TEC Evaluation from GNSS Measurements

Claudio Cesaroni – <u>claudio.cesaroni@ingv.it</u> Ispired by Gigi (Gg) Ciraolo

African Capacity Building Workshop on Space Weather Effects on GNSS 03 - 14 October 2022 Trieste, Italy

What did we learn about GNSS and TEC so far? A lot of cool stuff but mainly...

- There are a lot of GNSS satellites and receivers available nowadays
- GNSS transmit signals on (at least) 2 different frequencies
- We can get code and phase observables from GNSS signals
- Ionosphere impacts on the propagation of GNSS signals from the satellite to the receiver
- We can use GNSS to derive TEC

But...

- It is not straightforward to measure TEC by means of GNSS signals
- There are "biases" affecting TEC measurements from GNSS

Goals to be reached in the next hour (or less if get bored)

- Understand how to use GNSS observables to retrieve TEC
- Understand what problems we have to face to do that
- Have a rough idea on how the problems can be solved (one of the possible solutions)
- Have the possibility to run a software capable of estimating TEC from GNSS measurements

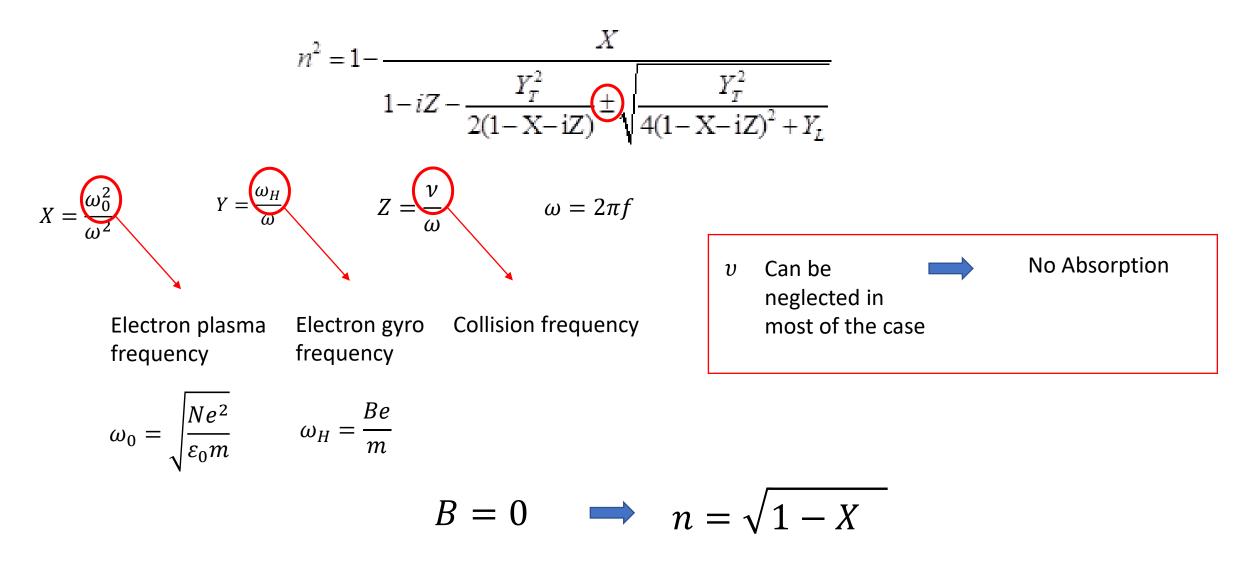
Outline

Ionosphere refractive index

Total Electron Content

Geometry-free linear combination of GNSS observables

TEC calibration and mapping


Ciraolo (Gigi) calibration technique

Gigi's software

Live session (if we are on time)

The Appleton equation

To describe the refractive index of the ionosphere, *n*, we can refer to the Appleton equation:

The Appleton equation (GNSS frequencies)

The frequency of signals used for positioning has to be selected in order to make the refractive index as close as possible to unity (compatibly with international rules and status of art of technology). Consider $N = 10^{12} e/m^3$ (a rather strong value) and f = 1.5 GHz (representative of GNSS frequencies)

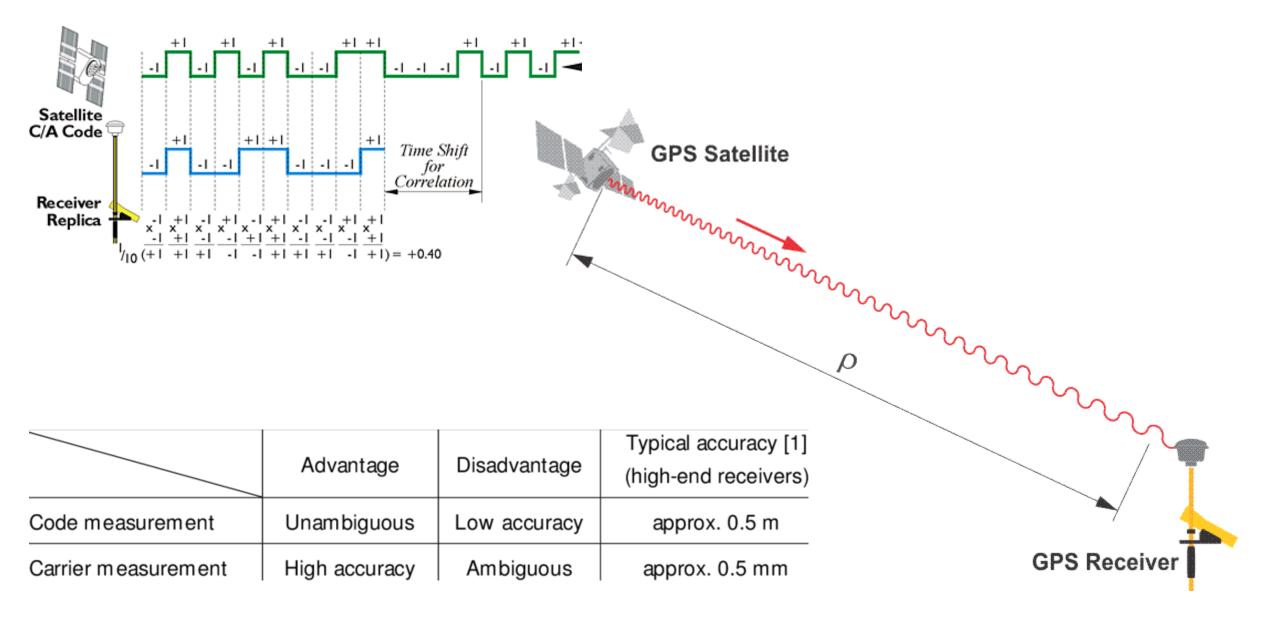
$$n \approx 1 - (2 * 10^{-5})$$

For frequencies used in positioning, it can be used a first order approximation of the Appleton-Hartree formula

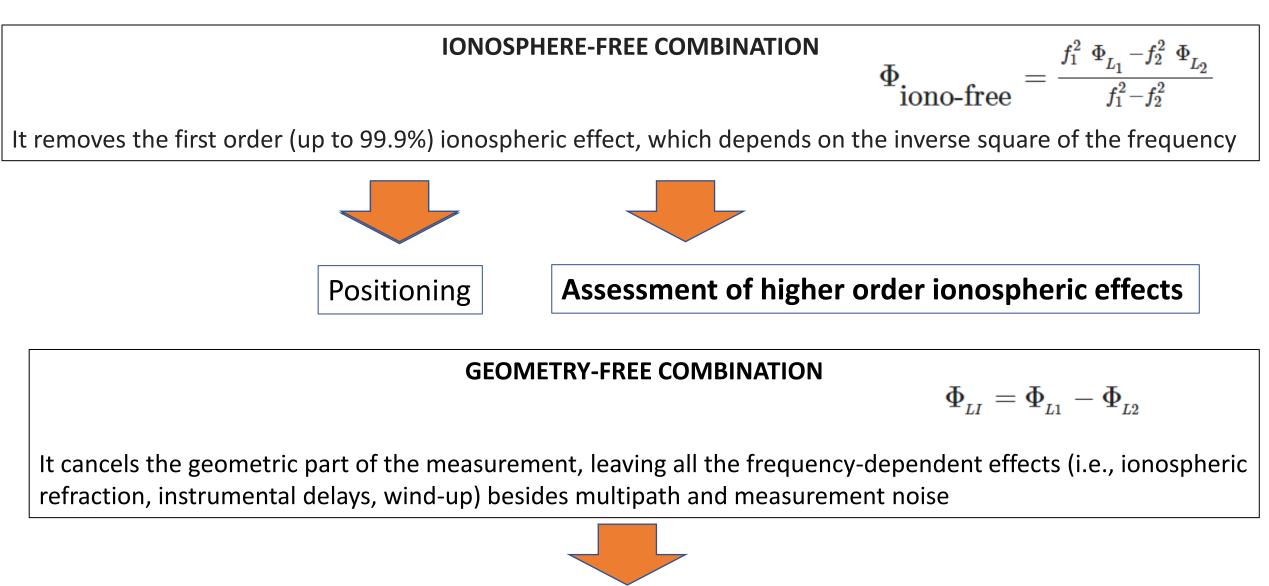
$$X = \frac{\omega_0^2}{\omega^2} \ll 1 \qquad Y = \frac{\omega_H}{\omega} \approx 0 \qquad Z = \frac{\nu}{\omega} \approx 0$$
$$n^2 = 1 - \frac{X}{1 - iZ - \frac{Y_T^2}{2(1 - X - iZ)^2} \pm \sqrt{\frac{Y_T^2}{4(1 - X - iZ)^2 + Y_L}} \implies n = \sqrt{1 - X} \approx 1 - \frac{X}{2} = 1 - \frac{N_e e^2}{\varepsilon_0 m} = 1 - \frac{40.3N_e}{f^2}$$

Electron density

Total Electron Content


Using the 1st order expansion, the Optical Path of a GNSS signal travelling from the satellite to a ground receiver can be expressed as: Geometric path

$$\Lambda = \int_{satellite}^{receiver} n \, ds = \int \left(1 - \frac{40.3N_e}{f^2}\right) ds = \int \frac{40.3}{f^2} \int N_e ds = S - \frac{40.3}{f^2} STEC$$


$$STEC = \int_{satellite}^{receiver} N_e ds$$

$$1 \, TECU = 10^{16} \, e/m^2$$

Ionospheric Phase (L) and Code (d) Delays for GNSS

Linear Combination of GNSS Measurements

Estimation of Total electron content

Ionospheric Phase (L) and Code (d) Delays for GNSS

$$L(cycles) = \frac{\Lambda}{\lambda} = \frac{1}{\lambda} \left(S - \frac{40.3}{f^2} STEC \right) = \frac{S}{\lambda} - \frac{40.3}{\lambda f^2} STEC = \frac{fS}{c} - \frac{40.3}{cf} STEC$$
$$\delta(seconds) = \frac{dL}{df} = \frac{S}{c} + \frac{40.3}{cf^2} STEC$$
$$L(meters) = L(cycles) * \lambda = S - \frac{40.3}{f^2} STEC$$
$$\delta(meters) = \delta(seconds) * c = S + \frac{40.3}{f^2} STEC$$

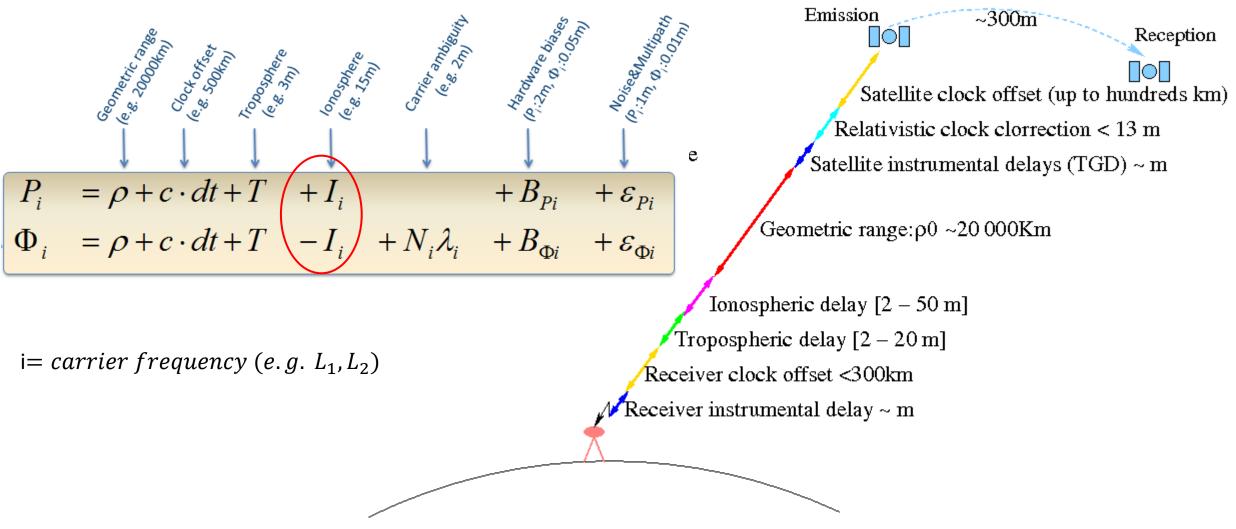
Under the assumed approximation of the Appleton-Hartree formula:

distance measurements using phase delay and code delay provide with an estimation of actual distance S plus a ionospheric contribution which in absolute value is the same for phase and code, but with opposite sign.

Geometry free linear combination (ideal case)

$$L_1, P_1 = S \mp \frac{40.3 \text{ STEC}}{f_1^2}$$
 $L_2, P_2 = S \mp \frac{40.3 \text{ STEC}}{f_2^2}$

How isolating ionospheric information? Solving the system provided by measurements at two frequencies f1 and f2 at advantage of the ionospheric investigator


$$DPD = L_1 - L_2 = I_1 - I_2$$

$$I_1 - I_2 = 40.3 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2}\right) STEC$$

$$DGD = P_2 - P_1 = I_2 - I_1$$

But in the real world...

Code and Carrier phase measurements equations

The ionosphere will introduce a delay of the modulation (the code measurement will be larger than in vacuum), and an advance of the carrier phase (the carrier phase measurement will be smaller than in vacuum).

Geometry free linear combination

$$L_{\rm arc}[m] = L_1 - L_2 = I_1 - I_2 + T_1 - T_2 + c(\tau_{1,R} - \tau_{2,R}) + c(\tau_{1,S} - \tau_{2,S}) + \lambda_1 N_1 + \lambda_2 N_2 + \epsilon_L$$

Troposphere is assumed to be non-dispersive medium, so the tropospheric contribution is cancelled out

$$STEC = \left[40.3 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2} \right) \right]^{-1} * (I_1 - I_2) = k (I_1 - I_2)$$
$$L_{arc}[TECu] = sTEC + B_R + B_S + C_{arc} + \varepsilon_L$$
$$B_R = c (\tau_{1,R} - \tau_{2,R}) k \qquad B_S = c (\tau_{1,S} - \tau_{2,S}) k$$
$$C_{arc} = k (\lambda_1 N_1 + \lambda_2 N_2) \qquad \varepsilon_L = k \epsilon_L$$

The meaning of **Arc** in radio observations, as a series of observations carried out with *continuity* from one station to one satellite. *Continuity*: presence of satellite over the horizon of the station (astronomical arc), no loss of lock for phase or code.

If not recoverable loss of lock occurs, two distinct arcs will be considered also if observations belong to the same "astronomical" arc.

Geometry free linear combination (phase vs code)

Phase observables GFLC

 $L_{\rm arc}[TECu] = {
m sTEC} + B_{\rm R} + B_{\rm S} + C_{\rm arc} + \varepsilon_L$

Code observables GFLC

 $P = \text{sTEC} + b_{\text{R}} + b_{\text{S}} + \varepsilon_{\text{P}}$

Less noisy wrt code observables Relative measurement (ambiguity term) Noisier wrt phase observables Absolute measurement (no ambiguity term)

Phase ambiguity

Measuring phase is like measuring distance with an odometer

Apart the initial ambiguity Ω , the user can cumulate the cycles (*L*) of the incoming signal achieving very high resolution in the measurement of the distance. If some cycle is lost (cycle slip, phase jump), measurement re-starts with a new ambiguity

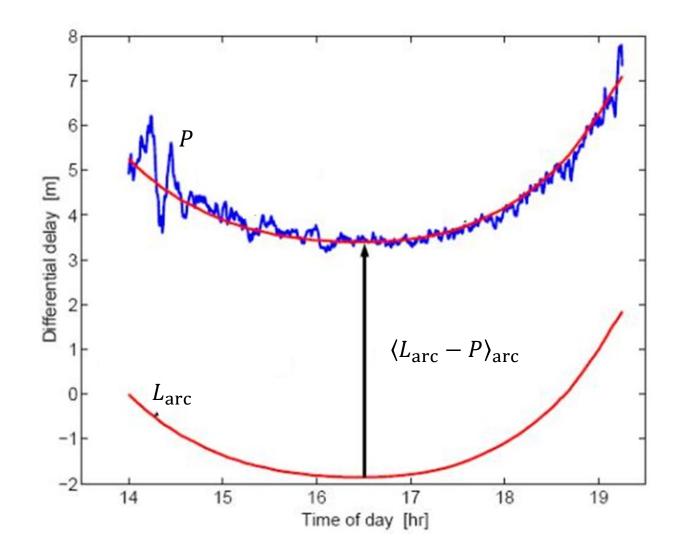
$$D = \Omega + L \cdot \lambda$$

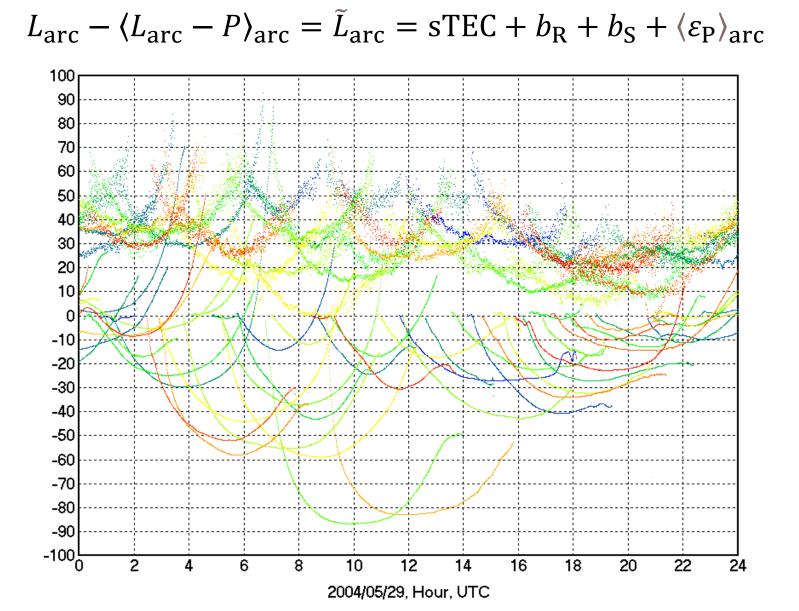
 $\lambda = 2 \pi R$ (*R* radius of odometer)

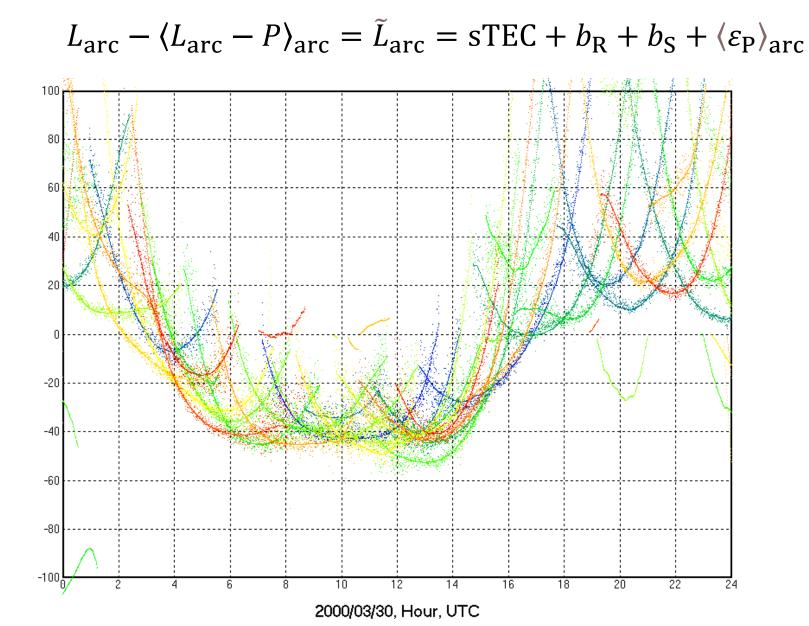
Phase observables GFLC

Code observables GFLC

 $L_{\rm arc}[TECu] = {\rm sTEC} + B_{\rm R} + B_{\rm S} + C_{\rm arc} + \varepsilon_L$

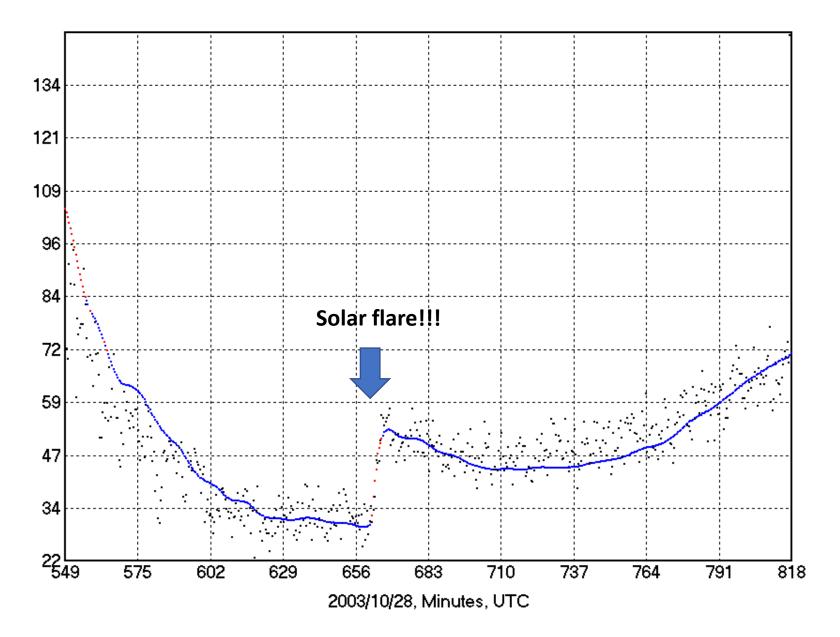

 $P = \text{sTEC} + b_{\text{R}} + b_{\text{S}} + \varepsilon_{\text{P}}$


$$\langle L_{\rm arc} - P \rangle_{\rm arc} = C_{\rm arc} + B_{\rm R} + B_{\rm S} - b_{\rm R} - b_{\rm S} - \langle \varepsilon_{\rm P} \rangle_{\rm arc}$$

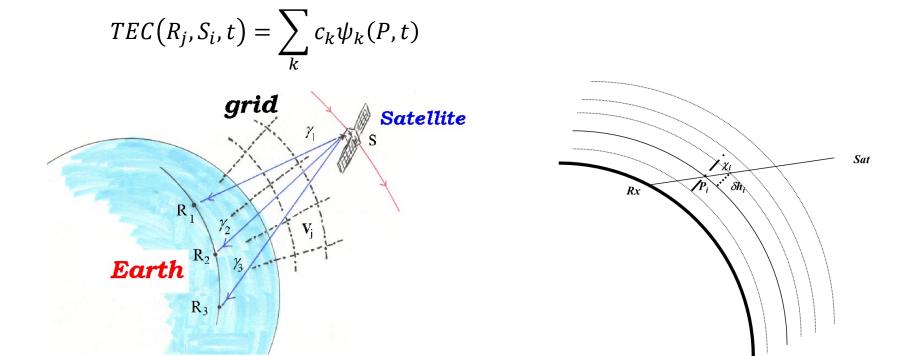

()=mean over an arc

$$L_{\rm arc} - \langle L_{\rm arc} - P \rangle_{\rm arc} = \tilde{L}_{\rm arc} = \text{sTEC} + b_{\rm R} + b_{\rm S} + \langle \varepsilon_{\rm P} \rangle_{\rm arc}$$

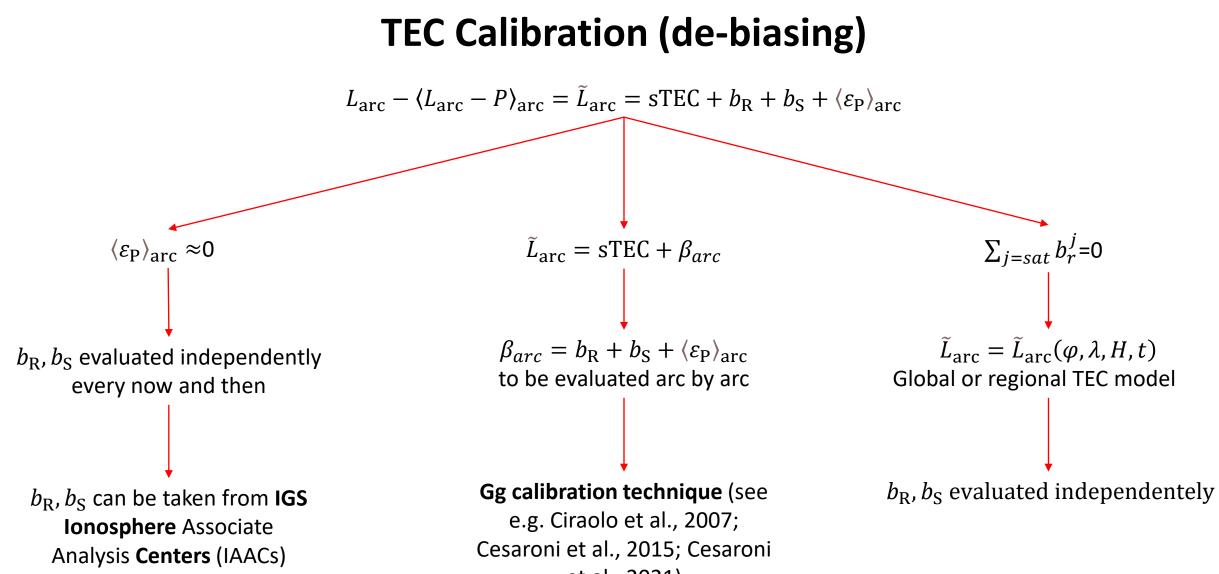
multipath + other non-zero mean errors


$$L_{\rm arc} - \langle L_{\rm arc} - P \rangle_{\rm arc} = \tilde{L}_{\rm arc} = \text{sTEC} + b_{\rm R} + b_{\rm S} + \langle \varepsilon_{\rm P} \rangle_{\rm arc}$$

Phase jump (cycle slips?)


Calibration and Mapping

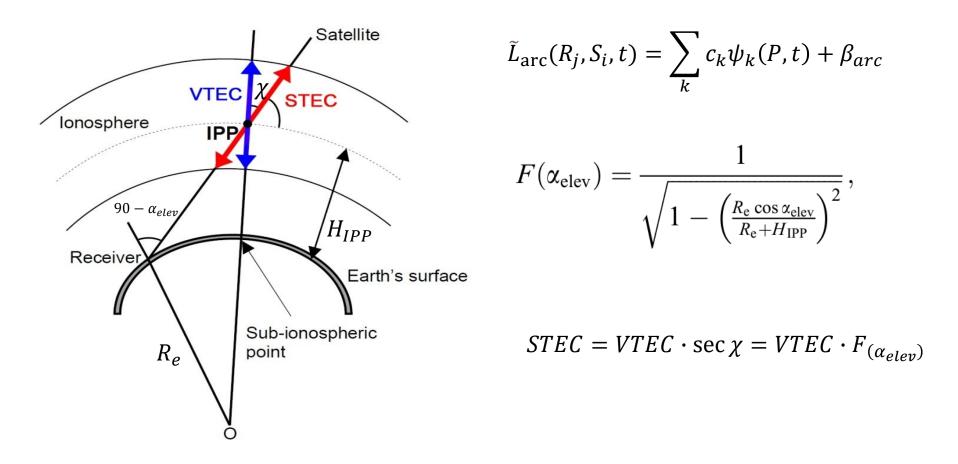
Task of the calibration


Isolate TEC from other terms

The only way to proceed is assuming that TEC from all available observations from generic station R_j to generic satellite S_i can be expanded using proper base functions of time and position $\Psi(P, t)$.

This representation of TEC is the so-called **TEC Mapping**, achievable in several ways (integrated 3D electron density, or 2D shell, ...)

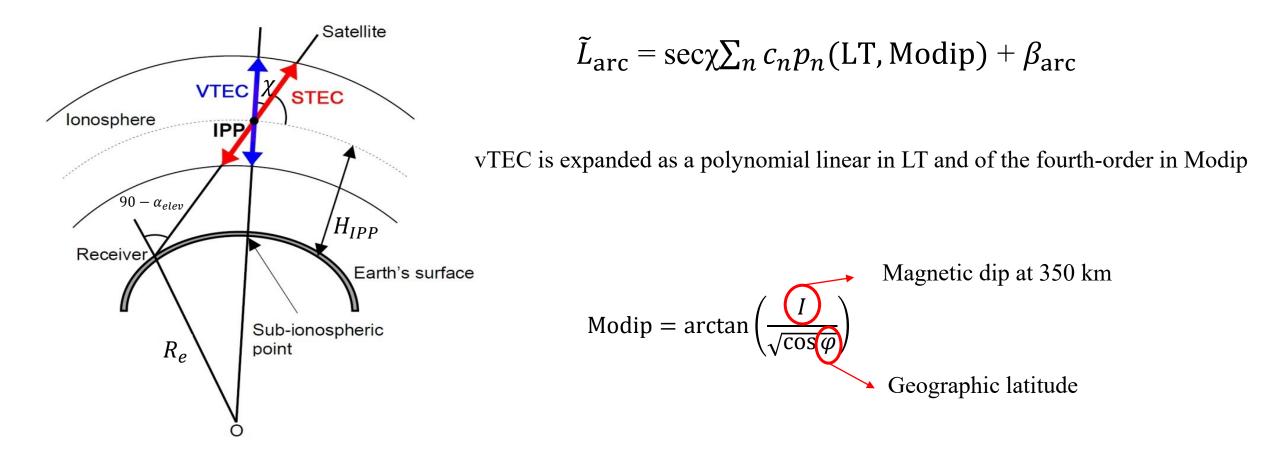
Global many days Global single day Regional many days Regional single day Single station many days Single station one day

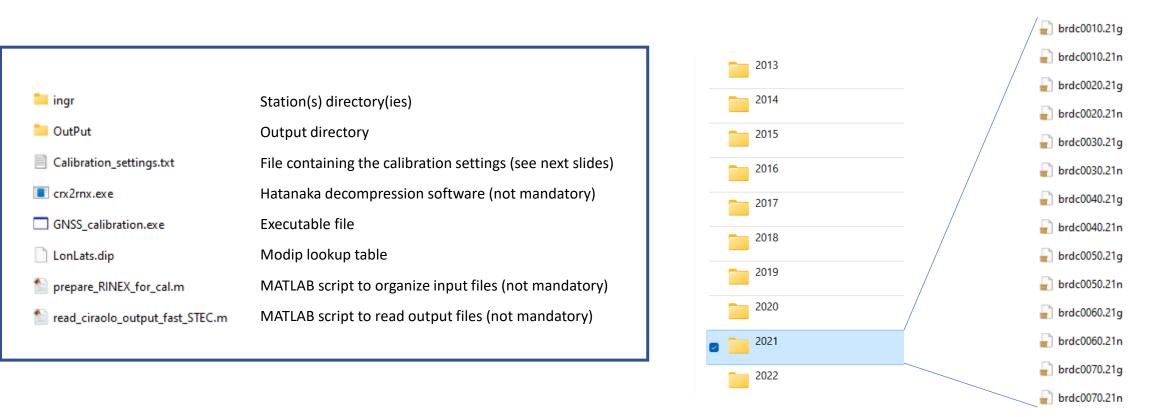


et al., 2021)

Single day – single station approach (Gg technique)

 $\tilde{L}_{arc}(R_j, S_i, t) = sTEC(R_j, S_i, t) + \beta_{arc}$


Once selected some method of mapping has been assumed, the coefficients *c* of TEC expansion become a new set of unknowns to be estimated together with the "biasing" terms using standard minimization algorithms


Single day – single station approach (Gg technique)

 $sTEC = vTEC(\phi_1, \phi_2) \cdot \sec \chi$

where $vTEC(\phi_1, \phi_2)$ is the unknown describing a surface in the reference frame defined by a couple (ϕ_1, ϕ_2) over the thin shell (bi-dimensional)

Gg software – overview

Gg calibration software is a windows package capable of evaluating single-station calibrated TEC from daily RINEX (v2.11) observational (ssssdoy0.yyo) and navigational (brdcdoy0.yyn/g) files from GPS and GLONASS satellites.

A new (Python) version of the software capable of processing GALILEO satellites will be available in the next future

Gg software – RINEX obs files (v 2.11)

2.11 OBSERVATION DATA G (GPS) BINEX VER	RSION / TYPE	RINEX type/version
	03 10:03:19UTCPGM / RUN		
Linux 2.4.21-27.ELsmp Opteron gcc Linux x86 64			
teqc 2019Feb25 202201	03 10:03:12UTCCOMMENT		Comments (ignored by the software)
Linux 2.6.32-573.12.1.x86_64 x86_64 gcc -stati			
BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S COL	NDITION COMMENT		
INGR	MARKER NA	AME	> Station ID
Giuseppe Casula INGV	OBSERVER		
495176 LEICA GRX1200+GNSS 9.20/6		TYPE / VERS	
103144 LEIAT504 NONE	ANT # / T		
4646743.0089 1031406.1366 4231452.7511		OSITION XYZ	Position of the receiver in ECEF coordinates (WGS84)
0.0000 0.0000 0.0000		DELTA H/E/N	
1 1		TH FACT L1/2	
6 L1 L2 C1 P2 S1 S2		S OF OBSERV	Number and type of GNSS observables available in the file
30.0000	INTERVAL		
Forced Modulo Decimation to 30 seconds	COMMENT		Sampling time of the observables
SPIDER	COMMENT		
Made by Spider v4.0.1	COMMENT		
Project creator:	COMMENT		
DAnastasio-Selvaggi	COMMENT		
SNR is mapped to RINEX snr flag value [0-9]	COMMENT		
L1 & L2: min(max(int(snr dBHz/6), 0), 9)	COMMENT		
2022 1 1 0 0 0.000000	GPS TIME OF F	FIRST OBS	Time of the first observables
	END OF HE		End of header line
22 1 1 0 0 0.000000 0 8G32G23G21G08G1	0G16G01G27		
125160945.675 7 97528002.27147 23817336.360	23817334.140	43.400	YY MM DD HH MM SS.sss #sat in view at that particular epoch PRN
43.450			
120474269.007 7 93876044.88846 22925487.360			
1201/1205.007 / 55070011.00010 22525107.500	22925484.220	44.250	
41.650	22925484.220	44.250	
		44.250	
41.650			
41.650 117805562.767 7 91796539.74646 22417650.580	22417646.040		
41.650 117805562.767 7 91796539.74646 22417650.580 41.600	22417646.040	45.800	
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300	22417646.040 20894224.900	45.800	Observations block
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700	22417646.040 20894224.900	45.800 49.700	Observations block
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060	22417646.040 20894224.900 21045622.460	45.800 49.700	Observations block
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800	22417646.040 20894224.900 21045622.460	45.800 49.700 50.800	Observations block
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300	22417646.040 20894224.900 21045622.460 22893054.420	45.800 49.700 50.800	Observations block
41.650 117805562.767 7 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200	22417646.040 20894224.900 21045622.460 22893054.420	45.800 49.700 50.800 44.850	Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120	45.800 49.700 50.800 44.850	Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120	45.800 49.700 50.800 44.850 35.000	Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160 35.100 106285891.940 8 82820170.27248 20225530.200	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120 20225528.200	45.800 49.700 50.800 44.850 35.000	Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160 35.100 106285891.940 8 82820170.27248 20225530.200 50.950 50.950 50.950 50.950 50.950	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120 20225528.200 0G16G01G27	45.800 49.700 50.800 44.850 35.000	 Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160 35.100 106285891.940 8 82820170.27248 20225530.200 50.950 22 1 0 30.0000000 8G32G23G21G08G1	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120 20225528.200 0G16G01G27	45.800 49.700 50.800 44.850 35.000 50.900	 Observations block
41.650 117805562.767 91796539.74646 22417650.580 41.600 109799902.880 8 85558367.14648 20894226.300 49.700 110595504.787 8 86178319.11648 21045624.060 50.800 120303830.786 7 93743230.52946 22893058.300 40.200 128382932.311 5 100038654.89545 24430460.160 35.100 106285891.940 8 82820170.27248 20225530.200 50.950 22 1 0 30.0000000 8G32G23G21G08G1 125076168.884 97461942.45247 23801203.460	22417646.040 20894224.900 21045622.460 22893054.420 24430458.120 20225528.200 0G16G01G27 23801201.880	45.800 49.700 50.800 44.850 35.000 50.900	 Observations block

Gg software – RINEX nav files (v 2.11)

0.11				GPS NAVIG	TABLE A4 ATION MESSAGE FILE - DATA RECORD DESCRIPTIO	N I
2.11 tegc 2019Feb25	N: GPS NAV DATA BKG Frankfurt	RINEX VERSION / TYPE 20220105 09:17:40UTCPGM / RUN BY / DATE	 RINEX type/version 	OBS. RECORD	DESCRIPTION	FORMAT
		cc -static Linux 64 =+ COMMENT		+	- Satellite PRN number	I2,
Converto v3.5.6	IGN	20220105 000521 UTC COMMENT			- Epoch: Toc - Time of Clock	12,
	2.1.x86_64 x86_64 g	cc Linux 64 =+ COMMENT			year (2 digits, padded with 0	47 72 2
Concatenated RINEX	files (31)	COMMENT	Date and time		if necessary) month	1X,I2.2, 1X,I2,
		END OF HEADER			day	1X,I2,
		D-04-1.000444171950D-11 0.00000000000D+00			hour minute	1X,I2, 1X,I2,
		D+01 4.347323940635D-09-5.174246376131D-01			second	F5.1,
		D-02-4.135072231293D-07 5.153668924332D+03			- SV clock bias (seconds)	3D19.12
		D-09-1.159150957942D+00 1.192092895508D-07	 Orbital parameters 		 SV clock drift (sec/sec) SV clock drift rate (sec/sec2) 	*)
		D+02 8.845144020660D-01-8.498925442950D-09 D+00 2.19100000000D+03 0.00000000000D+00		+		++
		D+00 5.122274160385D-09 7.30000000000D+01		BROADCAST ORBIT - 1	- IODE Issue of Data, Ephemeris - Crs (meters)	3X,4D19.12
	D+05 4.000000000000000				- Delta n (radians/sec)	
		D-04-1.000444171950D-11 0.000000000000D+00		İ	- M0 (radians)	i i
		D+01 4.259105980288D-09 5.327547024575D-01		BROADCAST ORBIT - 2	- Cuc (radians)	3X,4D19.12
-1.0412186384201	D-06 1.122482249048	D-02-1.564621925354D-07 5.153674575806D+03			- e Eccentricity	,
1.800000000000	D+05-3.7252902984621	D-08-1.159212006976D+00 1.117587089539D-07			- Cus (radians) - sqrt(A) (sqrt(m))	
9.8635530371471	D-01 3.930312500000	D+02 8.845155153473D-01-8.485710606765D-09		 +	- surc(A) (surc(m))	 ++
		D+00 2.19100000000D+03 0.00000000000D+00		BROADCAST ORBIT - 3	- Toe Time of Ephemeris	3X,4D19.12
		D+00 5.122274160385D-09 7.40000000000D+01			(sec of GPS week) - Cic (radians)	
	D+05 4.000000000000	- · · ·			- OMEGA (radians)	i i
		D-04-9.890754881781D-12 0.000000000000D+00			- CIS (radians)	1 1
		D+00 4.368396246952D-09 1.583143868868D+00 D-02-4.153698682785D-07 5.153669784546D+03		BROADCAST ORBIT - 4	- i0 (radians)	3X,4D19.12
		D-02-4.153699662785D-07 5.153669764546D+05 D-07-1.159273638252D+00 7.264316082001D-08			- Crc (meters)	
		D=07=1.139273030232D+00 7.204310002001D=00 D+02 8.843068183799D=01=8.386063598924D=09			- omega (radians) - OMEGA DOT (radians/sec)	
	D-11 1.0000000000000			+		++
	D+00 0.0000000000000			BROADCAST ORBIT - 5		3X,4D19.12
1.800180000001	D+05 4.0000000000000	D+00 Bf	ference		- Codes on L2 channel - GPS Week # (to go with TOE)	
1 22 1 4 22 0	0.0 4.657572135329				Continuous number, not mod(1024)!	1
1.700000000000	D+01 6.968750000000	$D+00$ C_{m} C_{m} Δn			- L2 P data flag	
	D-07 1.122514088638	D-02-	_e)_e Perigee	BROADCAST ORBIT - 6	- SV accuracy (meters)	3X,4D19.12
	D+05 2.402812242508	D-07-	-e) Perigee		- SV health (bits 17-22 w 3 sf 1)	
	D-01 3.972812500000	D+02			- TGD (seconds) - IODC Issue of Data, Clock	
	D-13 1.0000000000000			·		++
	D+00 0.0000000000000 D+05 4.000000000000000			BROADCAST ORBIT - 7	- Transmission time of message **) (sec of GPS week, derived e.g.	3X,4D19.12
2.4/1000000000000000000000000000000000000	DT05 4.000000000000000	$\mathbf{r}_{120}, \mathbf{s}_{2} - \mathbf{u}_{01}, \mathbf{v}_{11}$	dot		from Z-count in Hand Over Word (HOW)	
		Direction of Greenwich Ascend	ding node		- Fit interval (hours)	
		meridian at start of			(see ICD-GPS-200, 20.3.4.4) Zero if not known	
		GPS week			- spare	

- spare

Gg software – Calibration settings file

- Output Sampling Time, Minutes 0 **Output Minimum Elevation**, Deg 20 Solution: Arcs(A), Hardware biases (B) Α Select Output Format 3 Folder of BRDC files C:\... Disable Rejection of First and Last Day False Shell Height 350 **Discard GLONASS** False
- Out Sampling time (0 for the same resolution of the input Rinex files)
- Elevation mask (data «below» this value will not appear in the output files)
 - Not implemented in this version (maintain «A»)
 - Format of the output files (3 if you want to use the MATLAB scripts)
- . Folder in which you put the BRDC files
 - Maintain «FALSE» for reliable solutions
- Height of the ionospheric thin shell in km
- Set «TRUE» if you want to ignore GLONASS observations

Gg software – Output files

00000	Z00	000.000	90.000	-063.243	+17.621	+005.29	+005.29	
00000	G01	034.739	72.035	-062.664	+18.307	+004.05	+003.87	
00000	G03	140.776	27.940	-059.881	+13.480	+018.04	+009.88	
00000	G07	233.164	63.521	-064.475	+16.627	+007.58	+006.87	
00000	G14	326.331	25.006	-066.710	+22.305	+004.76	+002.43	
00000	G17	283.745	26.685	-068.815	+18.727	+007.34	+003.90	
00000	G21	034.265	40.255	-061.197	+20.322	+005.54	+003.82	
00000	G30	288.242	51.517	-065.577	+18.232	+005.27	+004.25	
00000	R19	006.021	38.160	-062.832	+21.151	+003.33	+002.21	
00000	R20	269.494	51.845	-065.661	+17.480	+006.16	+004.99	
00015	Z00	000.000	90.000	-063.243	+17.621	+005.31	+005.31	
00015	G01	034.565	71.913	-062.662	+18.315	+004.04	+003.86	
00015	G03	140.674	28.013	-059.882	+13.496	+017.88	+009.80	
00015	G07	232.913	63.447	-064.475	+16.619	+007.59	+006.88	
00015	G14	326.395	25.088	-066.694	+22.294	+004.75	+002.43	
00015	G17	283.870	26.714	-068.807	+18.737	+007.32	+003.89	
00015	G21	034.242	40.151	-061.191	+20.333	+005.54	+003.81	
00015	G30	288.057	51.561	-065.575	+18.224	+005.27	+004.26	
00015	R19	006.099	38.045	-062.825	+21.165	+003.31	+002.20	
00015	R20	269.739	51.863	-065.660	+17.490	+006.16	+004.99	
00030	Z00	000.000	90.000	-063.243	+17.621	+005.32	+005.32	
00030	G01	034.393	71.790	-062.661	+18.322	+004.03	+003.85	
00030	G03	140.571	28.085	-059.883	+13.513	+017.74	+009.74	
00030	G07	232.664	63.372	-064.474	+16.611	+007.61	+006.89	
00030	G14	326.458	25.170	-066.677	+22.283	+004.75	+002.44	
00030	G17	283.996	26.743	-068.798	+18.748	+007.33	+003.90	
00030	G21	034.220	40.048	-061.185	+20.343	+005.54	+003.81	
00030	G30	287.871	51.605	-065.574	+18.216	+005.28	+004.27	
00030	R19	006.176	37.929	-062.818	+21.178	+003.38	+002.24	
00030	R20	269.986	51.881	-065.658	+17.500	+006.16	+004.99	

Seconds since the beginning of the day

Satellite (G for GPS, R for GLONASS)

Azimuth

Elevation

Longitude of the IPP

Latitude of the IPP

STEC

VTEC

Let's go for a live session!!!!

https://www.dropbox.com/sh/5ti51wl52e977ns/AACxxaCm8eBrveQHTW4xyFM_a?dl=0