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The Scintillation Environment & 
Impacts on GNSS
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• Inexpensive positioning knowledge 
anywhere, anytime

• The principles of GNSS navigation: time and 
distance

The Miracle of GNSS
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Space Weather Effects on GNSS Systems

Space Particle  Hazards

• Radiation degradation & electronics upsets
• Surface and internal charging / discharging
• Increased hazard for humans at high altitudes

Ionosphere/Neutral Effects

• Comm/Nav link degradation/outage
• Satellite Drag
• Variations in HF communications 
(black-outs and modified channels)

Direct Solar Processes

• Radio, optical, x-ray interference
• Solar energetic particle 
degradation and clutter
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GNSS Orbits

GNSS satellites must be 
“hardened” to protect 
them from radiation 
effects: Cost Impact



Ionospheric Irregularities & Scintillation Physics

• A uniform ionosphere slows transiting radio waves but does not distort
amplitude and phase.

• Electron density irregularities introduce phase variations on the wavefront from
the satellite causing a diffraction pattern on ground.

• Interference pattern changes in time and space, such that a user observes rapid
fluctuations of signal amplitude and phase that degrade system performance.

• For diffraction to occur, the phase changes must occur over a relatively short
distance known as the Fresnel scale, .
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Time Delay:

Phase Perturbation:

Depends on TEC:
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The Ionosphere is a Small Perturbation for 
GNSS

Perturbation to index of refraction is very small, yet it is enough 
to cause serious propagation effects!

2

21 p

cv
k n

f
n

f

j
w

= =

= - 2 2 5

10
1575
/ 4 10 !!

p

p

f MHz
f MHz
f f -

=

» ´

!

1 1 2 2sin( ) sin( )n nq q=
2 45.001q =

Snell’s Law:

For the parameters shown at right, 
the change in angle is 0.001° (20 
μrad)! Can you see it?
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Plane Wave φk = const

Ionosphere layer
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Physical Picture of the Fresnel Scale

• The distance over which scattering contributions contribute “in phase” at the receiver
• For GPS L1 frequency,  Fr is typically 400-500 meters; density fluctuations larger than 

this scale size will not cause GPS amplitude scintillations. 7



GPS Signal Fluctuations Caused by 
Ionospheric Scintillation
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S4: Normalized
Stand. Dev. Of
Intensity

sf : Stand. Dev. 
of Phase

Intensity fluctuations 
reduce signal-to-noise 
in GNSS receiver

Phase variations stress 
GNSS signal tracking 
loops



A Familiar Example
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One can see clearly in a calm swimming 
pool

But surface waves 
cause self-interference 
of the light reaching the 
bottom (refraction & 
diffraction)



More Physically Representative Example
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• A laser shining through ”clear” 
water encounters turbulence due 
to convection in the water due to 
an imposed temperature 
difference of (b) 10° C & (c) 20° C

• The authors used phase screen 
theory (neutral gas) to estimate 
turbulence parameters 

• Relatively simple experiment and 
analysis—published in 2016!

• The main difference in the 
ionosphere is that the turbulence 
is organized along the magnetic 
field and the index of refraction 
perturbations are much smaller 

V. A. Kulikov; Journal of Applied 
Physics 119, 123103 (2016)



Effect of Electron Density on S4

• Significant relative 
density fluctuations will 
not cause scintillation if 
the background electron 
density is too low

• Must exceed ~1e5/cc for 
VHF, ~1e6 for GPS (~50 
TEC units) Weak Scatter Approximation

Scintillation requires two 
ingredients:

1. Electron density
2. Irregularities
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Solar Flux, Density & S4

Solar flux determines electron density which determines S4
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Solar Flux & Positioning Errors

Solar flux controls S4 which controls impact on GNSS performance
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Disturbed Ionospheric Regions and
Systems Affected by Scintillation

SATCOM

AURORAL IRREGULARITIES

GPS

PLASMA BUBBLES

GPS 
SATCOM

MAGNETIC
EQUATOR

DAY NIGHT

EQUATORIAL F LAYER
ANOMALIES

POLAR CAP
PATCHES
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Low Latitude Quiet Time Dynamics
Formation of Anomaly Region

Anomaly crests are areas of 
maximum F-region ionization 
density off equator

(View looking east)

• Presence of anomaly crests strengthens off-equator scintillations
• State of anomaly formation is indicative of equatorial dynamics

• Daytime eastward 
electric field (E) drives 
plasma “up” (E ´ B)

• Plasma moves toward 
crests (g|| ,Ñ||P||)



Equatorial scintillation occurs because plasma disturbances 
readily form with horizontal magnetic field

• Plasma moves easily 
along field lines, which 
act as conductors

• Horizontal field lines 
support plasma against 
gravity– unstable 
configuration

• E-region “shorts out” 
electrodynamic 
instability during the 
day

Magnetic (Dip) Equator

Magnetic
Field Lines

Unstable Plasma

Earth

E Region

Daytime
“Shorting”

F Region

Why Do Disturbances Form?
Unique Equatorial Magnetic Field Geometry



Heavy
Fluid

Light
Fluid

View along bottomside of ionosphere
(E-W section, looking N from equator)

• (a) Bottomside unstable to 
perturbations (density 
gradient against gravity)

• (b) Analogy with fluid 
Rayleigh-Taylor instability

• Perturbations start at large 
scales (100s km)

• Cascade to smaller scales 
(200 km to 30 cm)

(b)

(a)

from Kelley [1989]

What Is Instability Process?
Gravitational plasma instability with horizontal B field

Plasma supported by horizontal 
field lines against gravity is 

unstable



Incoherent Scatter Radar Observations

10:00 UT to 10:08 UT

18ALTAIR VHF/UHF Radar



Off-Perp Incoherent Scatter Scans

10:20 UT to 10:28 UT
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Off-Perp Incoherent Scatter Scans

10:45 UT to 10:53 UT
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Off-Perp Incoherent Scatter Scans

11:05 UT to 11:13 UT
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Off-Perp Incoherent Scatter Scans

11:25 UT to 11:33 UT
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Off-Perp Incoherent Scatter Scans

11:45 UT to 11:53 UT
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Off-Perp Incoherent and Perp-B Coherent 
Scatter Scans

10:45 UT to 10:53 UT
incoherent
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10:36 UT to 10:44 UT 
coherent Irregularities



Anomaly structure in 
GOLD imagery and 
bubbles mapped from 
COSMIC-2 radio 
occultation data

The Anomaly & Depletions in GOLD UV 
Imagery, days 53-61 2022

53 54 55

56 57 58

59 60 61

• There is a tremendous amount of 
variability in the anomaly from day to 
day; for the first time with GOLD we can 
routinely image the anomaly as well as 
the post-sunset depletions (bubbles) 
associated with equatorial spread F

• These studies are just getting underway; 
the data is available on-line at: 
https://gold.cs.ucf.edu/data/gold-data-
usage/
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Scintillation Occurrence & Longitudinal 
Variability
250 MHz scintillation observations from five sites in 2011
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2011 F10.7Frequent activity with a strong seasonal dependence 
that does not depend on magnetic activity

Day of Year

H
ou

rs
 p

as
t s

un
se

t



GPS Positioning Errors from Space Weather
Dual Frequency GPS Positioning Errors

Scintillation causes rapid fluctuations in GPS position fix
Typical night from solar maximum at Ascension Island

27



M
ag

ne
tic

 L
at

itu
de

VTEC

Local Time

Equatorial Anomaly Structure

GPS Positioning Errors from Solar Cycle 24
Magnetic Latitude Dependence
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• Night time positioning 
errors from 2013-2014 in 
South America (Novatel)

• Largest errors occur 15-20 
degrees from magnetic 
equator

Data Collection Period

Solar Cycle Intensity

Where are we headed 
in solar cycle 25?

Predicted

Actual



Position Errors at Ascension Island
A Solar Cycle Perspective 

• Equinox 2012 (SSN ~ 64) errors increased significantly during 
nighttime periods

• Equinox 2002 (SSN ~ 96) illustrates results from last solar 
maximum
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Where is the “GNSS”?

• Results presented here were all GPS, but in principle similar 
propagation effects will impact all L-band GNSS systems

– CDMA L-band systems include GLONASS, Galileo and Beidou

– NAVIC uses S-band and L-band—potentially less vulnerable to impact

• Two different GPS receivers will experience different performance 
impacts in detail, so feel confident that the different GNSS systems 
will respond differently to scintillated signals

• Research on other constellations is needed
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Summary
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• Scintillation impacts the performance of both single and 
dual-frequency GNSS receivers

• Depends on two essential ingredients:  electron density 
and irregularities

• Prevalent in the post-sunset equatorial region and at high 
latitudes, but may have greatest impact at mid-latitudes 
during storm periods

• Fortunately, where scintillation is the most severe (low 
latitudes) it may also be the most predictable

• Results presented here were all GPS, but similar 
propagation effects will impact all L-band GNSS systems
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Thank you for your attention


