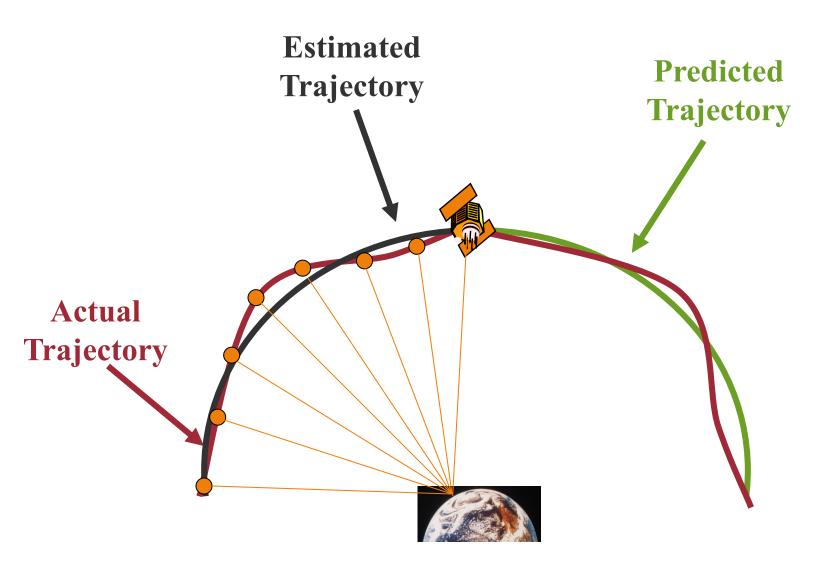
Space Segment - Representative GPS Ground Track

Control Segment

GPS Control Segment

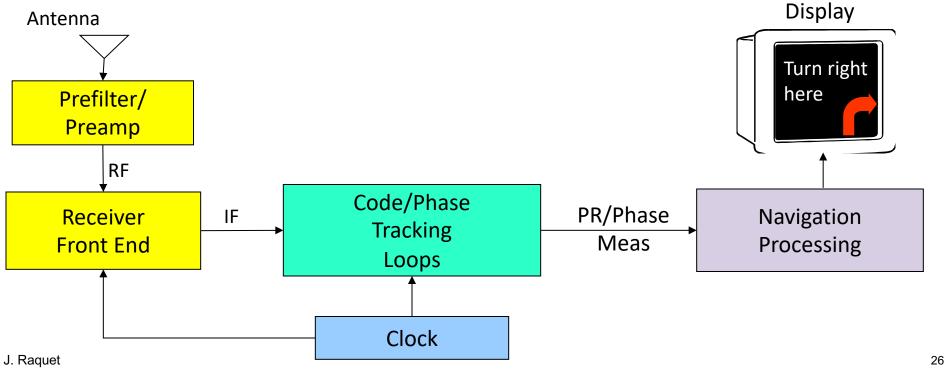
Updated May 2017

Obtained from http://www.gps.gov/systems/gps/control/


GPS - Control Segment

- GPS Master Control Station (MCS) located at Schriever AFB, CO (2nd Space Operations Squadron, or 2SOPS)
 - Manages constellation (flies satellites)
 - Monitors GPS system performance
 - Calculates data sent over the 50 bps navigation message
 - Orbit ephemeris data
 - Satellite clock error correction coefficients
 - Ionospheric model parameters
 - System status
 - GPS time information
- Communications with satellite using S-band data link
 - Types of communication
 - Satellite control
 - Navigation message upload
 - S-band communications are intermittent

Galileo Control Segment


Control Segment – Trajectory Estimation/Prediction

GPS - User Segment

- User segment consists of all GPS receivers
 - Space
 - Air
 - Ground
 - Marine

Typical GPS receiver components

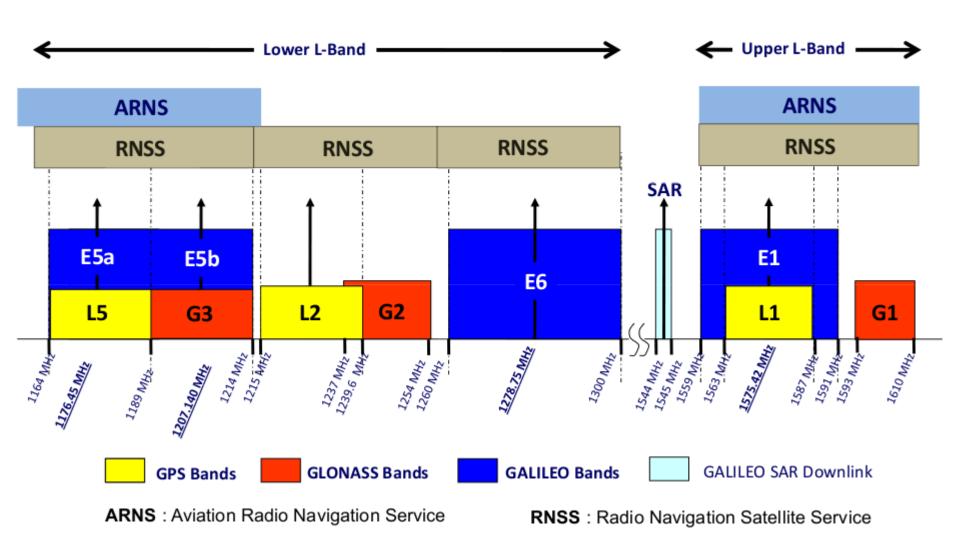
First Military User Equipment

First GPS MUE receiver developed under government contract by Rockwell Collins, circa 1977.

First Significant Transportable Civilian GPS Receiver

TI 4100 NAVSTAR Navigator Multiplex Receiver designed by Phil Ward for Texas Instruments (1981)

SECTION 4: SIGNAL STRUCTURE

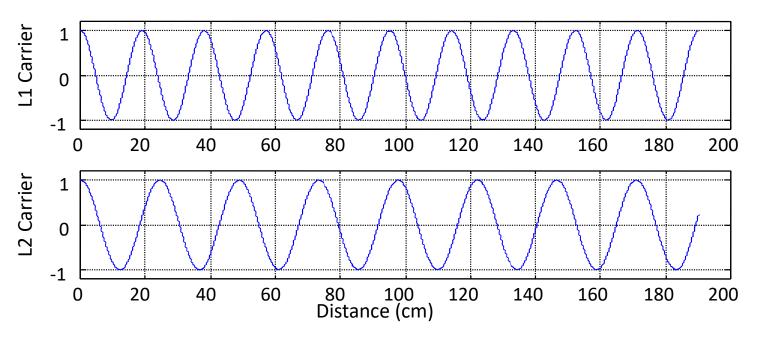

 So what do those satellites transmit anyway?

1000 1000 1000

000

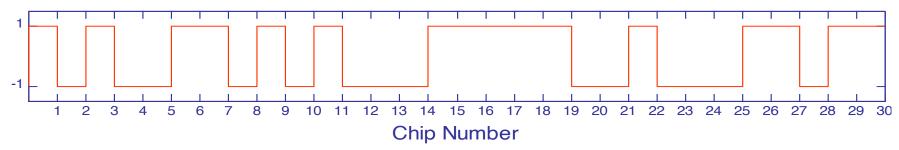
Satellite Navigation Bands

http://www.navipedia.net/images/f/f6/GNSS_navigational_frequency_bands.png


GPS Carrier Frequencies

- Fundamental frequency f_{θ} = 10.23 MHz
- GPS carrier (or center) frequencies

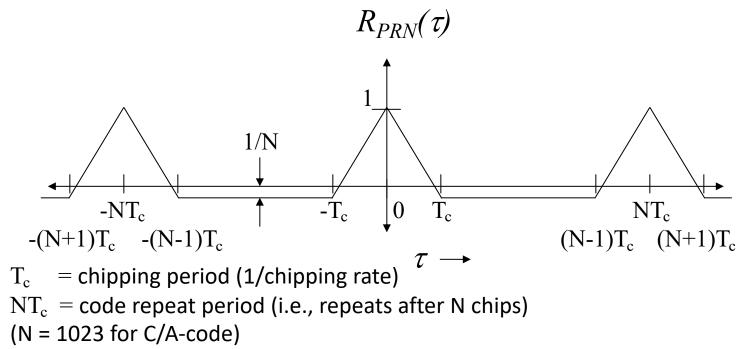
$$- f_{L1} = 1575.42 \text{ MHz} = 154 f_0$$


- $f_{L2} = 1227.6 \text{ MHz} = 120 f_0$
- $f_{L5} = 1176.45 \text{ MHz} = 115 f_0$
- Wavelengths of carriers

 $\lambda_{L1} = c/f_{L1} \approx 19.03 \text{ cm}$ $\lambda_{L2} = c/f_{L2} \approx 24.42 \text{ cm}$ $\lambda_{L2} = c/f_{L2} \approx 25.48 \text{ cm}$

GPS Pseudo-Random Noise (PRN) Codes

• A PRN code is a binary sequence that appears to be random. Example:


- Not called a data bit, because it is not data being transmitted
- The number of chips per second is called the "chipping rate"
- PRN code sequence generated in hardware using a tapped feedback shift register
 - Sequence of bits where the new bit is generated by an exclusive-or of two previous bits in the sequence
 - Easy to implement in hardware

GPS Signal Autocorrelation

• Definition of autocorrelation for function g(t):

$$R(\tau) = \int_{-\infty}^{\infty} g(t)g(t+\tau)dt$$

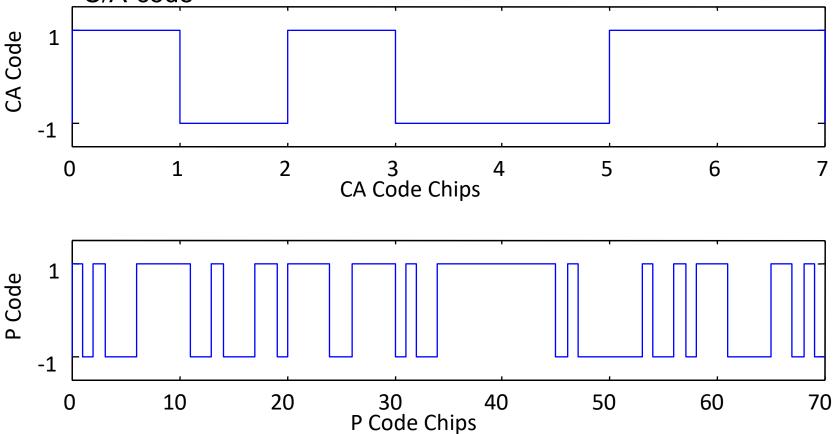
 Autocorrelation function for maximum length PRN sequence (code amplitude of +/- 1)

Legacy Signals: C/A and P-Codes

GPS uses two classes of codes

- Coarse-Acquisition (C/A) code
 - Intended for initial acquisition of the GPS signal
- Precise (P) code
 - Higher chipping rate, so provides better performance
- Comparison between C/A and P codes:

Parameter	C/A-Code	P-Code	
Chipping Rate (chips/sec)	1.023 x 10 ⁶	10.23 x 10 ⁶	
Chipping Period (nsec)	977.5 nsec	97.75 nsec	
Range of One Chip	293.0 m	29.30 m	
Code Repeat Interval	1 msec	1 week	


• It's more difficult to lock onto the P-code (due to length of code)

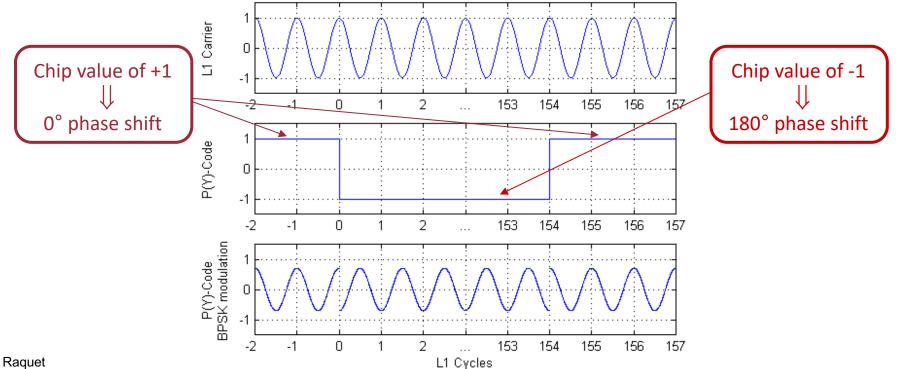
- Requires accurate knowledge of time
- Normally, C/A-code locked onto first
 - Easier, since there's only 1ms to search over
 - Once locked onto C/A-code, receiver has accurate time information for locking onto P-code
- Using accurate timing information to lock onto P-code without initial C/A-lock called "direct P(Y)-code acquisition"

Example C/A and P-Codes

Simulated C/A and P-Codes are given below.

Note that the P-code chipping rate is 10 times higher than the C/A-code

P-Code Encryption for Anti-Spoofing

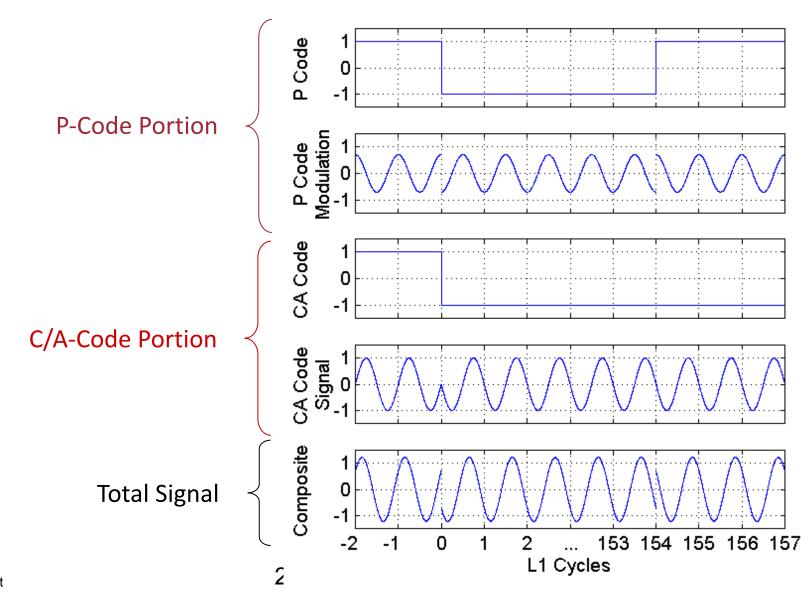

- P-code is unclassified and defined in ICD-GPS-200.
- Satellites don't normally transmit P-code, however.
 - P-code is encrypted by an encryption code
 - The encrypted P-code is called Y-code
 - Often referred to as P(Y)-code
 - Y-code is classified, so unauthorized users cannot
 - Directly lock onto the Y-code
 - Spoof the Y-code (i.e., make a fake signal that appears to be coming from a GPS SV)
 - Correlation techniques exist that allow advanced civilian receivers to lock onto P(Y)-code.
 - Degraded capability vs. direct Y-code tracking
 - Requires C/A-code lock

Code Modulation of Carrier

- So far, we've covered
 - GPS L1 and L2 carrier frequencies
 - C/A-code and P-code

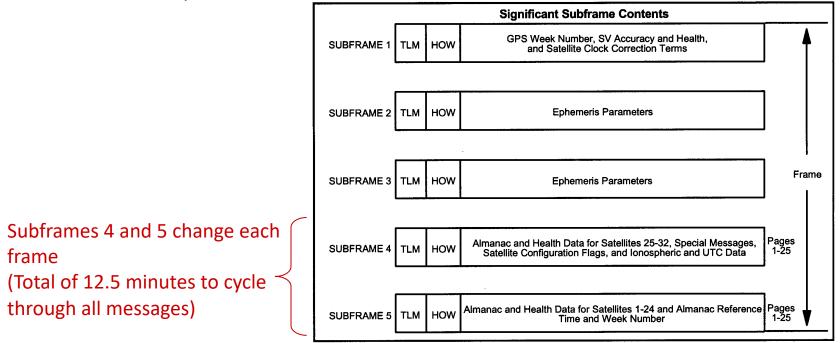
These need to be combined through modulation ullet

– GPS uses biphase shift key (BPSK) modulation

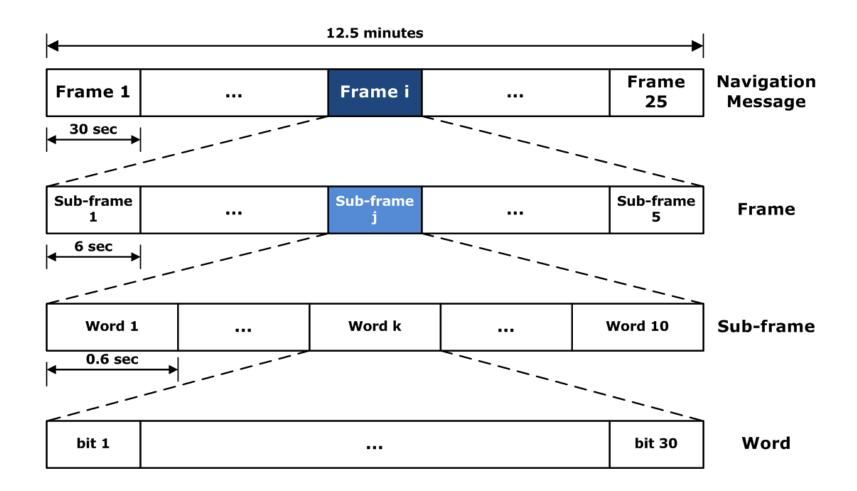

Legacy L1 and L2 Signal Breakdown (Legacy Signals)

- Note: 50 bps navigation message modulated on all of the codes
- L1 signal
 - P-code
 - C/A-code modulated on carrier that is 90° out of phase from P-code carrier

P-Code C/A-Code $S_{L1}(t) = A_{P_{r_1}}Y(t)N(t)\cos(\omega_1 t) + A_{C/A}CA(t)N(t)\sin(\omega_1 t)$ N(t) = 50 bps navigation message $A_{P_{11}}$ = Amplitude of L1P - code signal \approx -163 dBW $A_{C/A}$ = Amplitude of C/A - code signal \approx -160 dBW $\omega_1 = 2\pi f_{L1}$ **-2 signal** P-Code - P-code only $s_{L1}(t) = A_{P_{L2}}Y(t)N(t)\cos(\omega_2 t)$ L2 signal $A_{P_{L2}}$ = Amplitude of L2 P - code signal \approx -166 dBW $\omega_2 = 2\pi f_{L2}$

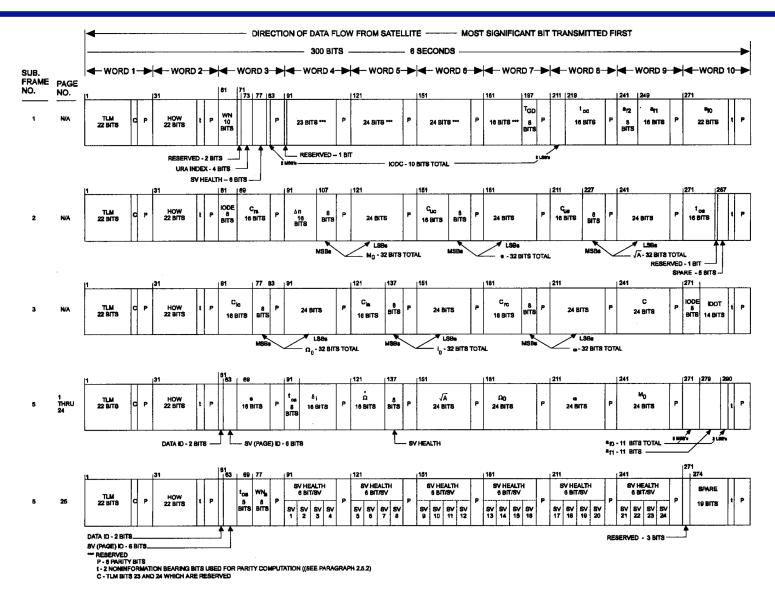

•

Sample of How L1 Signal is Generated


LNAV - Legacy GPS Navigation Message

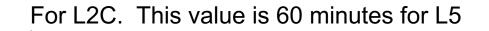
- In addition to the C/A or P(Y)-codes, the signal is also modulated with the 50 bit/sec navigation message
 - One "frame" is 1500 bits (30 seconds), and is broken into 5 300-bit "sub-frames" (6 seconds each):

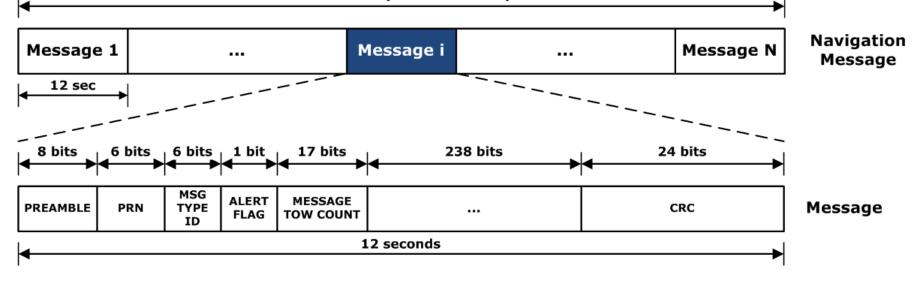
- Navigation message is combined with code
 - For 1/0 representation: exclusive-or
 - for 1/-1 representation: multiplication


LNAV Structure

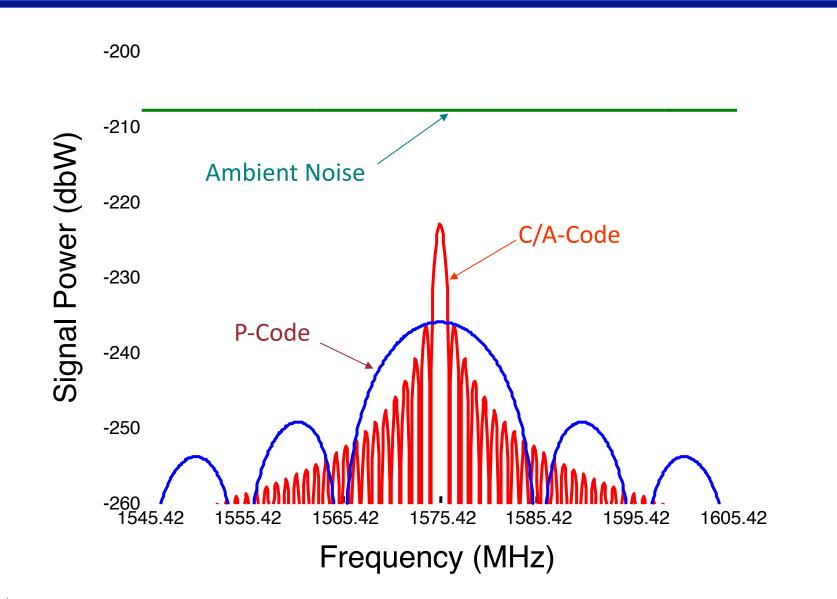
LNAV is rigid, fixed-length structure—not much ability to adapt

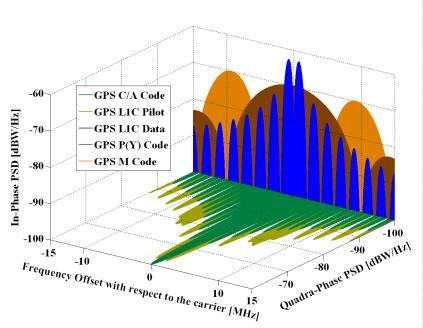
https://gssc.esa.int/navipedia/index.php/GPS_Navigation_Message


Data Format of Subframes 1, 2, 3, and 5


CNAV – Civil Navigation Message

- For L2C and L5 signals
- Much more flexible than current LNAV structure
- Enables more accurate orbit representation
- More modern coding approaches (forward error correction, convolutional code, CRC)
- GPS week now only repeats every 157 years (compared to 19.6 years for part of LNAV message)
- Additional messages (such as GPS-GNSS time offsets)


CNAV Structure

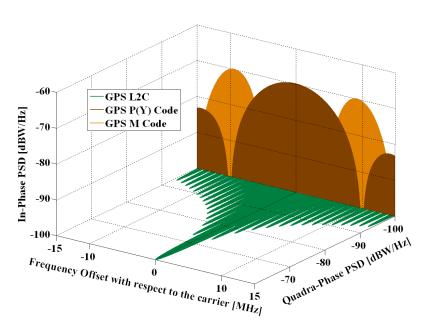

120 minutes (maximum value)

Comparison of GPS C/A-Code and P-Code Power Spectral Densities with Noise

GPS L1 Signals

GNSS System	GPS	GPS		GPS	GPS
Service Name	C/A	LIC		P(Y) Code	M-Code
Centre Frequency	1575.42 MHz	1575.42 MHz		1575.42 MHz	1575.42 MHz
Frequency Band	Ll	Ll		L1	Ll
Access Technique	CDMA	CDMA		CDMA	CDMA
Signal Component	Data	Data Pilot		Data	N.A.
Modulation	BPSK(1)	TMBOC	(6,1,1/11)	BPSK(10)	BOC _{sin} (10,5)
Sub-carrier frequency [MHz]	(s.,	1.023	1.023 & 6.138	-	10.23
Code frequency	1.023 MHz	1.023 MHz		10.23 MHz	5.115 MHz
Primary PRN Code length	1023	10230		6.19·10 ¹²	N.A.
Code Family	Gold Codes	Weil Codes		Combination and short- cycling of M- sequences	N.A.
Secondary PRN Code length	-	-	1800	-	N.A.
Data rate	50 bps / 50 sps	50 bps / 100 sps		50 bps / 50 sps	N.A.
Minimum Received Power [dBW]	-158.5	-157		-161.5	N.A.
Elevation	5°	50		5°	5°

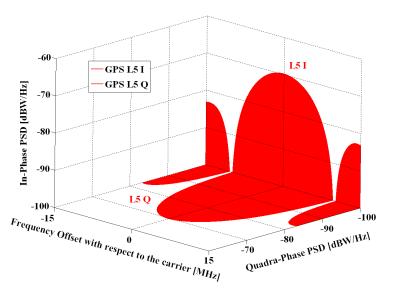
Modernized GPS Signals


L2C – Block IIR-M SV's and later

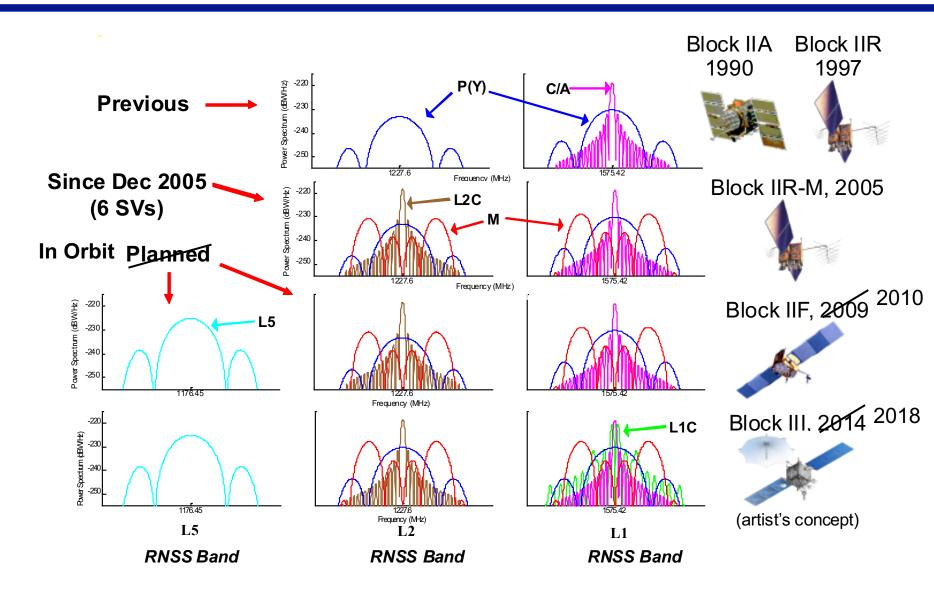
- Contains CM and CL Codes (Civilian Moderate and Long)
 - CM has CNAV Data Modulation
 - CL has NO Data Modulation
- CNAV is half rate of 'standard NAV' and has several important improvements including Forward Error Correction and information to link GPS to other GNSS systems

• M – Block IIR-M SV's and later

- Centered on L1 and L2 frequencies
- Binary Offset Carrier (BOC) 5.2 w/ bandwidth of 24 MHz
- Carrier MNAV data (similar to CNAV)
- L5 Block IIF (and tested on late IIR-M's)
 - Two ranging codes transmited- I5 and Q5 (in-phase and quad)
 - I5 and Q5 10,230 bit sequences transmitted at 10.23 MHz
- L1C GPS IIIA


GPS L2 Signals

GNSS System	GPS	GPS	GPS	GPS
Service Name	L2 CM	L2 CL	P(Y) Code	M-Code
Centre Frequency	1227.60 MHz	1227.60 MHz	1227.60 MHz	1227.60 MHz
Frequency Band	L2	L2	L2	L2
Access Technique	CDMA	CDMA	CDMA	CDMA
Spreading modulation	BPSK(1) result of multiplexing 2 streams at 511.5 kHz		BPSK(10)	BOCsin(10,5)
Sub-carrier frequency	-	-	-	10.23 MHz
Code frequency	511.5 kHz	511.5 kHz	10.23 MHz	5.115 MHz
Signal Component	Data	Pilot	Data	N.A.
Primary PRN Code length	10,230 (20 ms)	767,250 (1.5 seconds)	6.19 x 1012	N.A.
Code Family	M-sequence from a maximal polynomial of degree 27		Combination and short- cycling of M- sequences	N.A.
Secondary PRN Code length	-	-	-	N.A.
Data rate	IIF 50 bps / 50 <u>sps</u> IIR-M Also 25 bps 50 <u>sps</u> with FEC	-	50 bps / 50 <u>sps</u>	N.A.
Minimum Received Power [dBW]	II/IIA/IIR -164.5 dBW IIR-M -161.5 dBW IIF -161.5 dBW		II/IIA/IIR -164.5 <u>dBW</u> IIR-M -161.4 <u>dBW</u> IIF -160.0 <u>dBW</u>	N.A.
Elevation	5°		5°	5°


http://www.navipedia.net/index.php/GPS_Signal_Plan

GPS L5 Signals

GNSS System	GPS	GPS
Service Name	L5 I	L5 Q
Centre Frequency	1176.45 MHz	1176.45 MHz
Frequency Band	L5	L5
Access Technique	CDMA	CDMA
Spreading modulation	BPSK(10)	BPSK(10)
Sub-carrier frequency	-	-
Code frequency	10.23 MHz	10.23 MHz
Signal Component	Data	Pilot
Primary PRN Code length	10230	10230
Code Family	Combination and short-cycling of M-sequences	
Secondary PRN Code length	10	20
Data rate	50 bps / 100 sps	-
Minimum Received Power [dBW]	-157.9 dBW	-157.9 dBW
Elevation	5°	5°

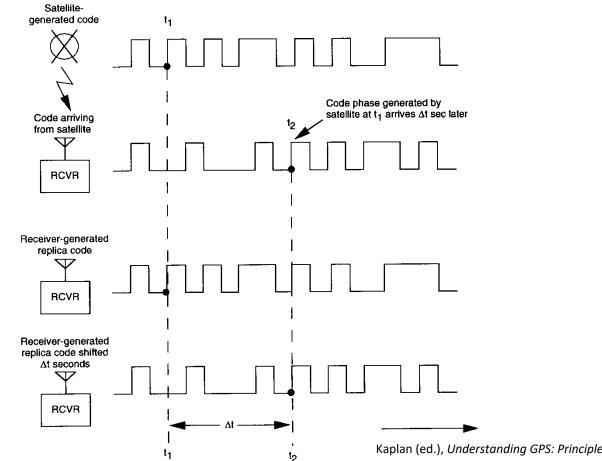
GPS Signal Modernization

SECTION 5: GPS RECEIVER MEASUREMENTS

What does the receiver measure?

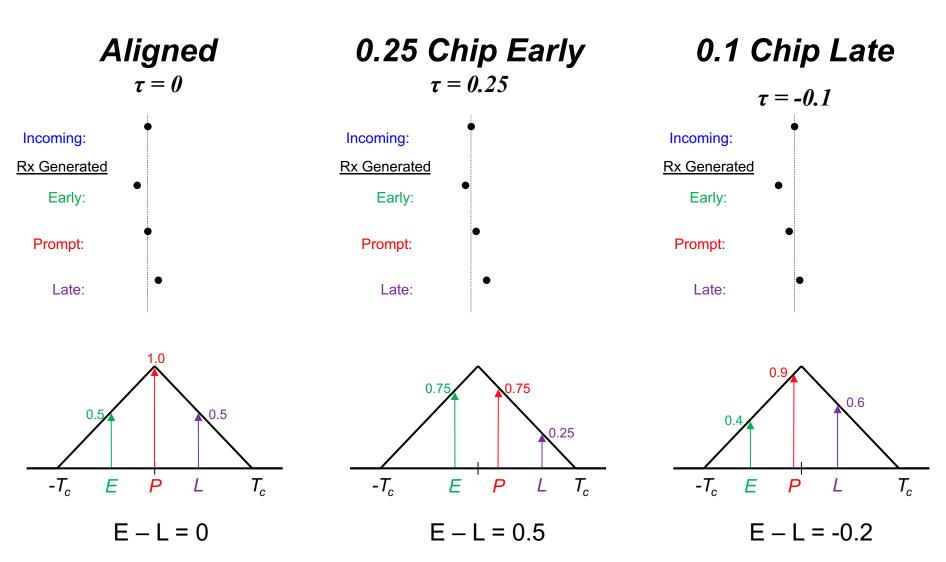
1000 1000

GNSS Measurements (Overview)

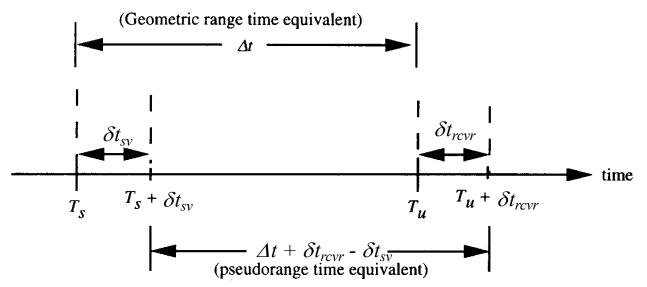

- Each separate tracking loop typically can give 4 different measurement outputs
 - Pseudorange measurement
 - Carrier-phase measurement (sometimes called integrated Doppler)
 - Doppler measurement
 - Carrier-to-noise density C/N₀
- Actual output varies depending upon receiver
 - NovAtel, Trimble, Leica, etc. give them all
 - RCVR-3A gives just C/N₀
- Note: We're talking here about *raw measurements*
 - Almost all receivers generate navigation processor outputs (position, velocity, heading, etc.)

Measurement Rates and Timing

- Most receivers take measurements on all channels/tracking loops simultaneously
 - Measurements time-tagged with the receiver clock (receiver time)
 - The time at which a set of measurements is called a data epoch.
- The data rate varies depending upon receiver/application. Typical data rates:
 - Static surveying: One measurement every 30 seconds (120 measurements per hour)
 - Typical air, land, and marine navigation: 0.5-2 measurement per second (most common)
 - Specialized high-dynamic applications: Up to 50 measurements per second (recent development)


Pseudorange Measurement

Pseudorange is a measure of the difference in time between signal transmission and reception


Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996

How the PRN Code is Tracked

Effect of Clock Errors on Pseudorange

• Since pseudorange is based on time difference, any clock errors will fold directly into pseudorange

- Small clock errors can result in large pseudorange errors (since clock errors are multiplied by speed of light)
- Satellite clock errors (δt_{sv}) are very small
 - Satellites have atomic time standards
 - Satellite clock corrections transmitted in navigation message
- Receiver clock (δt_{rcvr}) is dominant error

Kaplan (ed.), Understanding GPS: Principles and Applications, Artech House, 1996

Doppler Shift (The "Original" Satellite Navigation)

• For electromagnetic waves (which travel at the speed of light), the received frequency f_R is approximated using the standard Doppler equation (r_R, r_R)

$$f_{R} = f_{T} \left(1 - \frac{(\boldsymbol{v}_{r} \cdot \boldsymbol{a})}{c} \right)$$

 f_R = received frequency (Hz)

 f_T = transmitted frequency (Hz)

 v_r = satellite - to - user relative velocity vector (m/s)

a = unit vector pointing along

line-of-sight from user to SV

c =speed of light (m/s)

- Note that v_r is the (vector) velocity difference

 $\boldsymbol{v}_r = \boldsymbol{v} - \dot{\boldsymbol{u}}$

v = velocity vector for satellite (m/s)

 \dot{u} = velocity vector for user (m/s)

• The Doppler shift Δf is then

 $\Delta f = f_R - f_T \quad (Hz)$

Doppler Measurement

- The GPS receiver locks onto the carrier of the GPS signal and measures the received signal frequency
 - Relationship between true and measured received signal frequency:

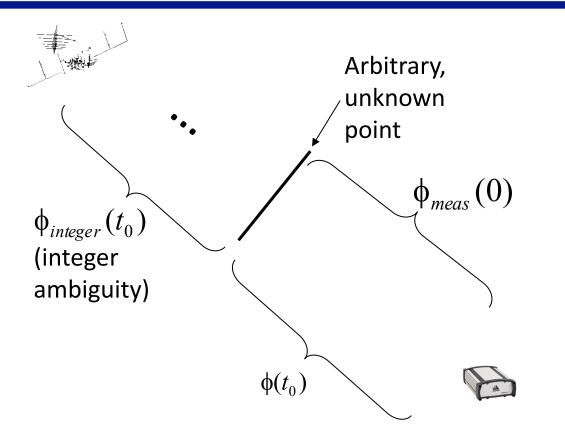
$$\begin{split} f_{R_{meas}} \\ f_{R} &= f_{R_{meas}} (1 + \delta \dot{t}_{rcvr}) \\ f_{R} &= \text{true received signal frequency (Hz)} \\ f_{R_{meas}} &= \text{measured received signal frequency (Hz)} \\ \delta \dot{t}_{rcvr} &= \text{receiver clock drift rate (sec/sec)} \end{split}$$

Doppler measurement formed by differencing the measured received frequency and the transmit frequency:

$$\Delta f_{meas} = f_{R_{meas}} - f_T$$

 Note: transmit frequency is calculated using information about SV clock drift rate given in navigation message

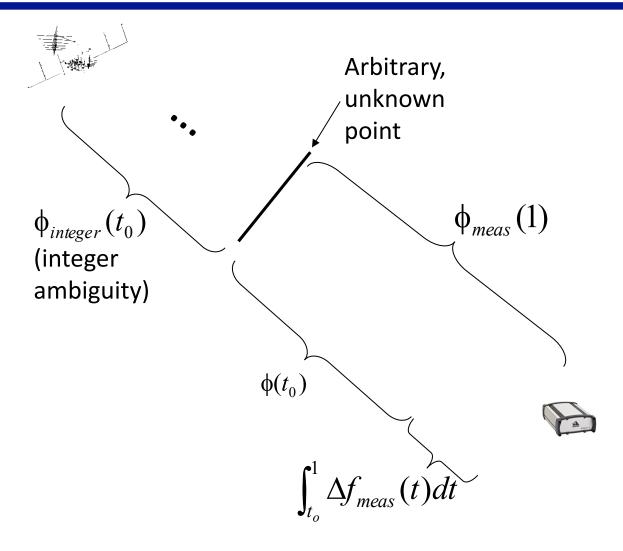
Carrier-Phase (Integrated Doppler) Measurement


• The carrier-phase measurement $\phi_{meas}(t)$ is calculated by integrating the Doppler measurements

range $(t) = \underbrace{\int_{t_o}^{t} \Delta f_{meas}(t) dt + \phi(t_0)}_{t_o} + \phi_{integer}(t_0) + \text{clock error + other errors}$

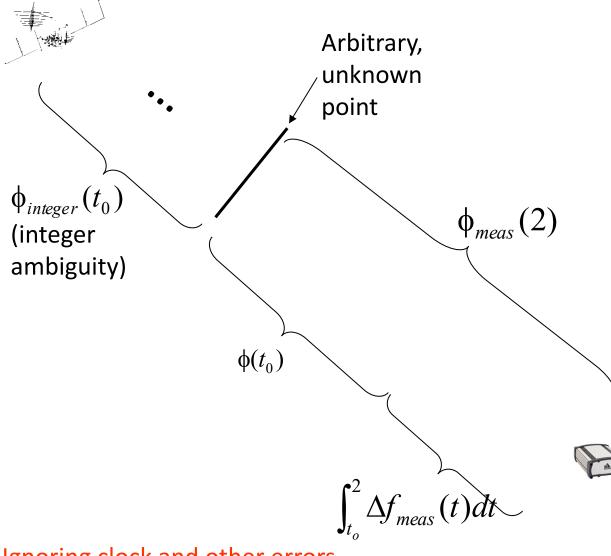
 $\phi_{meas}(t)$ (can be measured by receiver)

- The integer portion of the initial carrier-phase at the start of the integration ($\phi_{integer}(t_0)$) is known as the "carrierphase integer ambiguity"
 - Because of this ambiguity, the carrier-phase measurement is not an absolute measurement of position
 - Advanced processing techniques can be used to resolve these carrier-phase ambiguites (carrier-phase ambiguity resolution)
- Alternative way of thinking: carrier-phase measurement is the "beat frequency" between the incoming carrier signal and receiver generated carrier.


Phase Tracking Example At Start of Phase Lock (Time = 0 seconds)

Ignoring clock and other errors

J. Raquet


Phase Tracking Example After Movement (for 1 Second)

Ignoring clock and other errors

J. Raquet

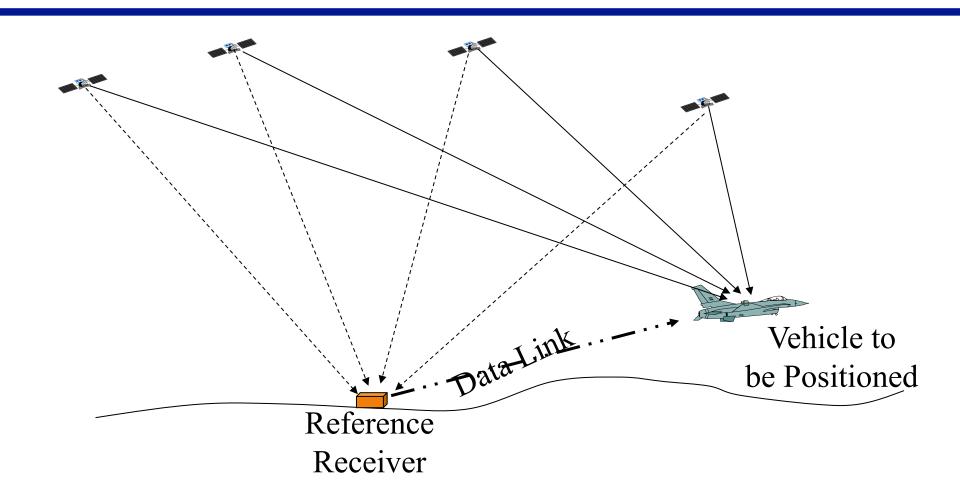
Phase Tracking Example After Movement (for 2 Seconds)

Ignoring clock and other errors

J. Raquet

Comparison Between Pseudorange and Carrier-Phase Measurements

	Pseudorange	Carrier-Phase
Type of measurement	Range (absolute)	Range (ambiguous)
Measurement precision	~1 m	~0.01 m
Robustness	More robust	Less robust (cycle slips possible)


Carrier-to-Noise Density (C/N₀)

- The carrier-to-noise density is a measure of signal strength
 - The higher the C/N_0 , the stronger the signal (and the better the measurements)
 - Units are dB-Hz
 - General rules-of-thumb:
 - C/N₀ > 40: Very strong signal
 - $32 < C/N_0 < 40$: Marginal signal
 - $C/N_0 < 32$: Probably losing lock (unless using high sensitivity receiver)

C/N₀ tends to be receiver-dependent

- Can be calculated many different ways
- Absolute comparisons between receivers not very meaningful
- Relative comparisons between measurements in a single receiver are very meaningful

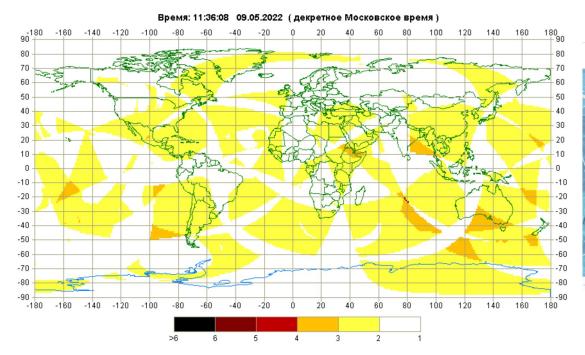
Real-time Differential Concept

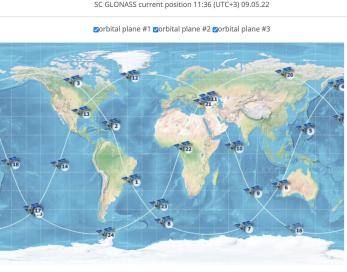
(For post-processing, data would be stored from reference receiver and aircraft and processed after the flight is over.)

Typical GPS Accuracy

- How accurate is GPS?
- Definitive answer: It Depends!

	Mode	Approximate Horizontal Accuracy (drms)
	Civilian receiver, SA on (historical)	100 m
Stand- Alone	Civilian receiver, SA off (current) / with WAAS	2-10 m / 0.5-1 m
0 4	Military receiver (dual frequency)	2 m
- TE	Code differential	1 – 2 m
entia	Carrier-smoothed code differential	0.1 – 1 m
Differential	Precise carrier-phase (kinematic)	1 – 2 cm
	Precise carrier-phase (static)	1 – 2 mm


GLONASS Webstite (9 May 2022) https://www.glonass-iac.ru


GLONASS constellation status at 09.05.2022

Total satellites in constellation	25
In operation	23
In commissioning phase	0
In maintenance	2
Under check by the Satellite Prime Contractor	0
Spares	0
In flight tests phase	0

Current values of position geometry factor PDOP on the Earth surface (angle \ge 5°).

GLONASS Signal

• GLONASS uses Frequency Division Multiple Access (FDMA)

- All satellites transmit same PRN code, but at different frequencies
- More costly receiver design
- Better interference rejection
 - Interference at a given frequency will affect only the satellite transmitting at that frequency
 - Cross-correlation between PRN codes is not an issue
- Like GPS, each GLONASS satellite transmits on two L-band carrier frequencies (L1 and L2)
 - L1 includes 0.511 MHz CA-code and 5.11 MHz P-code
 - L2 includes 5.11 MHz P-code
 - 50 bps navigation message modulated onto L1 and L2
 - CA-code has 1ms repeat rate
 - P-code has 1s repeat rate
 - Actual maximal-length P-code repeats at 6.57s intervals, but it's truncated at 1s

GLONASS Frequencies

Carrier frequencies

 $f_{L1} = 1602 + 0.5625K$ MHz $f_{L2} = 1246 + 0.4375K$ MHz

- Frequency shift underway to move GLONASS out of radio astronomy band
 - Until 1998: *K* = 0 to 12
 - 1998-2005: *K* = -7 to 12
 - After 2005: *K* = -7 to 4
- Frequency sharing by anti-podal satellites
- Ratio of L1 to L2 frequencies is 9/7
- Note that adjacent CA-codes operate near the "null" of each other
- Adjacent satellites have cross-correlation levels not exceeding 48 dB
 - Better than GPS

GLONASS Navigation Messages

- Like GPS, GLONASS transmits a 50 bps navigation message that's modulated on CA-code and P-code
- Unlike GPS, the GLONASS navigation message is different for CA-code and P-code
 - CA-code navigation message
 - Precise ephemeris (position, velocity, and acceleration rather than Keplerian parameters)
 - Time to acquire: 30 seconds
 - Almanac data (Keplerian parameters)
 - - Time to acquire: 2.5 minutes
 - Epoch timing
 - Synchronization bits
 - Error correction bits
 - Satellite health
 - Age of data
 - P-code navigation message
 - Not published, but empirically studied
 - Precise ephemeris
 - Time to acquire: 10 seconds
 - Almanac data
 - Time to acquire: 12 minutes

Comparison Between GPS and GLONASS

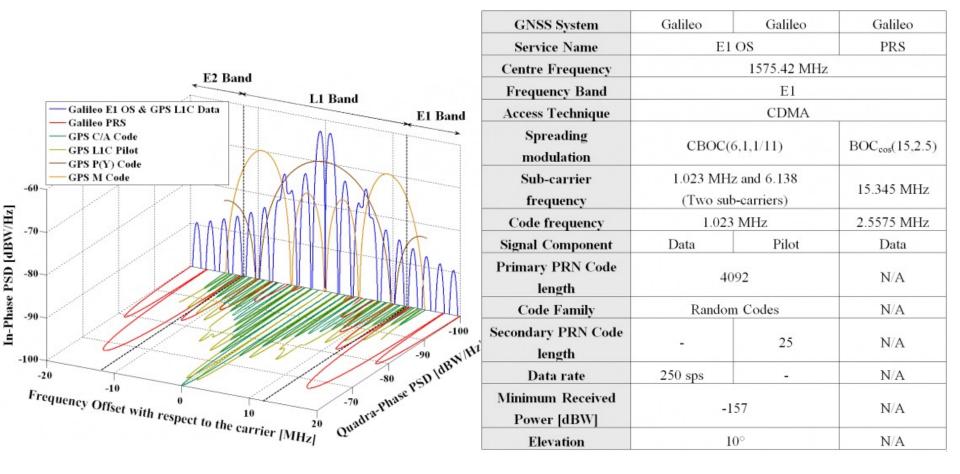
	GLONASS	GPS	
Number of Satellites	24	24	
Number of orbital planes	3	6	
Spacing within orbital plane	45 deg	varied	
Orbital inclination	64.8 deg	55 deg	
Orbital radius	25,510 km	26,560 km	
Orbital period	11 hours, 15 min	11 hours, 58 min	
Ground track repeat	8 siderial days 1 siderial day for next slot	1 siderial day	
Datum	PZ-90	WGS-84	
Time reference	UTC(SU)	UTC(USNO)	
Access method	FDMA	CDMA	
Carrier frequencies	L1: 1602+0.5625K L2: 1246+0.4375K K=-7 to 12 (4)	L1: 1575.42 L2: 1227.60	
Code	CA-code on L1 P-code on L1 and L2	CA-code on L1 P(Y)-code on L1 and L2	
Code frequency	CA-code: 0.511 MHz P-code: 5.11 MHz	CA-code: 1.023 MHz P-code: 10.23 MHz	
Crosscorrelation interference	-48 dB	-21.6 dB	
Number of code elements	CA-code: 511 P-code: 5110000	CA-code: 1023 P-code: 2.35E14	
Selective availability	No	Yes	
Anti-spoofing	No	Yes	
Navigation message rate	50 bps	50 bps	
Navigation message length	2.5 min	12.5 min	

Galileo Overview

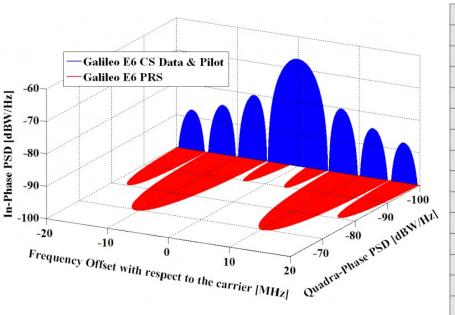
- Constellation
 - 30 Satellites (MEO)
 - 56 deg inclination
- Signals
 - Generally reusing GPS frequency spectrum

- Dual frequency planned for standard users from the beginning
- Levels of service

Graphic: ESA


- Open Access Navigation: This will be 'free to air' and for use by the mass market; Simple timing and positioning down to 1m.
- **Commercial Navigation** (Encrypted): High accuracy to the cm; Guaranteed service for which service providers will charge fees.
- Safety Of Life Navigation: Open service; For applications where guaranteed accuracy is essential; Integrity messages will warn of errors.
- Public Regulated Navigation (Encrypted): Continuous availability even in time of crisis; Government agencies will be main users.
- Search And Rescue: System will pick up distress beacon locations; Feasible to send feedback, confirming help is on its way.

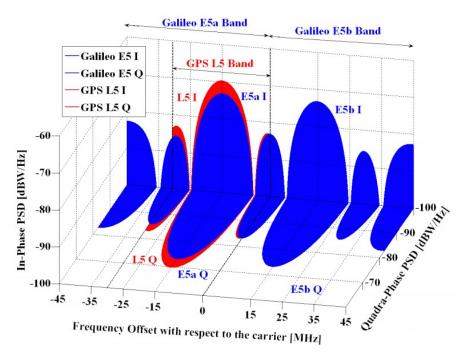
Galileo Satellite History (current as of 9 May 2022)


Summary of satellites, as of 7 December 2021

Block	Launch period	Satellit	In operation		
		Full success	Failure	Planned	and healthy
GIOVE	2005–2008	2	0	0	0
ΙΟν	2011–2012	4	0	0	3
FOC	From 2014	22	2 ^[α]	10	21
G2G	From 2024	0	0	12	0
Total		28	2	22	24
α. ^ Partial failure					

Galileo (and GPS) L1 Signals

Galileo E6 Band


GNSS System	Galileo	Galileo	Galileo
Service Name	E6 CS data	E6 CS pilot	E6 PRS
Centre Frequency	1278.75 MHz		
Frequency Band	E6		
Access Technique	CDMA		
Spreading modulation	BPSK(5)	BPSK(5)	$BOC_{cos}(10,5)$
Sub-carrier frequency	-	-	10.23 MHz
Code frequency	5.115 MHz		
Signal Component	Data Pilot Data		
Primary PRN Code length 5115 5115		5115	N/A
Code Family	Memory codes		N/A
Secondary PRN Code length		100	N/A
Data rate	1000 sps	-	N/A
Minimum Received Power [dBW]	V] -155		N/A
Elevation	10° N		

CS – Commercial Service PRS – Public Regulated Service

J. Raquet

http://www.navipedia.net/index.php/GALILEO_Signal_Plan

Galileo E5 Band

GNSS System	Galileo	Galileo	Galileo	Galileo
Service Name	E5a data	E5a pilot	E5b data	E5b pilot
Centre Frequency	1191.795 MHz			
Frequency Band	E5			
Access Technique	CDMA			
Spreading modulation	AltBOC(15,10)			
Sub-carrier frequency	15.345 MHz			
Code frequency	10.23 MHz			
Signal Component	Data	Pilot	Data	Pilot
Primary PRN Code length	10230			
Code Family	Combination and short-cycling of M-sequences			
Secondary PRN Code length	20	100	4	100
Data rate	50 sps	-	250 sps	-
Minimum Received Power [dBW]	-155 dBW		-155 dBW	
Elevation	10°		10°	

BeiDou (China)

• Regional System (Beidou 1)

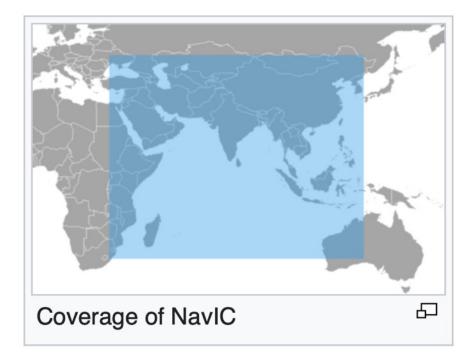
- A signal is transmitted skyward by a remote terminal.
- Each of the geostationary satellites receive the signal.
- Each satellite sends the accurate time of when each received the signal to a ground station.
- The ground station calculates the longitude and latitude of the remote terminal, and determines the altitude from a relief map.
- The ground station sends the remote terminal's 3D position to the satellites.
- The satellites broadcast the calculated position to the remote terminal.
- Global System (Beidou 2, formally called "Compass")
 - 35 SV constellation planned (5 GEO, 27 MEO, 3 IGSO SVs)
 - Public service 10 m accuracy
 - Licensed military service

BeiDou Satellite History

Summary of satellites, as of 23 June 2020

Block	Launch period	Satellite launches			Currently in orbit	
		Success	Failure	Planned	and healthy	
1	2000–2006	4	0	0	0	
2	2007–2019	20	0	0	12	
3	2015-present	35	0	0	30	
Total		59	0	0	42	

Final BeiDou Constellation


	Geostationary Orbit	Inclined Geosynchronous Orbit)	Medium Earth Orbit
Orbit parmts.	GEO	IGSO	MEO
Semi-Major Axis (Km)	42164	42164	27878
Eccentricity	0	0	0
Inclination (deg)	0	55	55
RAAN (deg)	158.75E, 180E, 210.5E, 240E,260E	218E,98E,338E	
Argument Perigee	0	0	
Mean anomaly (deg)	0	218E:0,98E:120,338E:240	
# Sats	5	3	27
# Planes	1	3	3

Final BeiDou Constellation

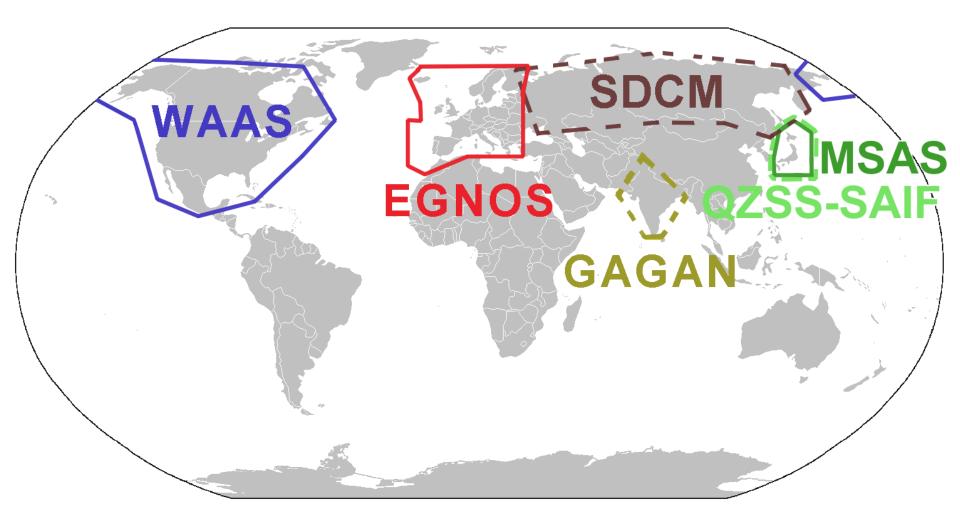
http://www.navipedia.net/index.php/BeiDou_Space_Segment

Indian Regional Satellite Navigation System (IRNSS)

- Sometimes called NavIC (acronym for Navigation with Indian Constellation)
- Constellation of geosynchronous satellites
 - 3 in geostationary orbit
 - 5 in inclined geosynchronous orbit
- Stand-alone system
 - Does not require any other GNSS
- Continuous coverage over India and surrounding areas

000000000 00 ,,,,,,,,,,,,,,, **SECTION 8:** AUGMENTATION **SYSTEMS** ----------

1000 1000 11000


00000

0000h 0000h 000

Augmentation Systems

- WAAS (Wide Area Augmentation System) US
 - Declared operationsl in Jul 2003
 - 3 geostationary satellites
 - 38 reference stations
- MSAS (MTSAT Satellite based Augmentation System) Japan
 - Declared operational in September, 2007
 - 2 geostationary satellites
- EGNOS (European Geostationary Navigation Overlay Service) Europe
 - Declared operational in Oct 2009
 - 3 geostationary satellites
 - 40 reference stations
- GAGAN (GPS Aided GEO Augmented Navigation) India
 - Declared operational in July, 2013
 - 3 geostationary satellites
 - 15 reference stations
- QZSS (Quasi-Zenith Satellite System) Japan
 - Declared operational in Nov 2018
 - Four satellites
 - Highly elliptical "tundra" orbits (so satellites linger over Japan)
- Are others

SBAS Coverage Map

SBAS Satellites

SBAS	SATELLITE	ORBIT LONGITUDE	PRN	SIGNALS
EGNOS	Inmarsat-3-F2/AOR-E	15.5° W	120	L1
	Astra 5B	31.5° E	123	L1/L5
	Artemis	21.5° E	124	L1
	Inmarsat-4-F2	25° E	126	L1
	SES-5	5° E	136	L1/L5
GAGAN	GSAT-8	55° E	127	L1/L5
	GSAT-10	83° E	128	L1/L5
MSAS	MTSAT-1R	140° E	129	L1
	MTSAT-2	145° E	137	L1
QZSS	QZS-1	135° E	183	L1
SDCM	Luch-5A	167° E	140	L1
	Luch-5B	16° W	125	L1
	Luch-5V	95° E	141	L1
WAAS	Intelsat Galaxy 15 (CRW)	133° W	135	L1/L5
	TeleSat Anik F1R (CRE)	107.3° W	138	L1/L5
	Inmarsat-4-F3 (AMR)	98° W	133	L1/L5

J. Raquet http://gpsworld.com/wp-content/uploads/2012/08/GPSWorld_Almanac_Aug2015_v2.pdf

.... **SECTION 9: GNSS MEASUREMENT** ERRORS ----------

000000000

....

..................

.....

....

,,,,,,,,,,,,,,,,

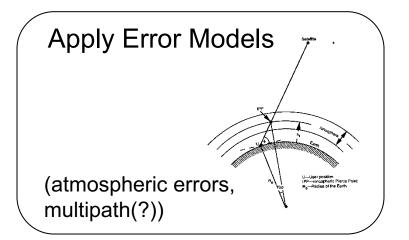
.....

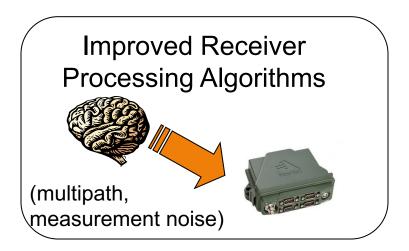
1000 1000 1000

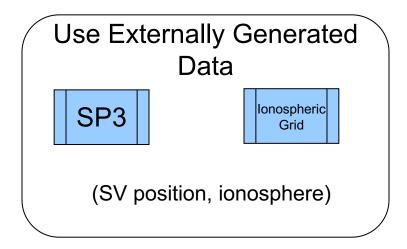
00000

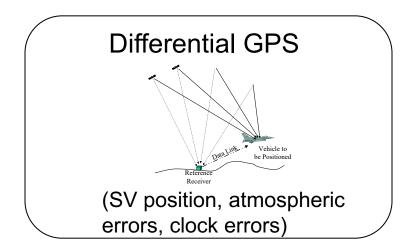
0000h 0000h 000 i

Pseudorange Errors


- The pseudorange measurement includes
 - True (geometric) range between receiver and satellite
 - Satellite clock error (or residual error after SV clock correction Δt_{sv} is applied)
 - Receiver clock error
 - Other errors due to atmosphere, selective availability, receiver hardware, etc (δt_D)
- SV
 Lumped together in δt_D term
 Other


 Clock
 True Range
 Receiver Clock Error
 Errors


 True Range
 State
 (δt_D)


 For single point positioning
 For single point positioning
 State
 - Receiver clock error is estimated
 - Other errors are ignored (and cause errors in position and time solution)
 - It's important to understand these errors

Ways of Correcting Additional Errors

Pseudorange Error Equation

Pseudorange ρ is

 δt_{sv}

 T_{s}

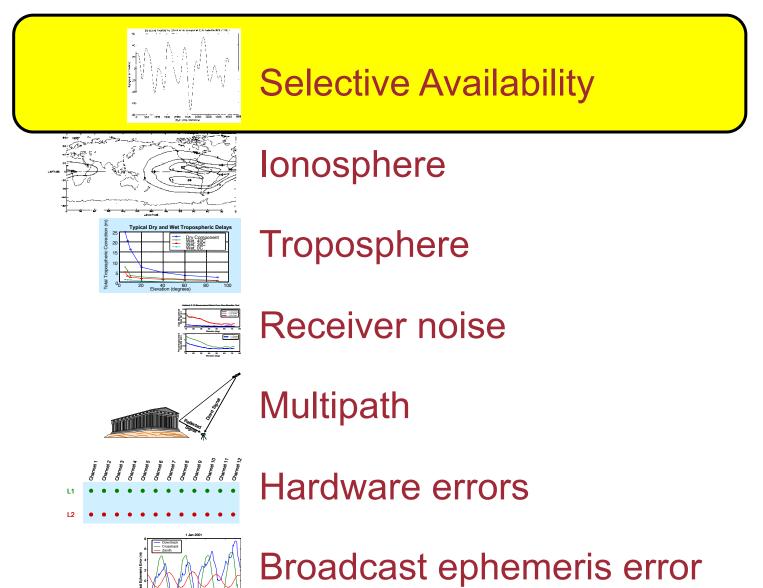
 $T_s + \delta t_{sv}$

$$\rho = r + c(\delta t_u - \delta t_{sv} + \delta t_D)$$

 $r = c(T_u - T_s) = c\Delta t$ = geometric range T_{u} = time signal would have been received if there were no errors (theoretical) $T_s =$ true signal transmit time δt_{u} = receiver clock error δt_{sv} = satellite clock error (after polynomial and relativity corrections applied) (Geometric range time equivalent) δt_D = additional error effects δt_D time $T'_{u} + \delta t_{u}$ T'_{u} T_{u}

J. Raquet Annual Annual Structure and Applications Artech House, 1996

(pseudorange time equivalent)

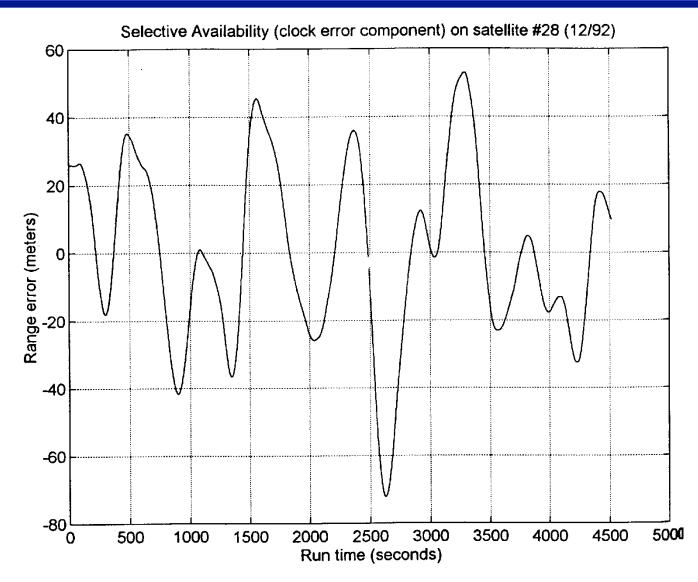

Pseudorange Errors

• All non-clock errors are combined in the δt_D error term

$$\begin{split} \delta t_D &= \delta t_{SA} + \delta t_{iono} + \delta t_{trop} + \delta t_{noise\&res} + \delta t_{mp} + \delta t_{hw} \\ \delta t_{SA} &= \text{Selective Availability degradation} \\ \delta t_{iono} &= \text{delay due to ionosphere} \\ \delta t_{trop} &= \text{delay due to troposphere} \\ \delta t_{noise\&res} &= \text{receiver noise and resolution error} \\ \delta t_{mp} &= \text{multipath error} \\ \delta t_{hw} &= \text{hardware errors (inter - channel or} \\ \text{inter - frequency biases)} \end{split}$$

- Additionally, satellite position error will contribute to an error in the solution
 - Not actually a measurement error, but "seems" like a measurement error
- Each error will be covered separately
 - Emphasis on pseudorange errors
 - Carrier-phase errors often related

GPS Measurement Errors

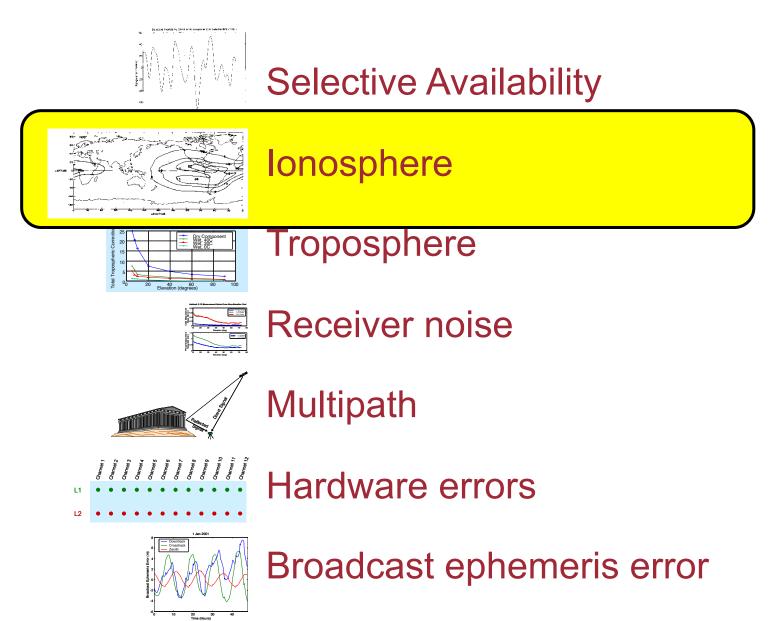


Selective Availability

Two components ۰

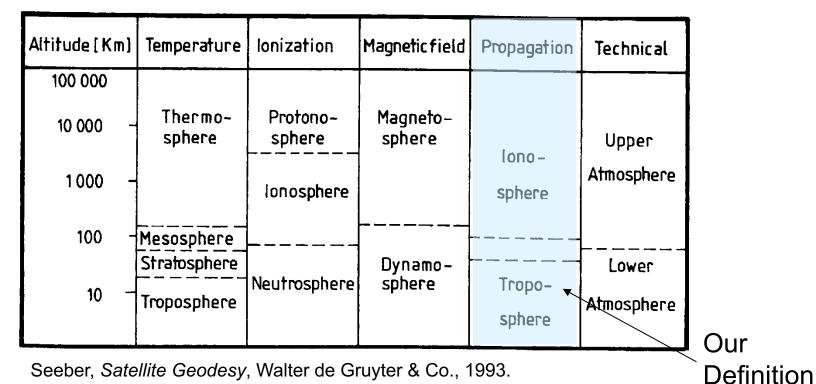
- Epsilon (ϵ): Errors in the broadcast ephemeris values
 - There are times when this is not apparently implemented (based upon comparisons with • precise orbits)¹
- Dither (δ): Intentionally changing the frequency of the satellite clock
- Dominant error source for non-authorized users •
- **Characteristics** •
 - From observation
 - Random oscillations •
 - Periods of 4-12 minutes
 - Error up to 70 m
 - From DOD/DOT Signal Specification Issues Technical Group (1994) —
 - Range rate bound: Not to exceed 2 m/s •
 - Range acceleration bound: Not to exceed 19 mm/s²
 - Range acceleration: 8 mm/s² (2σ)
 - Can be changed by National Command Authority ٠

Representative Selective Availability Plot



J. Raquet

Kaplan, Understanding GPS: Principles and Applications, Artech House, 1996.

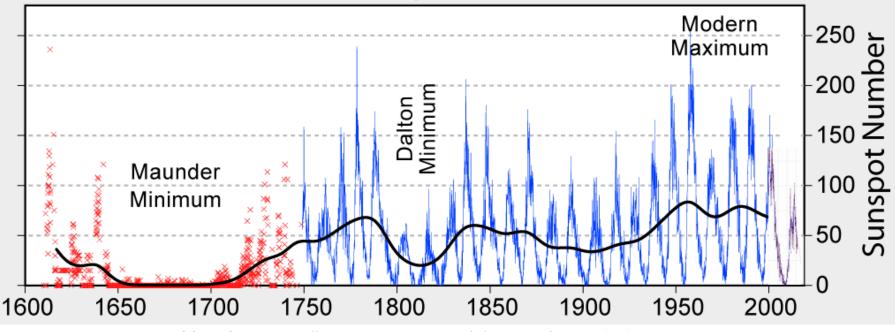

4-95

GPS Measurement Errors

Atmospheric Errors with GPS

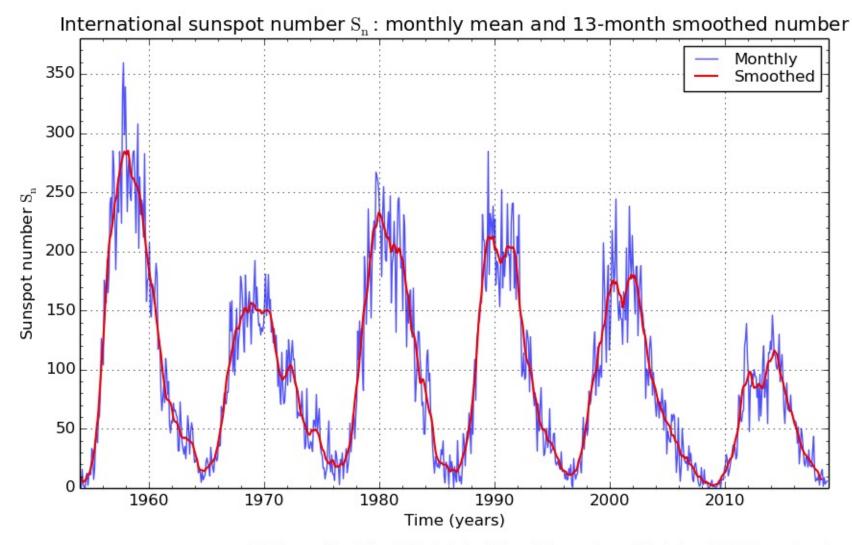
• There are many different ways to describe the atmosphere

 For GPS, atmosphere usually divided up into troposphere and ionosphere


- Troposphere: neutral (uncharged) atmosphere
- lonosphere: free ions

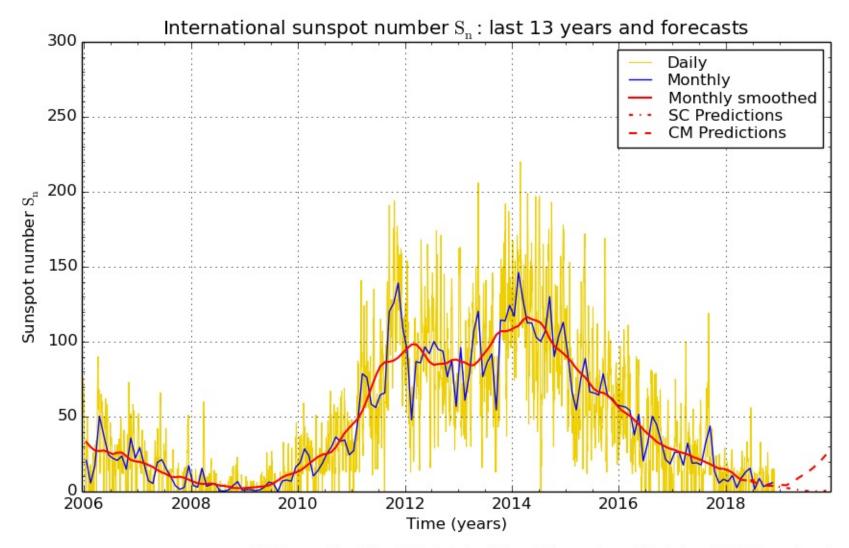
- Weakly ionized plasma that can affect radio waves
 - Caused by ultraviolet radiation from the sun
 - Maximum density between 300-400 km
 - Effects PLASMASPHERE Code delay (phase 1000 advance) Doppler shift 500 Refraction (bending) of 400 Height(km) radio wave 300 F2 Amplitude or phase 200 scintillations 100 D 0 10' 1012 10" Electron Density (el/m³)

Solar Cycle


- Ionospheric activity is directly related to the solar cycle
 - Measured by sunspot number
 - Varies on ~11 year cycle
 - In peak around 2014

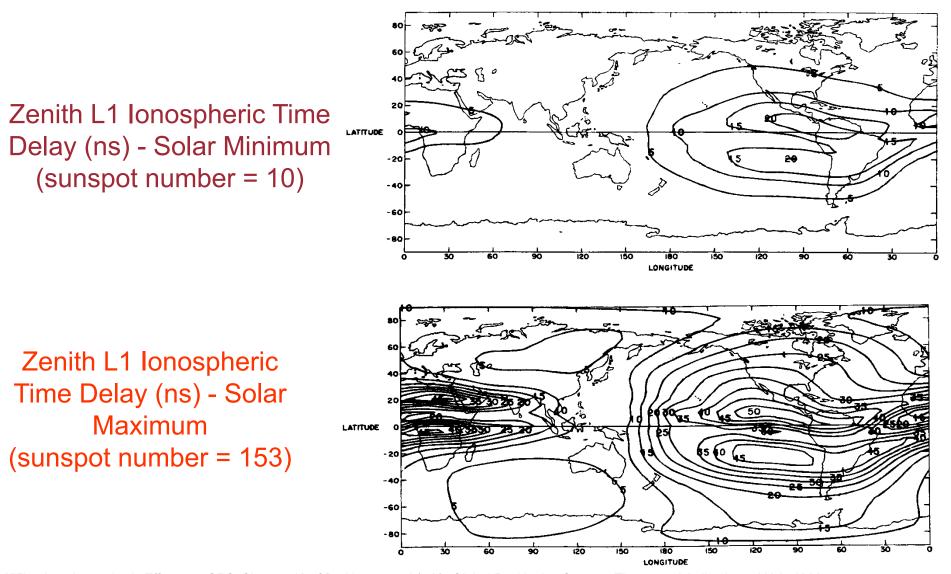
400 Years of Sunspot Observations

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=969067


Recent Solar Cycles

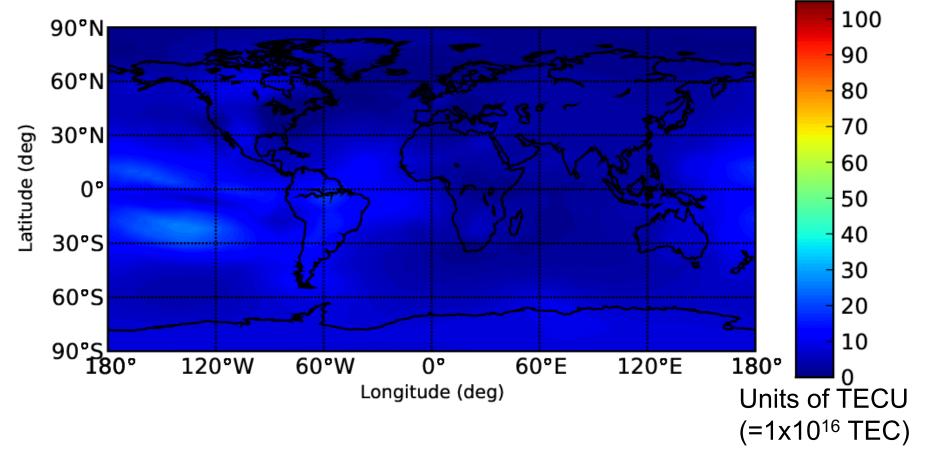
SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 December 1

4-100


Sunspot Numbers – More Detailed View, Including One Year Predictions

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 December 1

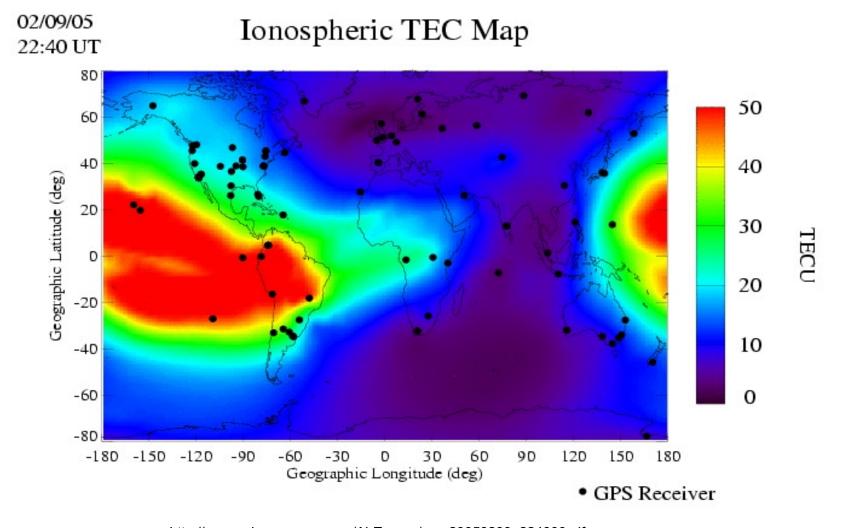
4-101


Spatial and Temporal Variation of L1 ⁴⁻¹⁰² Ionospheric Delay

Klocauptetr, Ionospheric Effects on GPS, Chapter 12 of Parkinson et al (ed.), Global Positioning System: Theory and Aplications, AIAA, 1996.

Sample lonosphere Plot (Sunspot Number = 0)

Vertical Total Electron Content Map at 21-Dec-2018 21:10:00 UTC in TECU



Obtained from <u>https://iono.jpl.nasa.gov/latest_rti_global.html</u> Sunspot Number obtained from http://www.sidc.be/silso/datafiles (1 TECU = 0.16 m)

4-103

J. Raquet

More Typical lonosphere Plot (Sunspot Number = 58)

http://www.arizonaenergy.org/AirEnergy/map20050209_224000.gif Sunspot Number obtained from http://www.sidc.be/silso/datafiles 4-104

Ionospheric Effects on GPS Pseudorange Measurement

- Total Electron Content (TEC)
 - Number of electrons in a 1m x 1m rectangular column from the receiver up through the ionosphere (units of electrons/m²)

$$TEC = \int_{SV}^{User} n_e dl$$

 n_e = electron density

• Group (pseudorange) delay

$$\Delta S_{iono,g} = \frac{40.3 \text{ TEC}}{f^2}$$

 $\Delta S_{iono,g}$ = group (pseudorange) delay (m) f = carrier frequency (L1or L2 for GPS)

• Carrier-phase delay $\Delta S_{iono,p} = -\frac{40.3 \text{ TEC}}{f^2}$

J. Raquet – Carrier-phase is actually *advanced* by ionosphere by same magnitude as 105

4-105

Use of Dual Frequency Measurements to Calculate Ionospheric Delay

L1 ionospheric delay calculated by

$$\Delta S_{iono,corr_{L1}} = \left(\frac{f_2^2}{f_2^2 - f_1^2}\right) (\rho_{L1} - \rho_{L2})$$

$$\begin{split} \Delta S_{iono,corr_{L1}} &= \text{ L1 lonospheric Delay (m)} \\ f_1, f_2 &= \text{ L1 and L2 carrier frequencies} \\ \rho_{L1}, \rho_{L2} &= \text{ L1 and L2 pseudorange measurements} \end{split}$$

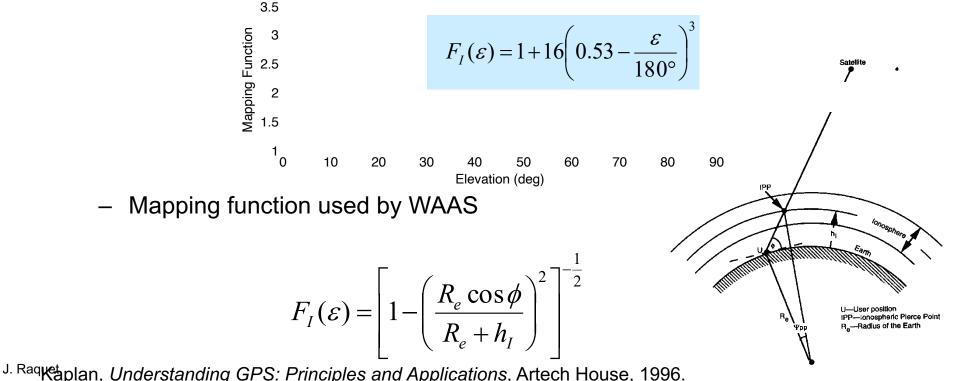
L2 ionospheric delay can be calculated by

$$\Delta S_{iono,corr_{L2}} = \left(\frac{f_1}{f_2}\right)^2 \Delta S_{iono,corr_{L1}}$$

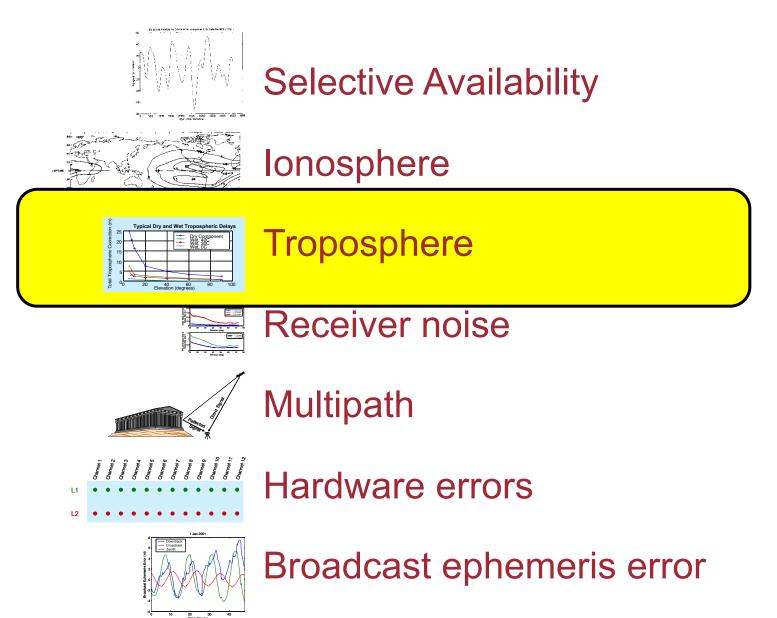
• **lonospheric-free pseudorange:** $\rho_{IF} = \frac{\rho_{L2} - \gamma \rho_{L1}}{1 - \gamma}, \qquad \gamma = \left(\frac{f_{L1}}{f_{L2}}\right)^2 = \left(\frac{77}{60}\right)^2$

J. Raquet

 Multipath and measurement noise will corrupt this measurement of ionosphere


106

Ionospheric Mapping Functions


 Mapping function (or obliquity factor) is used to relate ionospheric error at elevation ε with ionospheric error at zenith:

$$\delta t_{iono} = F_I(\varepsilon) \delta t_{iono, zenith}$$

- Mapping function used in Klobuchar model (from ICD-GPS-200) (elevation ϵ in degrees)

GPS Measurement Errors

Tropospheric Delay (δt_{trop})

Troposphere is defined as the neutral atmosphere

- Actual troposphere (~0-10 km)
 - Contributes about 75% of "tropospheric" error
- Tropopause (~10-16 km)
 Stratosphere (~16-50 km)
 Contribute about 25% of error
- **Tropospheric delay expressed as** ٠

$$n = \text{refractive index} = \frac{C_v}{C_m}$$

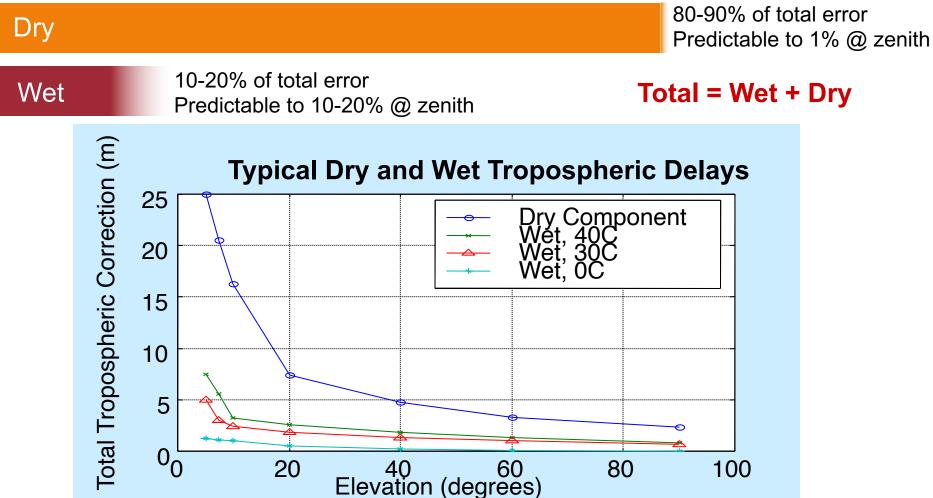
$$\delta t_{trop} = \int_{path} (n-1)ds + \Delta_g$$

$$c_v =$$
 velocity in vacuum

 c_m = velocity in medium (air in this case)

 $\Delta_{\sigma} =$ error due to path curvature

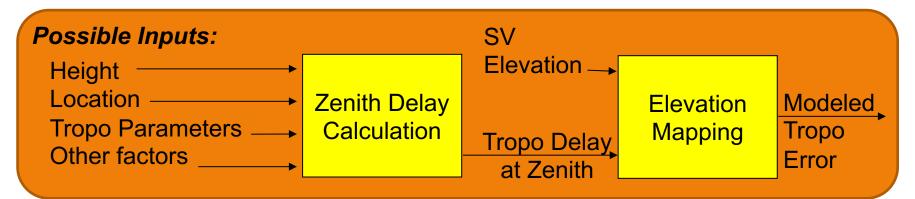
Sometimes refractivity (N) is used ۲


 $N = (n-1) \times 10^{6}$

Average N on Earth's surface: 320

Characteristics of Tropospheric Error

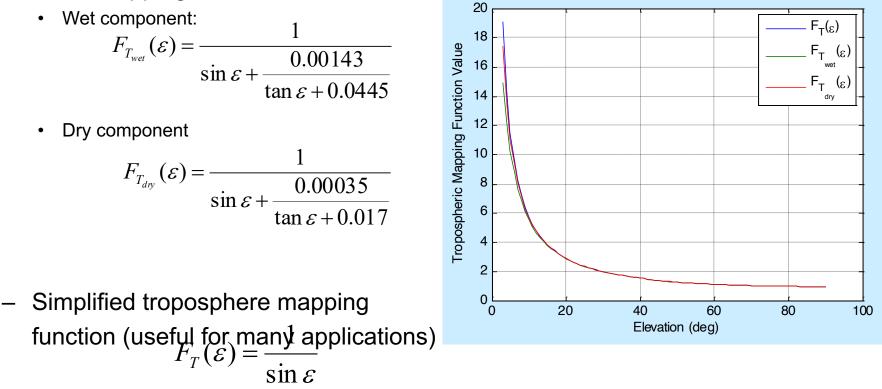
4-110


• Two different terms can be calculated

Data from Black and Eisner, "Correcting Satellite Doppler Data for Tropospheric Effects", *Proc. Of International Symposium on the Use of Artificial Satellites for* Geragesetand Geodynamics, National Technical Univ. of Athens, 1984.

Tropospheric Models

• Many models exist for modeling troposphere

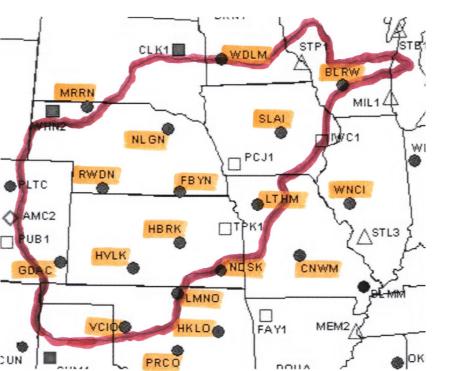

- Most are accurate at elevation angles > 15°
- Can be significant differences for low elevations
- More common models:
 - Saastamoinen (Saastamoinen, "Contributions to the Theory of Atmospheric Refraction." In three parts. *Bulletin Geodesique*, No. 105, pp. 279-298; No. 106, pp. 383-397; No. 107, pp. 13-34.)
 - Black & Eisner (Black and Eisner, "Correcting Satellite Doppler Data for Tropospheric Effects." *Journal of Geophysical Research*, Vol. 89, No. D2, pp. 2616-2626.)
 - Marini & Murray (Marini and Murray, "Correction of Laser Range Tracking Data for Atmospheric Refraction at Elevations Above 10 Degrees." Goddard Space Flight Center Report X-591-73-351, NASA GSFC, Greenbelt, MD, 1973.)

Tropospheric Mapping Functions

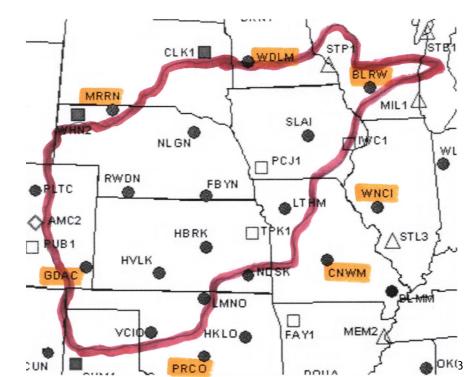
 Mapping function is used to relate tropospheric error at elevation ε with tropospheric error at zenith:

$$\delta t_{trop} = F_T(\varepsilon) \delta t_{trop, zenith}$$

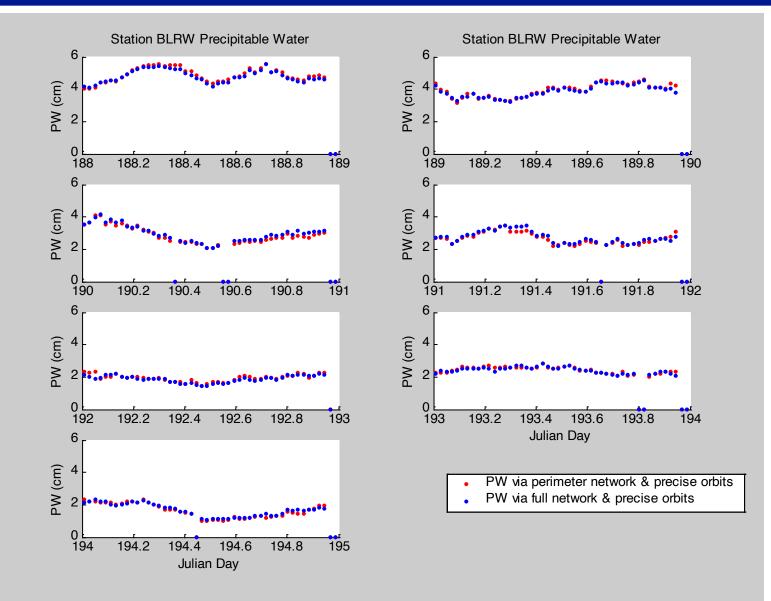
Chao mapping function¹

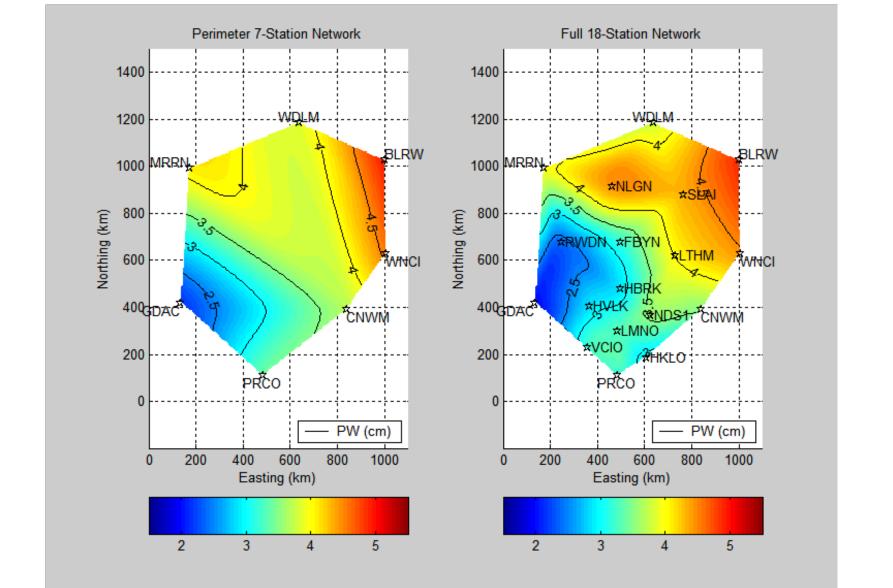


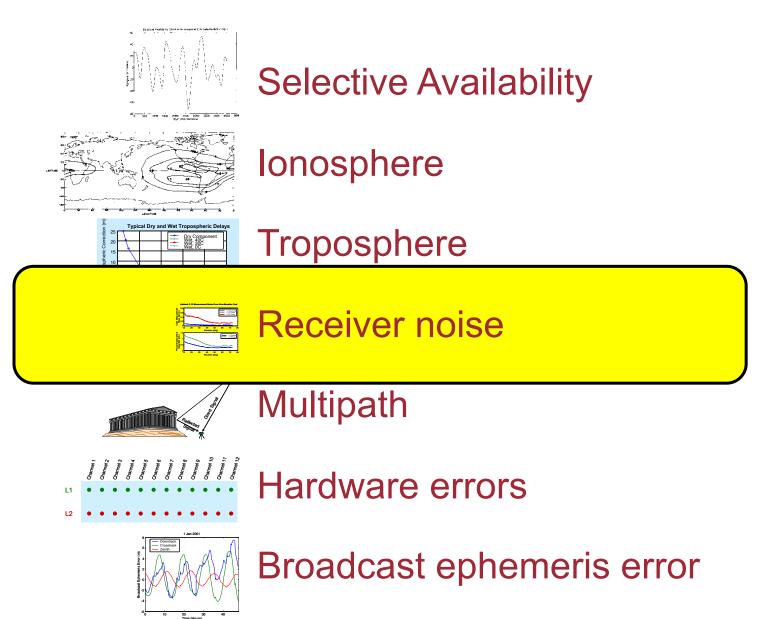
JCRaqu'ethe Tropospheric Calibration Model for Mariner Mars, 1971," JPL TR 32-1587, Jet Propulsion Laboratory, 1974.


GPS Meteorology

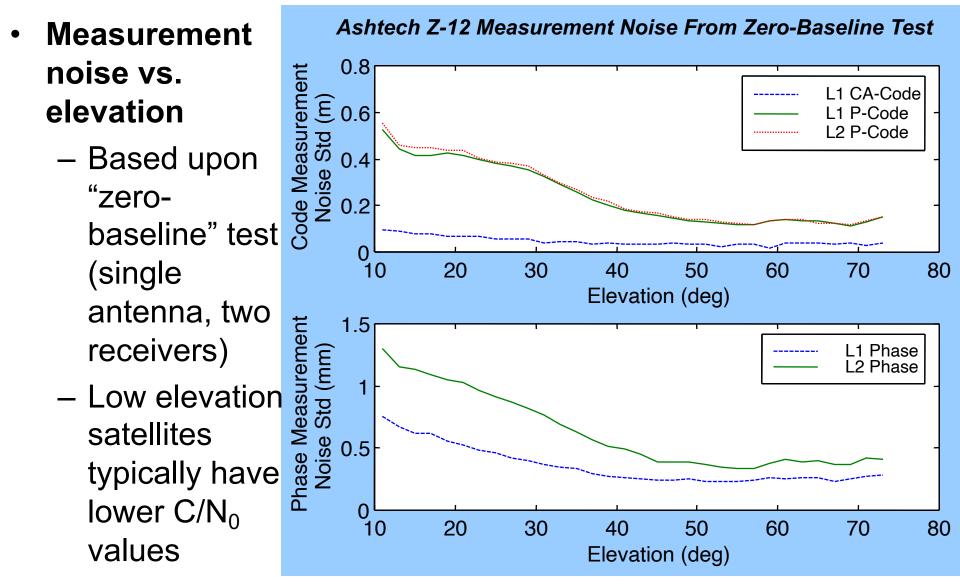
- GPS can be used to actually measure water vapor content of atmosphere
- Trial network (using CORS stations):

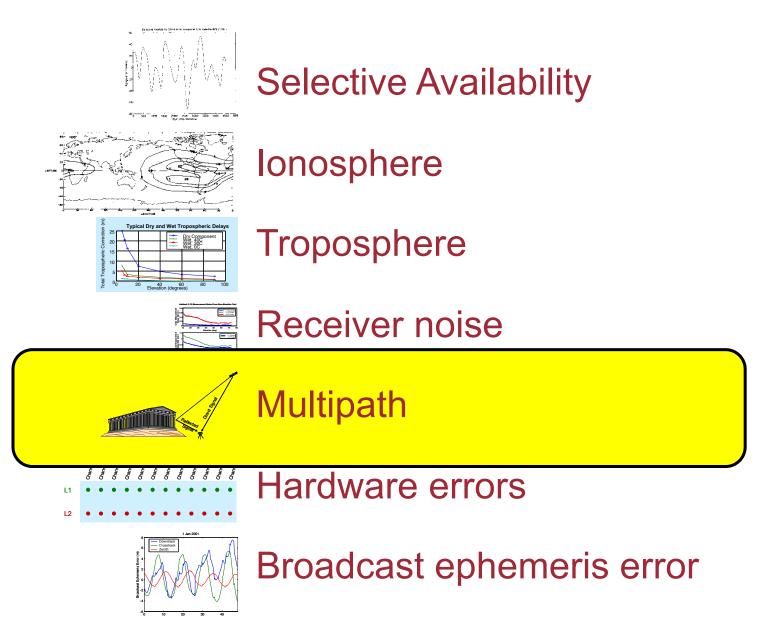

Full Network


Degraded Network

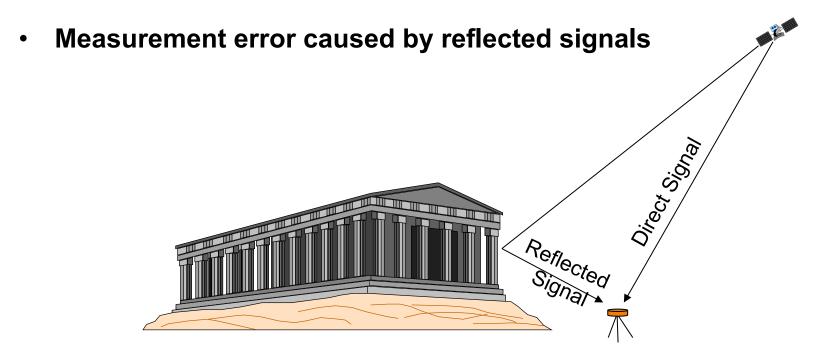

GPS Meteorology Comparison Between Full and Degraded Networks

GPS Meteorology Water Vapor Over the Network


GPS Measurement Errors

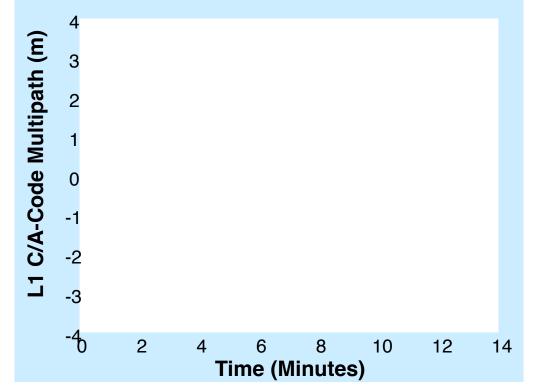

Measurement Noise

- As with any measuring device, measurements from a GPS receiver exhibit measurement noise
 - Uncorrelated in time at typical sampling intervals (i.e., white noise)
 - Gaussian probability density function
 - Zero-mean
 - Correlated with C/N_0 (lower $C/N_0 \rightarrow$ more noise)
- Quantization error also lumped with noise
 - Error due to LSB roundoff
 - Depends upon receiver implementation and the way data is reported from the receiver
- Normally, measurement noise is not a significant problem
 - Easy to remove by filtering
 - No bias


Sample of Measurement Noise vs. Satellite Elevation

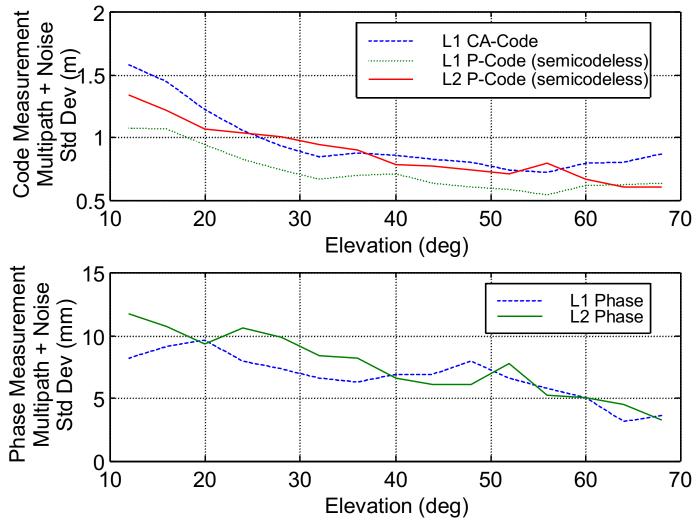
GPS Measurement Errors

Multipath

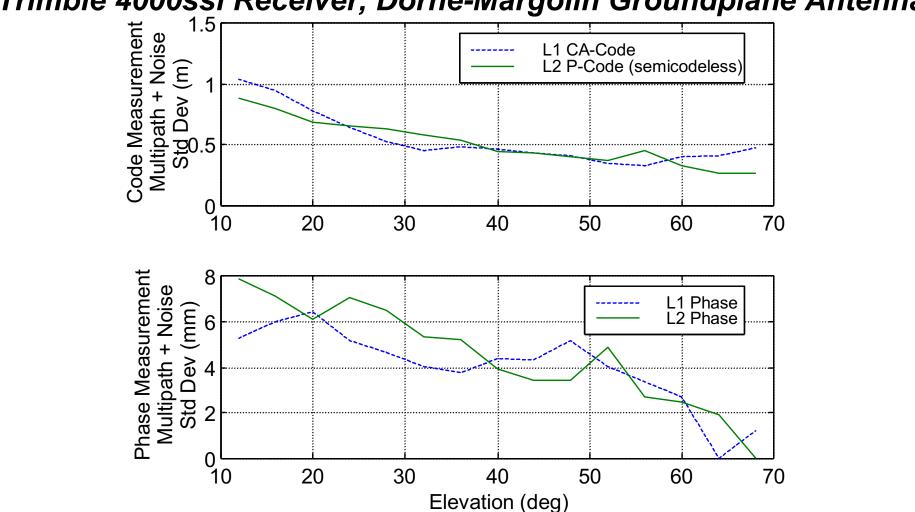


- Can affect both code and carrier-phase measurements
- Potential multipath sources
 - Ground
 - Water
 - Buildings
 - Heating ducts

Multipath Example


• Plot of multipath plus measurement noise

- Ashtech Z-Surveyor in T-38 on tarmac
- Generated from code-minus-carrier observable
 - Absolute bias unknown
- Code-carrier ionospheric divergence removed by fitting to 2nd order polynomial
- Note periodic nature



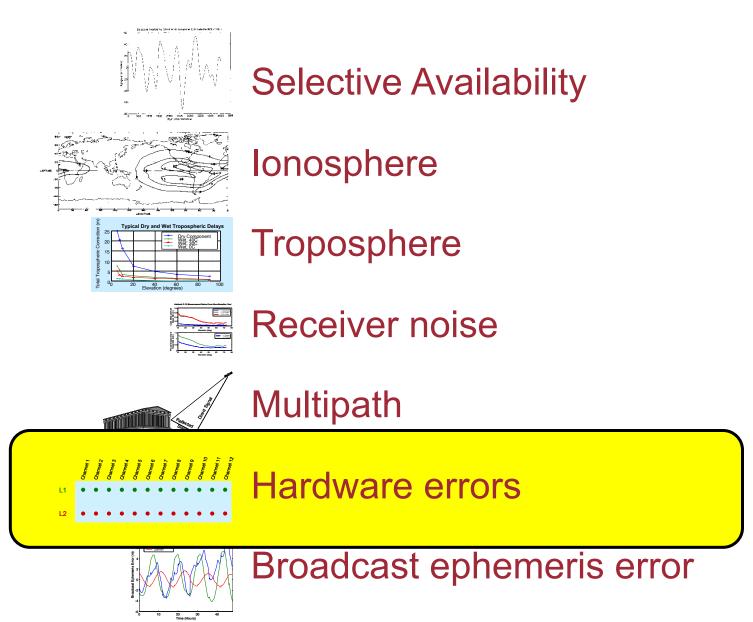
Examples of Multipath (plus Noise) vs. SV Elevation Ashtech Z-12

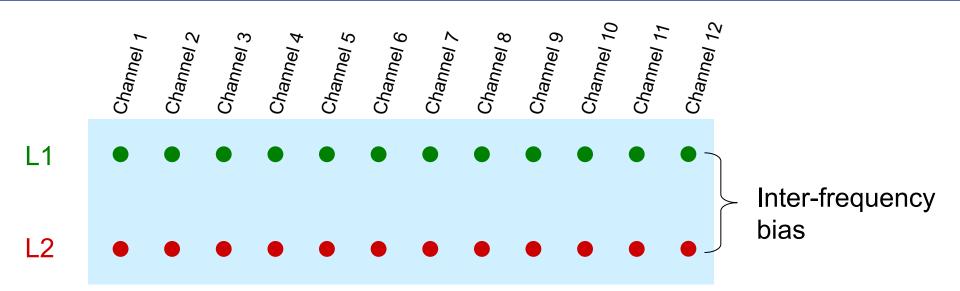
Examples of Multipath (plus Noise) vs. SV **Elevation Trimble 4000ssi**

Trimble 4000ssi Receiver, Dorne-Margolin Groundplane Antenna

Multipath Mitigation Techniques

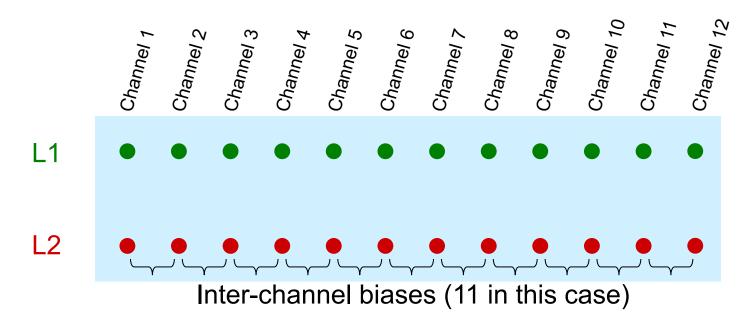
- Antenna-based approaches
 - Place antenna in low-multipath environment
 - Use groundplane or chokering antenna


Antenna Elements


Measurement-based approaches

- Carrier-phase smoothing of the code
- Use of C/N_0 and antenna gain pattern to estimate multipath
- Receiver processing-based approaches
 - Narrow correlator spacing
 - Advanced signal processing techniques
- Other approaches
 - Use of multiple receivers
- J. Raquet Modeling of environment around antenna

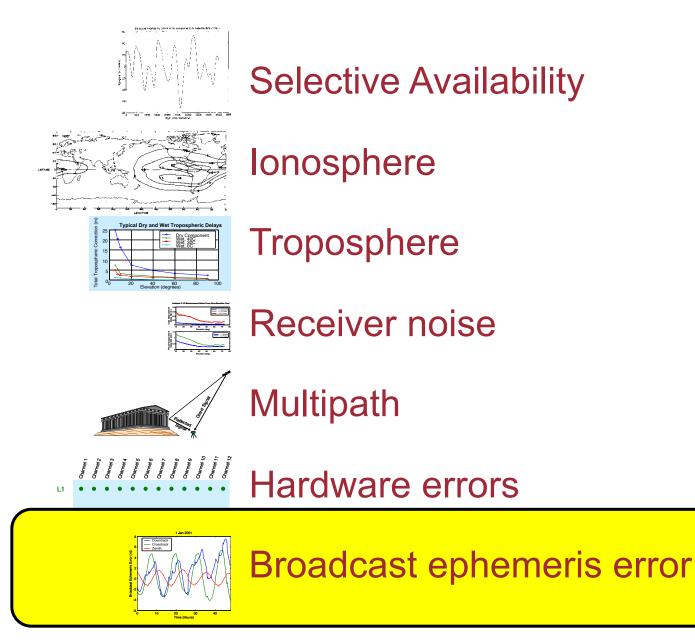
GPS Measurement Errors



Hardware Errors – Inter-frequency Bias

- Measurement bias between L1 and L2 measurements
 - Consistent across all receiver channels
- Adverse effects
 - Does not affect position solution (Why?)
 - Can affect ionospheric study
 - Can affect clock estimate

Hardware Errors – Inter-channel Bias


Measurement bias between channels in a receiver

- Typically very small (can be calibrated out in the factory)
- Can be determined/removed by tracking a common satellite (like RCVR-3A)

Adverse effects

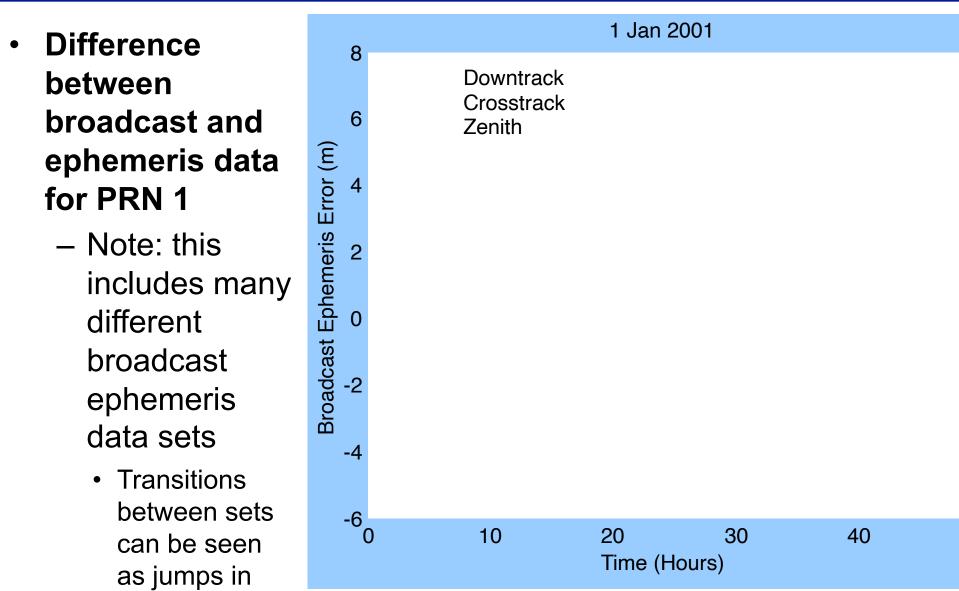
- Does not affect ionospheric study
- Does affect position solution (although typically too little to worry about)
- J. Raquet Does affect timing solution (although typically too little to worry about)

GPS Measurement Errors

Satellite Position Error

- Perturbing forces and measurement error (by OCS) prevent perfect prediction of satellite positions
 - Most can be modeled accurately
 - Even small errors can lead to significant position errors (due to integration)
 - Example: Venus

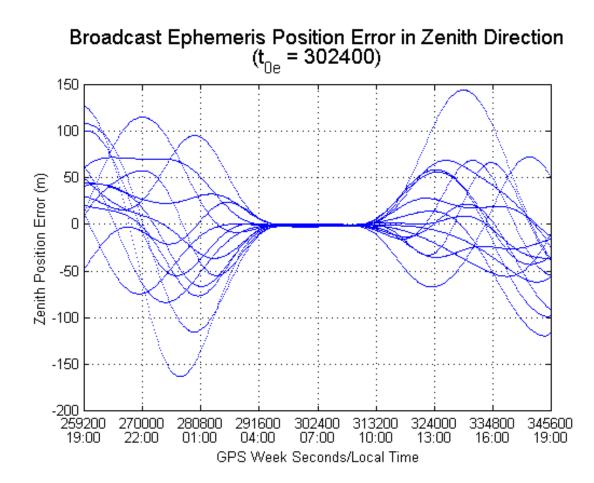
Force Acceleration (m/		
Earth gravity modeled as point mass	6.1 x 10 ⁻¹	
Earth gravity oblateness modeled by the J2 coefficient	1.0 x 10 ⁻⁴	
Lunar gravity	3.9 x 10⁻ ⁶	
Solar gravity	1.0 x 10 ⁻⁶	
Summed effect of Earth gravity field, coefficients 2,1 to 4,4	2.2 x 10 ⁻⁷	
Solar radiation pressure	7.2 x 10 ⁻⁸	
Summed effect of Earth gravity field, coefficients 5,0 to 8,8	5.9 x 10 ⁻⁹	
Albedo (or Earthshine) ¹	1.5 x 10 ⁻⁹	
Thermal re-radiation ²	1.4 x 10 ⁻⁹	
Solid Earth tide, raised by the Moon	1.3 x 10 ⁻⁹	
Solid Earth tide, raised by the Sun	4.5 x 10 ⁻¹⁰	
Venus gravity	1.1 x 10 ⁻¹⁰	


¹Force due to electromagnetic radiation reflected by the Earth and thermal radiation emitted by the Earth

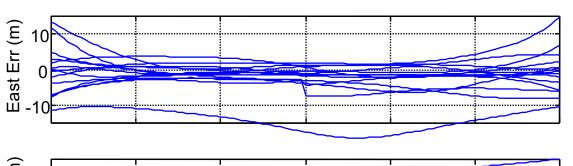
J. Raquet J. Raquet Ziebart, Cross, and Adhya, Marca Hito, Gasher GSUIT Hito-Precision GPS Satellite Orbits, GPS World, Jan 2002

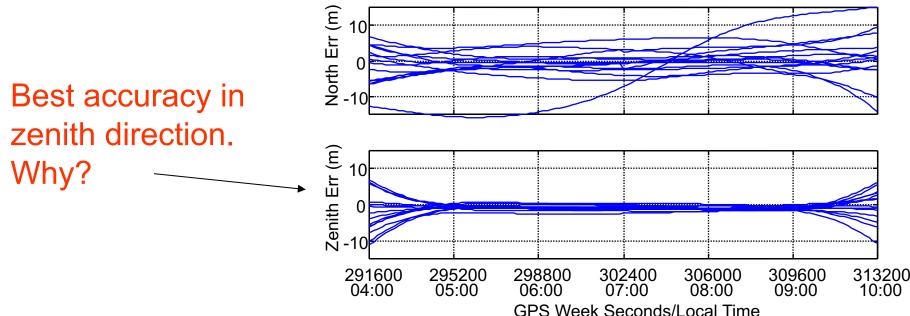
Satellite Position (Ephemeris) Error

- The broadcast ephemeris are generated real-time by the control segment using data from 5 ground GPS receivers
 - Typically has ~3 m accuracy¹
- Errors in ephemeris result in satellite position errors
 - Not truly *measurement* errors
 - Do cause errors when the measurements are used, however
 - Cause error in expected measurement value
 - In terms of error analysis, can be treated as measurement errors
- Precise orbits (~6 cm accuracy) can be obtained from National Geodetic Survey (and other organizations)
 - Calculated using days of data from hundreds of reference stations
 - Can be obtained over internet (http://www.ngs.noaa.gov/GPS/GPS.html)
 - Serves as useful truth reference for broadcast ephemeris errors

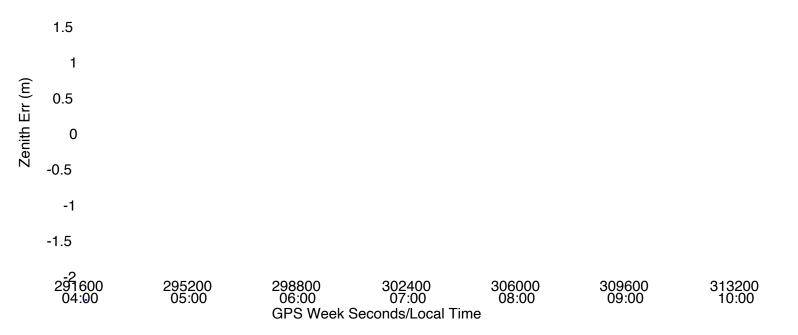

Broadcast Ephemeris Errors Over 2 Days

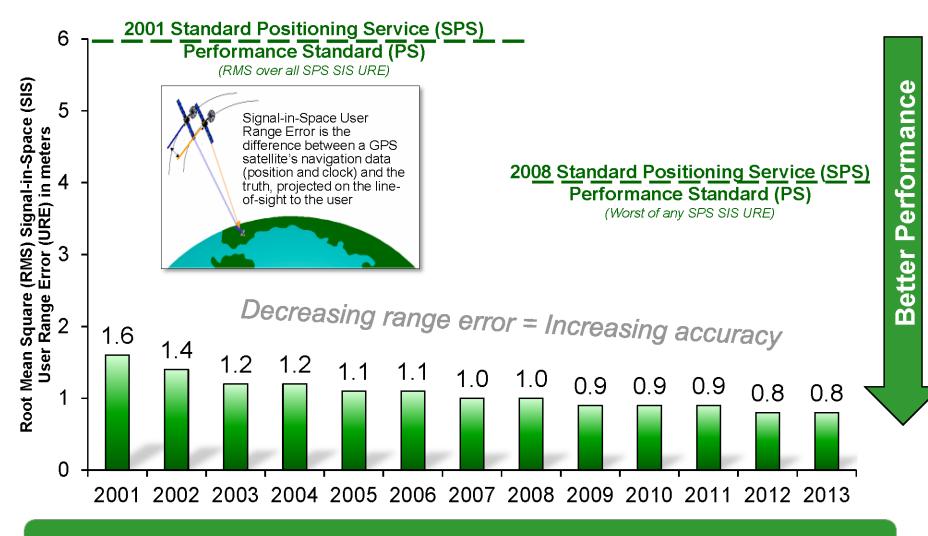
the plate


Example of Satellite Position Errors (1/3)


- Errors in broadcast ephemeris (compared to NGS precise ephemeris)
 - Traces shown for PRNs 1, 3,
 5, 8, 9, 15, 17,
 21, 23, 25, 26,
 29, 30, and 31
 - Ephemeris for all these PRNs had t_{0e} within 100 seconds of 302400 GPS week seconds (302300 < t_{0e} < 302500) (20 Jan 99)

Example of Satellite Position Errors (2/3)


- Breakdown of plot on previous page, showing +/- 3 hours from t_{0e} in each axis
 - East/West
 - North/South
 - Zenith (Vertical)


Example of Satellite Position Errors (3/3)

- Highlight of zenith difference between broadcast ephemeris position and precise orbits
 - Bias is due to 95.2 cm offset between SV center of gravity and antenna phase center
 - Broadcast ephemeris gives position of antenna phase center
 - Precise orbits give position of SV center of gravity

Signal in Space User Range Error

source: www.gps.gov

System accuracy better than published standard

4-135

1

Observed GPS Positioning Errors with Typical SPS and PPS Receivers

4-136

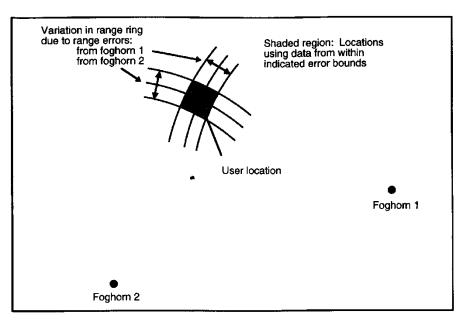
	Typical Range Error Magnitude		
Error Source	(meters, 1σ)		
	SPS	SPS	PPS
	(w/ SA)	(w/o SA)	FF3
Selective Availability	24.0	0.0	0.0
lonosphere ^a	7.0	7.0	0.01
Troposphere ^b	0.7	0.7	0.7
SV Clock & Ephemeris	3.6	3.6	3.6
Receiver Noise	1.5	1.5	0.6
Multipath ^c	1.2	1.2	1.8
Total User Equivalent Range Error (UERE)	25.3	8.1	4.1

^aFor SPS: 7.0 is typical value of ionosphere after applying ionospheric model. Actual values can range between approximately 1-30 m.

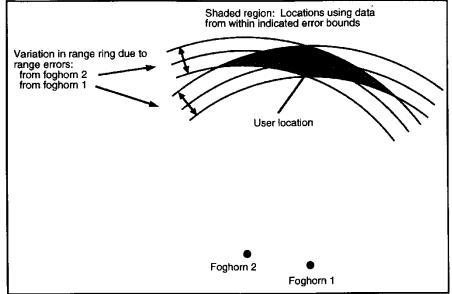
^bResidual error after using tropospheric model

^cFor PPS: includes increase in multipath that results from using L1 and L2 code measurements to remove ionospheric

error.


Measurement Domain vs. Position Domain

- Pseudorange errors are errors in "measurement domain"
 - Errors in the measurements themselves
 - UERE is one example
- Ultimately, we'd like to know errors in "position domain"
 - The position errors that result when using the measurements
 - Errors in position domain are different than measurement errors!
 - Can be larger
 - Can be smaller
 - Dependent on measurement geometry
- Mathematical representation
 - We have covariance matrix of measurements (C_{ρ}).
 - We want covariance matrix of calculated position and clock error (C_x)
- In GPS applications, this problem is approached using concept called Dilution of Precision (DOP)


Effect of Geometry on Positioning Accuracy (Foghorn Example)

Consider the foghorn example, except allow for a measurement error

Good Geometry Example

Poor Geometry Example Shaded region: Locations using data from within indicated error bounds

Obtaining C_x from Least-Squares Analysis (1/2)

Г

• Definition of C_x

$$\boldsymbol{C}_{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{\sigma}_{x_u}^2 & \boldsymbol{\sigma}_{x_u y_u} & \boldsymbol{\sigma}_{x_u z_u} & \boldsymbol{\sigma}_{x_u \delta t_u} \\ \boldsymbol{\sigma}_{x_u y_u} & \boldsymbol{\sigma}_{y_u}^2 & \boldsymbol{\sigma}_{y_u z_u} & \boldsymbol{\sigma}_{y_u \delta t_u} \\ \boldsymbol{\sigma}_{x_u z_u} & \boldsymbol{\sigma}_{y_u z_u} & \boldsymbol{\sigma}_{z_u}^2 & \boldsymbol{\sigma}_{z_u \delta t_u} \\ \boldsymbol{\sigma}_{x_u \delta t_u} & \boldsymbol{\sigma}_{y_u \delta t_u} & \boldsymbol{\sigma}_{z_u \delta t_u} & \boldsymbol{\sigma}_{\delta t_u}^2 \end{bmatrix}$$

 $\sigma_{\rho_1\rho_n}$ $\sigma_{\rho_2\rho_n}$ $\sigma_{\rho_3\rho_n}$

 $\sigma^2_{\rho_n}$

where, for example,

$$\sigma_{x_{u}}^{2} = E\left[\left(x_{u} - E[x_{u}]\right)^{2}\right]$$

$$= \text{variance of } x_{u}$$

$$\sigma_{x_{u}y_{u}} = E\left[\left(x_{u} - E[x_{u}]\right)\left(y_{u} - E[y_{u}]\right)\right]$$

$$= \text{covariance of } x_{u} \text{ and } y_{u}$$

$$Definition \text{ of } \mathbf{C}_{\rho} = \begin{bmatrix}\sigma_{\rho_{1}}^{2} & \sigma_{\rho_{1}\rho_{2}} & \cdots & \sigma_{\rho_{1}\rho_{n}}\\\sigma_{\rho_{1}\rho_{2}} & \sigma_{\rho_{2}}^{2} & \cdots & \sigma_{\rho_{2}\rho_{n}}\\\vdots & \vdots & \ddots & \sigma_{\rho_{3}\rho_{n}} \end{bmatrix}$$

J. Raquet

۲

Obtaining C_x from Least-Squares Analysis (2/2)

According to least-squares theory:

$$\mathbf{C}_{\mathbf{x}} = \left(\mathbf{H}^{T}\mathbf{C}_{\boldsymbol{\rho}}^{-1}\mathbf{H}\right)^{-1}$$

- Basic assumptions
 - Measurement errors are zero-mean
 - Measurement errors have a Gaussian distribution
- Recall that the least-squares solution with measurement weighting was $\Delta \mathbf{x} = \left(\mathbf{H}^T \mathbf{C}_o^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{C}_o^{-1} \Delta \rho$

$$= \mathbf{C}_{\mathbf{x}} \mathbf{H}^T \mathbf{C}_{\boldsymbol{\rho}}^{-1} \Delta \boldsymbol{\rho}$$

- Consider case where the nominal position and clock error (used to calculate $\Delta \rho$) are actually the true position and clock error
 - The $\Delta \rho$ represents the measurement *errors*
 - The $\Delta \mathbf{x}$ represents the position and clock *errors*
 - The C_x matrix is a multiplier for the measurement errors ($\Delta \rho$)
 - "Large" C_x values \rightarrow large position errors
 - "Small" C_x values \rightarrow small position errors

Dilution of Precision (DOP)

- In GPS, the concept of Dilution of Precision (DOP) is used
 - Based upon covariance matrix of position and clock errors (C_x)
 - Additional assumptions
 - All measurements have the same variance

$$\sigma_{\rho_1}^2 = \sigma_{\rho_2}^2 = \dots = \sigma_{\rho_n}^2 = \sigma_{\rho_n}^2$$

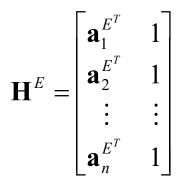
• Measurement errors are uncorrelated (i.e., covariance values are zero)

$$\sigma_{\rho_j\rho_k}=0, \quad j\neq k$$

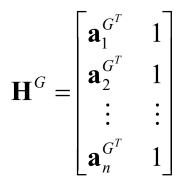
- Using these assumptions

$$\mathbf{C}_{\rho} = \mathbf{I} \boldsymbol{\sigma}_{\rho}^2$$

and


$$\mathbf{C}_{\mathbf{x}} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \sigma_{\rho}^2$$

- The matrix $(\mathbf{H}^T \mathbf{H})^{-1}$ is called the DOP matrix


Directly relates measurement errors to position errors

Use of Local-Level Coordinate Frame (1/2)

- Normally, DOPs describe errors in geodetic (local-level) coordinate frame (east, north, up), rather than the ECEF frame.
 - Need to modify the H matrix so that the errors refer to the local-level frame
 - Original H matrix (used to calculate position)

- "a" vectors are unit line-of-sight vectors between user and SV in ECEF frame
- This will give the C_x matrix described previously
- New H matrix for DOP calculations

4-143

Use of Local-Level Coordinate Frame (2/2)

 Local-level "a" vectors can be calculated using direction cosine matrix (DCM)

$$\mathbf{a}^G = \mathbf{C}_E^G \mathbf{a}^E$$

 $\mathbf{C}_{E}^{G} = \mathsf{DCM}$ that rotates from ECEF to

geodetic (E,N,U) frame

$$\mathbf{C}_{E}^{G} = \left(\mathbf{C}_{G}^{E}\right)^{-1} = \left(\mathbf{C}_{G}^{E}\right)^{T}$$

• When \mathbf{H}^{G} is used to calculate the covariance $\mathbf{C}_{\mathbf{x}} = \left(\mathbf{H}^{G^{T}}\mathbf{H}^{G}\right)^{-1}\sigma_{\rho}^{2}$, then $\mathbf{C}_{\mathbf{x}}$ is defined as

$$C_{\mathbf{x}} = \begin{bmatrix} \sigma_{e}^{2} & \sigma_{en} & \sigma_{eu} & \sigma_{e\delta t_{u}} \\ \sigma_{en} & \sigma_{n}^{2} & \sigma_{nu} & \sigma_{n\delta t_{u}} \\ \sigma_{eu} & \sigma_{nu} & \sigma_{u}^{2} & \sigma_{u\delta t_{u}} \\ \sigma_{e\delta t_{u}} & \sigma_{n\delta t_{u}} & \sigma_{u\delta t_{u}} & \sigma_{\delta t_{u}}^{2} \end{bmatrix}$$

- This is what we desire to describe using DOPs

DOP Values

- Desirable to characterize the C_x matrix using a single number
 - For DOPs
 - Cross-correlation terms ignored
 - Root-Sum-Square (RSS) value of variables of interest, normalized by σ_{UERE}
 - Example:

$$GDOP = \frac{\sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2 + \sigma_{\delta t_u}^2}}{\sigma_{UERE}}$$

• GDOP can be calculated directly from DOP matrix

$$\left(\mathbf{H}^{G^{T}}\mathbf{H}^{G}\right)^{-1} = \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ D_{21} & D_{22} & D_{23} & D_{24} \\ D_{31} & D_{32} & D_{33} & D_{34} \\ D_{41} & D_{42} & D_{43} & D_{44} \end{bmatrix} \qquad GDOP = \sqrt{D_{11} + D_{22} + D_{33} + D_{44}}$$

• Note that GDOP relates UERE with RSS of errors

$$\sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2 + \sigma_{\delta t_u}^2} = GDOP \times \sigma_{UERE}$$

J. Raquet

Key relationship!

Types of DOPs

- The "Big Three"
 - GDOP (Geometric DOP)

$$GDOP = \sqrt{D_{11} + D_{22} + D_{33} + D_{44}}$$

$$\sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2 + \sigma_{\delta t_u}^2} = GDOP \times \sigma_{UERE}$$

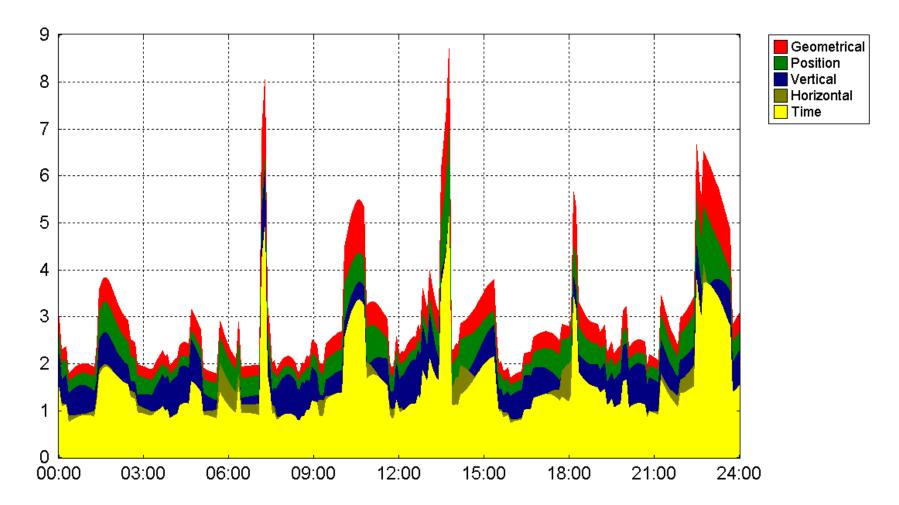
- PDOP (Position DOP)

$$PDOP = \sqrt{D_{11} + D_{22} + D_{33}}$$
$$\sqrt{\sigma_e^2 + \sigma_n^2 + \sigma_u^2} = PDOP \times \sigma_{UERE}$$

- HDOP (Horizontal DOP) $HDOP = \sqrt{D_{11} + D_{22}}$ $\sqrt{z^2 + z^2} = HDOP \times z$
 - $\sqrt{\sigma_e^2 + \sigma_n^2} = HDOP \times \sigma_{UERE}$

- Less common (for navigators, at least!)
 - VDOP (Vertical DOP)

 $VDOP = \sqrt{D_{33}}$ $\sqrt{\sigma_u^2} = VDOP \times \sigma_{UERE}$


- TDOP (Time DOP) $TDOP = \sqrt{D_{44}}$

$$\sqrt{\sigma_{\delta t_u}^2} = TDOP \times \sigma_{UERE}$$

• Note: time is in units of meters

Typical DOP Plot

Dayton Ohio – 24 Apr 2003 – All Visible SVs (above 10° elevation)

Questions?