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Magnetic Equator

* Magnetic (dip) equator is defined as the locus of zero dip along the surface of the
earth (Cohen, 1967)

* Its latitude varies along the geographical longitudes
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Magnetic Equator

* |n the neighbourhood of magnetic equator, there is an unusual
orientation of the magnetic field with relation to the Earth

* Charged particles move more readily along magnetic field lines

* Migration of charged particles along geomagnetic field lines is
associated with a two-humped latitudinal distribution of electron
density, W|th minimum at the magnetlc equator
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African Capacity Africa has the broadest mIand range of magnetic equator over it -|
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Equatorial Ionosphere 1

* The ionosphere over the equatorial region/low latitudes possesses features that
are distinct from those of other latitudes, because of:

* the low inclination geomagnetic field lines and

* the relatively larger fraction of the incident solar ionizing radiation that
characterize this region

* characterized with the highest values of the peak-electron density with the most
pronounced amplitude and phase scintillation effects

* At low latitudes where the magnetic field lines are quasi horizontal, the vertical
transport of plasma is governed by zonal electric fields generated by ionospheric
dynamo or by penetrating electric field originating from magnetospheric dynamo
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Equatorial lonosphere 2 — :
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* The zonal component of the electric field PLASMA BUBBLES

produces vertical E X B p|a5ma drift | Fig.1 Aschematic showing the central role of the electric field in
shaping the major low latitude ionospheric phenomena represented

Whose We”-knOWH manifeStatiOn S the by red colored boxes. The ‘guiet time” electric fields are generated by

ed uatorial p|as ma fountain that P roduces | £ and Flayer dynamos operated by the winds and waves from lower
atmosphere, in their upward propagation, interacting with the mag-

the eq UatOria' lonization anomaly (ElA) netized conducting ionosphere of the dynama region. Perturbation

electric field due to magnetospheric disturbance (biue box) is shown
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Equatorial Ionosphere 3

* The combined effect of the high radiation level from the sun, & the electric and
the magnetic fields of the earth results in the electrons rising and moving along
the horizontal lines of the magnetic field, forces ionization up into the F layer,
concentrating at £ 20 ® from the magnetic equator this phenomenon is called

the fountain effect (Abdu, 2076)

* The electrons move as far as the geomagnetic latitudes of 10 to 20° causing the
high concentration of electrons there which are often termed equatorial
anomalies (Komjathy, 1997).
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- Equatorial Ionospheric Phenomena

* E layer — Equatorial electrojet

- Counter Electrojet

* F layer — Equatorial lonospheric anomaly,
- Spread F

- Plasma Bubbles
- ionospheric Irregularities

- ionospheric scintillations




* The F2 layer in the vicinity of the magnetic dip
equator is characterized by a depression in the
jonization density or “trough” at the equator
and two humps, one on each side of the
equator (at about =7/ - 20° magnetic latitude)
during the day that lasts for several hours after
sunset.

* This interesting phenomenon is called the
“equatorial anomaly” or “Appleton anomaly”
(Appleton, 1946). The cause of the anomaly is
often attributed to the so-called "fountain
effect”

African Capacity Building Workshop on Space Weather Effects on GNSS , IC HAEPSIECACREOMMVIEWACUNEAINSSISAO2SOUIEE 1o



ExB

* the eastward electric field at the equator that gives rise
to an upward EXB drift during the daytime

 After the plasma is lifted to greater
heights it is able to diffuse downward
along magnetic field lines under the
influence of gravity and pressure
gradient forces.

Magneﬁc Equafor

 The net result is the formation of a
plasma “fountain” which produces an
enhanced plasma concentration
(crest) at higher latitudes and a
reduced plasma concentration
(trough) at the equator

African Capacity Building Workshop on Space VWeather Effects o 1



ExB

* [he daytime dynamo generated
eastward electric field combined #2
with the northward geomagnetic
field  lits  the  equatorial
ionosphere to /00 km to over
one thousand kilometers.

Magmetic Equator

* After losing momentum, the
electrons diffuse along the field
ines to either side of the
eqguator to form two crests

[Yeh et al 2001]
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©, Equatorial Anomaly Crest

* In response to the diurnal variations of the
dynamo electric field [Fejer, 1981], the
anomaly crest begins to form around 09:00
LT on a normal day

* As time progresses, the anomaly crest
intensifies and moves with a speed of about
1° per hour to a higher latitude

[Yeh et al 2001]

1P

ExB

Magnetic Equafor

1P
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@ Equatorial Anomaly Crest

* This speed is maintained till shortly before noon

when the poleward motion is slowed and reversed
at around 14:00 LT

* During this time, the anomaly crest is most intense,
showing the characteristic tilt, an approximate
alignment of its core along the geomagnetic field
lines and the asymmetric behavior

ExB

Magnetic Equator
* Thereafter, the crest weakens and recedes slowly
equatorward.

* On many days the crest is observed to linger into

the night with a smaller spread in latitude
5 P "eh et al 2001]
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TEC Hole

Courtesy: Endawoke Yizengaw , 2011.



EIA

TIMED/GUYI Ol 135.6-nm disk scan DOY 081-082, 2002

UT 11:15 08:36 08:00 06:23 04:46 03:09 01:31 2354 221?2{14{1 19:02 17:25 1548 1411 12:33
40| = ~

b '
= _20]
Sy T I w /55
180 240 300 0 60 120 180
G. Longitude (°)

TIMED/GUVI 135.6 nm images extending in the entire longitude span
showing the global distribution of the EIA brightness & the patches of

ric] colations indicating ol v b . hor

side of-the dip ‘equator (Kiletal.-2006) 1



ROCSAT-1 Kp<3 Sa =150
NOV-FEB

EIA

* The large plasma density of the EIA
crests causes increased group delay of
the GNSS signals leading to errors in
positioning and navigation applications.
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* The daytime upward plasma drift due
to the E layer dynamo is responsible
for the development of the EIA that
attains  maximum intensity in  the R
afternoon hours
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ROCSAT-1 Kp<3 Sa=150
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EIA

* An evening enhancement in the vertical drift
(before its reversal to downward), known as
the pre-reversal enhancement in the vertical
drift (PRE), clearly observable around 1819 EGHH (mis)
LT during equinox and summer solstice at e
many longitudes
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* The PRE vertical drift is responsible also for
the structuring of the night-time ionosphere
into plasma irregularities in wide spectrum
of scale sizes that can cause severe
scintillation (and loss of lock) of satellite
signals

MAY-AUG

LOCAL TIME
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Scintillations in Equatorial Region

v'lonospheric scintillations are rapid and temporal fluctuations in the
amplitude and phase of transionospheric radio signals resulting from
electron density irregularities in the ionosphere

v'EIA -responsible for the formation of the plasma density
irregularities that give rise to scintillations.
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: Equatorial Spread F ESF

v'Irregularities in the equatorial F-region have been studied for decades
v’ Abundant ionospheric density irregularities in equatorial ionosphere

v’ These ionospheric irregularities are well known as equatorial spread-F (ESF)
according to a nomenclature introduced after the appearance of spread
echoes on ionograms.

v'The term ‘spread-F irregularities’ is synonymous with electron density
fluctuations or structures on scales ranging from a few tens of centimeters to
several hundred kilometers.

20
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MAGNETIC STORM of St PATRICK's DAY :

MAPS of VTEC

Variations near the magnetic Equator due to a CME (~200 GPS stations)

Impact of a CME (solar event, on March 15 ~ 04.45 - 02.00UT)
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Equatorial lonospheric Phenomena

Same effect, different
Nomenclature

* Spread F - lonosonde

* Plasma Bubbles - Optical Observation

* E layer — Equatorial electrojet
- Counter Electrojet

* lonospheric irregularities - GNSS

* F layer — Equatorial lonospheric anomaly,
- Spread F

- Plasma Bubbles
- ionospheric Irregularities

ATTCamTCapacity Buitding - VVoTrRsTop
on Space Weather Effects on GNSS 22
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ZPhenomena with similar drivers

EQUATORIAL
PLASMA FOUNTAIN
EQUATORIAL
IONOSPHERIC
ANOMALY EQUATORIAL
PLASMA
IRREGULARITIES

IONOSPHERIC
PLASMA BUBBLES SCINTILLATIONS



Sq & Equatorial Electrojet

* The E (dynamo) region of the equatorial ionosphere consists of 2 layers of

currents responsible for the quiet solar daily variations in Earth’s magnetic
field:

* Worldwide solar quiet daily variation, W3q (altitude 118 £ 7 km), responsible
for the global quiet daily variation observed in the earth’s magnetic field.

* Equatorial electrojet, EE|] - an intense current flowing eastward in the low
latitude ionosphere within the narrow region flanking the dip equator (altitude

106 £ 2 km) (Chapman, 1951, Onwumechili, 1992)

* Enhanced (Cowling) conductivity associated with the special equatorial
magnetic field configuration results in the strong daytime EE| currents

(Onwumechili, 1992a, 1992b, 1997; & Rabiu et al, 2013) 24
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S & EEJ

* At the magnetic dip equator, where the
geomagnetic field is horizontal, this electric

field results in an enhanced eastward current

flow within + 3° of the magnetic equator,

known

e This sudden enhancement, first observed at

as the equatorial electrojet

Huancayo in 1922, has been attributed to a
narrow intense ionospheric current which
flow eastwards within the narrow strip
flanking the dip equator (Egedal, 194/, and

others)

(Onwumechili, 1992a, 1992b, 1997; & Rabiu et al, 2013)

110

90 -

70 7

50 1

Sq H(nT)

30 1

10 -

—+— MLT
—a=YAP
—a— DAY

Lk

EEJ effect

-10-9 4 7 10 13 16 19 22

Local Time Hrs

The enhancement of Sg at YAP, DAV and
LAW on 8™ April 2008 due to electrojet

effect (After Rabiu et al, 2009a)
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Sq cEEJ 110 7 AP

- —a— DAY
LKA

This unique equatorial ionospheric 90 -

current was later, in May 1951, named

_T70-

by Sydney Chapman ‘the Equatorial = EEJ effect
electrojet’ in his presidential address to T 50 -
the Physical Society of London. ? a0
10 1

S el s —
B Frrrrrrrrnd T

10°1 4 7 10 13 16 19 22
Local Time Hrs

! The enhancement of Sq at YAP, DAV and

LKWV on 8™ April 2008 due to electrojet —
African Capacity Building VWorkshop on Space Weather Effects on GNSS , ICTP, 3-1 effect (After Rabiu et al, 2009a)




Counter electrojet CEJ

* On occasion, at quiet periods during certain
hours of the day, particularly in the morning and
evening hours,

* the EEJ reverses direction and flows westwards
giving rise to the so-called ‘counter electrojet
(CEJ)" phenomenon

EEJ fnTS

2 13 i 16 !

Liocal fme
(Gouin, 1962; Gouin & Mayaud, 1967). &

A typical diurnal variation of the equatorial
electrojet (EEJ) on 2 March 2009 at Addis
Ababa showing CEJ — morning and afternoon

Rabiu, et al,, 201/ _
African Capacity Building Workshop on Space Weather Effects on GNSS | ICTP, 3-14 October 2022 27




The field of
the EEJ from
CHAMP data
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@ Manifestations of EEJ

* Spatial structures of its intense current density

current system . AGOD ONWUMICHILI

THE
EQUATORIAL
ELECTROJET

* configurations & regular temporal variations of its

* magnetic fields of its current system

* the ionospheric plasma density irregularities generated
by the turbulent flow of the EE| current

* the electric fields and ionospheric plasma drifts in the
dip equatorial zone S
=SS
* the quiet counter equatorial electrojet CE]
SR SIS S IS

* temporal variabilities of the above phenomenon.

29



o e BAST-WEST ASymmetry in the

—— =

C = a’““ - African Equatorial lonosphere
S L e Rabiu et al, (2011) for the first time

il clearly revealed that the western African

EE| appears weaker than eastern EE

e * This discrepancy suggests that there is a
' process of re- injection of energy in the
jet as it flows eastward

EEJ dH(nT)

* This VWest-East Asymmetrical behavior
in the EEJ strength in the African sector
is further confirmed by Rabiu et al
(2015) and Yizengaw et al,, (2014) using
data set from another set of array of
magnetometers (AMBER).

African Capacity BU||d’ﬁgW&Fﬁﬁﬁbﬁ%mggﬁté“\?\féﬁtﬁ%WEf@i‘ts on GNSS ICTP, 3-14 October 2022 30



M.ongitudinal variation of EEJ

on . ao0 Lo o e v’ the African stations registered the greatest % of
S ——— o e e i occurrence of the CEJ than elsewhere
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v~ The greatest % occurrence of MCE| was found

i o .
| " at Addis Ababa (eastern Africa)

LI

Days of EEJ

v’ the greatest % occurrence of afternoon CE| was
found at llorin (western Africa).
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LONGITUDINAL VARIABILITY OF EE]
Comparison of EE| at 210 MM with Indian & Brazil sectors

Dip
latitude of
EEJ
Jm/Jo Ifwd center

African Capacity Buildin SNMORESROR ISHN HESIEE (VSAnHEENET i« CERORREIRISSE Nz 1o T B ANOISIODERE ) ) 32



£
Seasonal variation of Sq(H) along the African low
latitudes
* 5qg (H) is greater in all seasons in the neighbourhood of dip equator
* Obviously due to EE| effect

* Max effect at Autumn SeL:)t) Equinox 96°MM Chain
D-SEASON MARCH EQUINO J-SEASON SEPTEMBER EQUINOX ' 7z T
FYM (15.20) ‘r i

ASW (15.20)

KRT (5.69)
ABB (0.19)
NAB (-10.65)

DES (-16.26)

LSK (-26.06)

MPT (-35.98)

GM LAT (DEGREES) & STATIONS

DRB (-39.21)

HER (-42.29) | '

20

U 0 |V 1o U 0 1z 1o U jv4 1o U 0 1 1o L)

African Capacity Building Workshop on Space WM& ¥ffects on GNSS | ICTP, 3-14 October 2022 b 33
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Nighttime plasma drift over Ouagadougou using ionosonde data

v~ A remarkable feature is the consistent local
presunrise drift enhancement for two SCs 20
and 21, which is not a regular feature of the
equatorial ionosphere

v~ The rate of inhibition of scintillation effect
increases with decreasing phase of sunspot
activity and maximizes during the solstices.

v~ Both the PRE and minimum reversal peak
magnitudes are influenced by the phase of

sunspot cycle

African Capacity Building Workshop on Space Weather Effects on GNSS | ICTP, 3-14 October 2022

34



@
Plasma bubbles over Nigeria using Optical imager

Percentage 5y <l
Occurrence of - e
Plasma Bubbles 2 & |
as observed on |

the Airglow

and GNSS data o
for the period h
from June 2015 o

15 20 3 2 2 0 1 2 31 4 5§ i

to Jan uary Local Time (Hours)
201 7. Figure B, Pementage ooturrende of pliima bublbls on the singhow imagel & & function of lecal fime

Okoh et al, 2017 I s ~E

Institute feor
Space-Earth Environmen tal Researc h
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These longitudinal
variations in EIA
may be due to
differences in:

dmagnetic declination

JE x B drift, and

(a)
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o e
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dneutral winds in
different longitudes.
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Lin et al., 200/

(N,) epnige Judeifoss

Gecqraphic Longitude (“E)

lonospheric maps in (a) peak altitude (hmF2), (b) peak density (NmF2), and (c)
total electron content (TEC) integrated between 100-500 km altitude range at
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~ 1 o
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African Capacity Building VWorkshop on Space Weather Effects on GNSS , ICTP, 3-14 October 2022
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Hourly variation in GPS TEC

across Nigerian longitudes

Eyelade et al., (2017)
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Comparison of the Thermospheric

With Those of Other Regions From Exi

o Changes in these thermospheric Naielg
neutral winds are the reason for
the longitudinal differences that

Max zonal
wind ms™’

Max
meridional

wind mg™1
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Some facts

* The width of the EIA (northern crest to southern crest distance) is smaller in the
American than in the Asian zone (Narasinga Rao, 1963) (longitudinal variability)

* The geometry of EIA (landmark properties) vary with local time, season, and solar
cycle

* |t has been shown that the EE| controls the altitude of lifted plasma and the location
of the crests of the equatorial ionization anomaly (Rama Rao et al,, 2006a)

* Some literatures have also shown that the trough does not necessarily coincides with
dip equator

African Capacity Building Workshop on Space Weather Effects on GNSS , ICTP, 3-14 October 2022
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summary

* Equatorial ionosphere has dynamic longitudinal and transient variabilities
 New observational facilities have enabled new scientific results

* There is a great need for densification of ground observational facilities
within the equatorial region to facilitate effective monitoring and modelling

* New approach and investigative tools are required in understanding the
equatorial ionosphere

* New scientific results will surely improve our understanding of the region
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