Ionospheric Irregularities and their Impacts on GNSS Systems

Dr. Keith Groves

Institute for Scientific Research, Boston College

Keith.Groves@bc.edu

ICTP, Trieste, Italy

03 – 14 October 2022

The Scintillation Environment & Impacts on GNSS

- Overview of Environment
- Scintillation Basics
- "Quiet Time" Space Weather: Equatorial irregularities
- Position, Navigation & Timing Impacts
- Summary

The Miracle of GNSS

- Inexpensive positioning knowledge anywhere, anytime
- The principles of GNSS navigation: time and distance

Space Weather Effects on GNSS Systems

Direct Solar Processes

- Radio, optical, x-ray interferenceSolar energetic particle
- degradation and clutter

GNSS satellites must be "hardened" to protect them from radiation effects: *Cost Impact*

GNSS Orbits

Space Particle Hazards

- Radiation degradation & electronics upsets
- Surface and internal charging / discharging
- Increased hazard for humans at high altitudes

Ionosphere/Neutral Effects

- Comm/Nav link degradation/outage
- Satellite Drag
- Variations in HF communications (black-outs and modified channels)

Ionospheric Irregularities & Scintillation Physics

Time Delay:

$$\tau_d = R / c + \frac{r_e c}{2\pi} \frac{N_{tot}}{f^2}$$

Phase Perturbation:

$$\delta \varphi = 2\pi f R / c - r_e c \frac{N_{tot}}{f}$$

λT

Depends on TEC:

$$N_{tot} = \int N_e(z) dz$$

- A uniform ionosphere slows transiting radio waves but does not distort amplitude and phase.
- Electron density irregularities introduce phase variations on the wavefront from the satellite causing a diffraction pattern on ground.
- Interference pattern changes in time and space, such that a user observes rapid fluctuations of signal amplitude and phase that degrade system performance.
- For diffraction to occur, the phase changes must occur over a relatively short distance known as the Fresnel scale, $F_r = 2x = \sqrt{2\lambda z}$.

The Ionosphere is a <u>Small</u> Perturbation for GNSS

$$v_{\varphi} = \frac{\omega}{k} = \frac{c}{n} \qquad f_p \sim 10 \quad MHz$$

$$n = \sqrt{1 - \frac{f_p^2}{f^2}} \qquad f = 1575MHz$$

$$f_p^2 / f^2 \approx 4 \times 10^{-5} !!$$

Snell's Law:

$$n_1\sin(\theta_1) = n_2\sin(\theta_2)$$

For the parameters shown at right, the change in angle is 0.001° (20 µrad)! Can you see it?

Perturbation to index of refraction is very small, yet it is enough to cause serious propagation effects!

Physical Picture of the Fresnel Scale

- The distance over which scattering contributions contribute "in phase" at the receiver ۲
- For GPS L1 frequency, Fr is typically 400-500 meters; density fluctuations larger than ۲ this scale size will not cause GPS amplitude scintillations.

GPS Signal Fluctuations Caused by Ionospheric Scintillation

A Familiar Example

One can see clearly in a calm swimming pool

But surface waves cause self-interference of the light reaching the bottom (refraction & diffraction)

More Physically Representative Example

- A laser shining through "clear" water encounters turbulence due to convection in the water due to an imposed temperature difference of (b) 10° C & (c) 20° C
- The authors used phase screen theory (neutral gas) to estimate turbulence parameters
- Relatively simple experiment and analysis—published in 2016!
- The main difference in the ionosphere is that the turbulence is organized along the magnetic field and the index of refraction perturbations are much smaller

V. A. Kulikov; *Journal of Applied Physics* **119**, 123103 (2016)

(b)

(c)

Effect of Electron Density on S4

Scintillation requires two ingredients:

- 1. Electron density
- 2. Irregularities
- Significant relative density fluctuations will not cause scintillation if the background electron density is too low
- Must exceed ~1e5/cc for VHF, ~1e6 for GPS (~50 TEC units)

Weak Scatter Approximation

Solar flux determines electron density which determines S4

Solar Flux & Positioning Errors

Monthly Average F10.7 Solar Flux

Solar flux controls S4 which controls impact on GNSS performance

Disturbed lonospheric Regions and Systems Affected by Scintillation

Low Latitude Quiet Time Dynamics Formation of Anomaly Region

- Presence of anomaly crests strengthens off-equator scintillations
- State of anomaly formation is indicative of equatorial dynamics

Why Do Disturbances Form? Unique Equatorial Magnetic Field Geometry

Equatorial scintillation occurs because plasma disturbances readily form with horizontal magnetic field

- Plasma moves easily along field lines, which act as conductors
- Horizontal field lines support plasma against gravity– unstable configuration
- E-region "shorts out" electrodynamic instability during the day

What Is Instability Process?

Gravitational plasma instability with horizontal B field

View along bottomside of ionosphere (E-W section, looking N from equator)

Plasma supported by horizontal field lines against gravity is unstable

- (a) Bottomside unstable to perturbations (density gradient against gravity)
- (b) Analogy with fluid Rayleigh-Taylor instability
- Perturbations start at large scales (100s km)
- Cascade to smaller scales (200 km to 30 cm)

10:00 UT to 10:08 UT

10:20 UT to 10:28 UT

10:45 UT to 10:53 UT

11:05 UT to 11:13 UT

11:25 UT to 11:33 UT

11:45 UT to 11:53 UT

Off-Perp Incoherent and Perp-B Coherent Scatter Scans

The Anomaly & Depletions in GOLD UV Imagery, days 53-61 2022

Anomaly structure in GOLD imagery and bubbles mapped from COSMIC-2 radio occultation data

TGRS Bubble Map

2022 Day 053, 23:45 UT Occultations: 12, GEOs: 60 Occultations: 9, GEOs: 94 2022 Day 054, 22:45 UT Ingest period: 2022 Day 053, 22:45 - 2022 Day 053, 23:45 UT, Valid time: 2022 Day 053, 23:45 UT

Occultations: 18, GEOs: 164 : 2022 Day 055, 23:00 UT

Occultations: 23, GEOs: 225 2022 Day 056, 23:00 UT

Occultations: 22, GEOs: 179 2022 Day 057, 23:00 UT

57

54

Occultations: 11, GEOs: 75 d time: 2022 Day 058, 23:30 UT

58

- There is a tremendous amount of variability in the anomaly from day to day; for the first time with GOLD we can routinely image the anomaly as well as the post-sunset depletions (bubbles) associated with equatorial spread F
- These studies are just getting underway; ۲ the data is available on-line at: https://gold.cs.ucf.edu/data/gold-datausage/

Occultations: 9, GEOs: 123 ne: 2022 Day 059, 23:15 UT

Occultations: 12, GEOs: 10 id time: 2022 Day 060, 23:30 UT

Occultations: 4, GEOs: 55 e: 2022 Day 061, 23:00 UT

25

Scintillation Occurrence & Longitudinal Variability

250 MHz scintillation observations from five sites in 2011

Frequent activity with a strong seasonal dependence that does not depend on magnetic activity

GPS Positioning Errors from Space Weather Dual Frequency GPS Positioning Errors

GPS Positioning Errors from Solar Cycle 24 Magnetic Latitude Dependence

28

Position Errors at Ascension Island A Solar Cycle Perspective

- Equinox 2012 (SSN ~ 64) errors increased significantly during nighttime periods
- Equinox 2002 (SSN ~ 96) illustrates results from last solar maximum

Where is the "GNSS"?

- Results presented here were all GPS, but in principle similar propagation effects will impact all L-band GNSS systems
 - CDMA L-band systems include GLONASS, Galileo and Beidou
 - NAVIC uses S-band and L-band—potentially less vulnerable to impact
- Two different GPS receivers will experience different performance impacts in detail, so feel confident that the different GNSS systems will respond differently to scintillated signals
- Research on other constellations is needed

- Scintillation impacts the performance of both single and dual-frequency GNSS receivers
- Depends on two essential ingredients: electron density and irregularities
- Prevalent in the post-sunset equatorial region and at high latitudes, but may have greatest impact at mid-latitudes during storm periods
- Fortunately, where scintillation is the most severe (low latitudes) it may also be the most predictable
- Results presented here were all GPS, but similar propagation effects will impact all L-band GNSS systems

Thank you for your attention