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Transionospheric propagation

• Weak scintillation on the Earth’s 
surface S4 < 0.6

• Strong scintillation on the Earth’s 
surface    S4 > 0.6

§ weak scintillation after passing the 
ionospheric layer + diffraction in the 
free space 

§ strong scintillation developed 
inside the ionospheric layer
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Hybrid method = 
complex phase method + 
random screen

Markov’s parabolic equations for 
the field moments

Complex phase method = 
Rytov’s method + 
inhomogeneous background
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INTRODUCTION

In the paper (V.E. Gherm, N.N. Zernov, S.M. Radicella, and H.J. Strangeways, 
“Propagation model for signal fluctuations on transionospheric radiolinks”, Radio 
Science, vol. 35, pp. 1221-1232, 2000 [1]) the initial approach was developed to 
study the transionospheric channel of propagation which was based on the 
perturbation theory to describe the field propagation between the communicating 
points. This approach therefore was confined by the case of weak scintillation.

The complex phase method imposed some restrictions on the range of validity of the 
model, which resulted in the values of the scintillation index S4 up to 0.6, i.e. this is 
the case of weak scintillation. 

The field strong scintillation on transionospheric paths of propagation. Propagation 
model 1.

To extend a propagation model to a wider range of validity (stronger scintillations), 
the new hybrid model was introduced which combines the complex phase method 
and a single random screen, properly introduced below the ionosphere  (2005 [2]).

It is capable of also describing the effects of strong scintillations, e.g. focusing and 
saturation characterized by high values of  S4. It can also describe some fine effects 
including calculation of the rate of phase changes, etc. 
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Propagation from a satellite to the Earth's surface is 
calculated in two steps:

i) spatial spectra of the field phase and amplitude are 
calculated by the complex phase method for the points of 
observation  on the surface (plane or spherical) just  
below the ionosphere. The spectra are employed to 
generate a random plane or spherical screen below the 
ionosphere;

ii) the propagation problem for the introduced random 
screen is further rigorously solved to obtain the field’s 
statistical moments and time series on the Earth's surface.
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As the result, this hybrid technique allows for:

- Describing the case of strong scintillation of the field amplitude on the 
Earth’s surface;

- Achieving the higher efficiency of numerical modelling of  realistic cases 
of propagation as compared to the case of straightforward purely 
numerical multiple phase screen calculations.

The complex amplitude of the field passed through the ionosphere is 
represented as follows 

( ) ( ) ( )tREtE ,,,,, 0 www rrr =

random phasorundisturbed field

The parameter t stands for representing the slow time due to the time 
dependence of the electron density fluctuations.
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To introduce a random screen just under the ionosphere, the
two-dimensional spatial spectra of phase and 
log-amplitude are produced, which are then employed to
generate the two-dimensional realisations of      and  S .

Random phasor 

., iSeR +== cyy

( )tR ,,wr is treated in terms of the complex phase

Complex phase
phase    

log-amplitude

c
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In the numerical simulation, the anisotropic inverse power law 
spatial spectrum of fluctuations of the ionospheric electron 
density is employed 
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- normalisation coefficient

- distribution of the dielectric permittivity of the background 
ionosphere along the reference ray

- variance of the fractional electron density fluctuations
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Realisations of phase and amplitude on the random screen
f =1575 MHz

The random screen which is generated below ionosphere is not an equivalent 
phase screen, but the screen generated on the basis of solving the propagation 
problem through the fluctuating ionosphere specified by its electron density 
profile and a given model of fluctuation spectra. 
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The random complex spectrum                    of the field on the screen is then transferred 
to the level of the Earth’s surface employing the following relationship of the theory of 
a random screen (Fresnel propagator)

( ) ( ) ÷÷
ø

ö
çç
è

æ
-=

k
zitEetzE ikz

2
exp,,0~,,~ 2κκκ

( )tE ,,0~ κ

Examples of model outputs
Input parameters:

NeQuick profile, low-latitude ionosphere, TEC = 69 TECU.
spectral index p=3.7.
Variance of fluctuations         = 10-2.
cross-field outer scale 10 km, aspect ratio a = 5.
Path of propagation:  elevation angle of 450, azimuth 450.
The effective velocity of the horizontal frozen drift 300 m/s.
Frequencies f = 1575 MHz  and  500 MHz.

2
Ns
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Time realisations of phase and amplitude on the Earth’s surface
f = 1575 MHz 
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Spectra of phase and amplitude 
fluctuations

Probability density function of 
amplitude fluctuations

f = 1575 MHz
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Rate of phase changes, f = 1575 MHz
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Realisations of phase and amplitude on the Earth’s surface.

f=500 MHz
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Time realisations of phase and amplitude on the Earth’s surface 
f=500 MHz
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Spectra of phase and amplitude 
fluctuations

Probability density function of 
intensity fluctuations

f=500 MHz
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Rate of phase changes, f = 500 MHz
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Scatter plots of the complex random factor  R

f=1575 MHz, S4=0.158 f=500 MHz, S4=0.768
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To conclude, the presented technique is capable of producing statistical 
characteristics and of simulating time realisations of the field (including 
regime of strong amplitude fluctuations) for a wide range of the input 
parameters,  viz:

co-ordinates of the satellite and point of observation
slant electron density profile along a given path
zenith angle of a satellite
magnetic azimuth of the plane of propagation
magnetic field dip angle at the pierce point
the following parameters of the random irregularities:

• spectral index
• outer scale across the geomagnetic field
• aspect ratio
• variance of the fractional electron density fluctuations
• effective velocity of the drift
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The field strong scintillation on transionospheric paths of propagation. 
Propagation model 2. [2015a,b (8,9)]. Describes  the case of strong scintillation 
already formed in the inhomogeneous ionospheric layer. This technique is 
based on solving Markov’s parabolic equations for the moments of the complex 
amplitude of the field 𝑈 𝒓, 𝑡 = 𝑋(𝒓, 𝑡) + 𝑖𝑌(𝒓, 𝑡) and does not have formal restrictions 
imposed on the strength of the field fluctuations. But the distribution of the field 
remains undefined.

Auto- and cross-correlation
functions of the in-phase
and quadrature components

Γ = 𝑈 𝒓𝟏, 𝑡" 𝑈∗ 𝒓𝟐, 𝑡%
-Γ = 𝑈 𝒓𝟏, 𝑡" 𝑈 𝒓𝟐, 𝑡%

For generating the random realizations of the field some empirical distributions should 
be employed ( e.g. Nakagami, 𝛼 − 𝜇 distribution), which are somehow governed by S4.

Therefore we need to deal with the equations for the moments up to the fourth order. 

Correlation properties of the field realizations 
are defined by the moments of the second 
order – coherence functions

Ψ& =
"
%
𝑅𝑒 Γ + -Γ − 𝑈 𝑈 ∗, 

Ψ' =
"
%
𝑅𝑒 Γ − -Γ ,  

Ψ&' =
"
%
𝐼𝑚 -Γ − Γ . 
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Markov’s parabolic equations for the field moments
- For the mean field

( )
(*

+ +!

,
𝐴- 0, 𝑧 𝑈 = 0 → 𝑈 𝑧 = exp − +!

, ∫𝐴- 0, 𝑧 𝑑𝑧 , 

𝐴- 𝑥, 𝜏 = 𝛾Ω./0 (𝜏)
%1

+"%
#$%
! Г(#$&! )

C (2𝜋𝑥)
#$!
! C 𝐾#$!

!
(2𝜋𝑥)

- For the second-order coherence function of the first type:
(5
(*
+ +!

,
𝐷- 𝒓, 𝑧 Γ = 0 → Γ = exp − +!

, ∫𝐷- 𝒓, 𝑧 𝑑𝑧

- For the second-order coherence function of the second type:
(65
(*
− 7

+
𝛻% -Γ + +!

0
𝐴- 0, 𝑧 + 𝐴- 𝒓, 𝑧 -Γ = 0

In the regime of the moderate and strong scintillation the mean field 𝑈 is real-
valued and small, and -Γ is of the order of magnitude of 𝑈 %.
Therefore, to the accuracy of the order of 𝑈 ≪ 1 Ψ&≈ Ψ' ≈

"
%
Γ, Ψ&' ≈ 0.

𝐴- 𝒓, 𝑧 - transversal correlation function of permittivity,
𝐷- 𝒓, 𝑧 - transversal structure function of permittivity,
𝒓 – transversal difference variable,
𝑧 – co-ordinate in the direction of propagation, 
p – spectral index of fluctuations.
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Equation for the fourth moment

( ) ( )
1 2

2
4

4 1 2 4 1 2 4, , , , 0
8

i k F z z
z k r r

¶G
- Ñ ×Ñ G + G G =

¶
ρ ρ ρ ρ

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, ; 2 , 2 , , ,F z D z D z D z D ze e e e= + - + - -ρ ρ ρ ρ ρ ρ ρ ρ

( ) ( )2
4 4 0,0; 1S z z= G -

For Green’s function 𝐺 𝐱", 𝛂" ; 𝐱%, 𝛂% ; 𝜍 quasi-classical approximation in terms 
of the large parameter  K is employed.

The main term of the asymptotic

𝐾 = 𝑘𝑙- ⁄9 % ≫ 1

( ) ( )44 1 2 1 1 2 2 1 2, , , ; , ;
R
GV VG = òx x x α x α dα dα

( ) ( ) ( )1 1 2 2 0 1 1 2 2 1 1 2 2, ; , ; , ; , ; exp , ; , ;G A KV V y Vé ù= ë ûx α x α x α x α x α x α

Γ 𝒙", 𝒙%; 0 = 1
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“Eikonal” equation

“Transport” equation

( )
1 2 1 2

1 , , 0
8x xi Fy y y V

V
¶

- Ñ Ñ + =
¶

x x!

( )1 2 2 1 1 2

0
0 0 0 0x x x x x x

A i A i A i Ay y y
V

¶
- Ñ Ñ - Ñ Ñ - Ñ Ñ =

¶

( ) ( )2
4 4 0,0; 1S V V= G -

Quasi-classic equations for the fourth moment
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Numerical results for the non-homogeneous ionospheric layer, Chapman profile.
Layer height – 350 km, ℎ: = 100 km, 𝑓.:;< = 12 MHz
Zenith angle 30 deg, slant TEC 124 TECU
Transmission frequency 1200 MHz

The coherence function Γ
for the point of observation 
on the Earth’s surface.

Standard deviations of the 
fractional electron density
5 %, 10 % and 20 %
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The mean field (left) and scintillation index (right) as function of the height 
above the Earth’s surface.
Standard deviations of the fractional electron density – 9 % and 20 %
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The physically based software simulator of the scintillating signal

The task for the computer simulator is to generate the random time series 
having the given amplitude PDF, which additionally has the in-phase and 
quadrature components with the correlation functions calculated according 
to the developed above propagation  theory [2015a,b (8,9)].

The procedure of generating the signal is universal respectively the type of the 
amplitude distribution. In the following examples the α-μ distribution [Yacoub, M. 
(2007), The α-μ Distribution: A Physical Fading Model for the Stacy Distribution, 
IEEE Transactions on Vehicular Technology, 56, 27-34.] is employed which for 
normalized amplitude 𝑏 is given by

𝑝: 𝑏 =
𝛼𝑏=>?"

ξ @=>
%Г(𝜇)

𝑒
? A'

B (' ! , ξ =
Г(𝜇)

Г(𝜇 + ⁄2 𝛼)

𝛼 = 𝛼 𝑆0
𝜇 = 𝜇 𝑆0

Empirically parameterized by Moraes AO, de Paula ER, Perrella WJ, 
Rodrigues FS (2012), On the distribution of GPS signal amplitudes 
during the low-latitude ionospheric scintillation. GPS Solutions doi: 
10.1007/s10291-012-0295-3
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The general procedure of generating time series of the complex stochastic 
amplitude  𝑈 is as follows: 

• Two independent random Gaussian processes 𝜉(𝑡) and 𝜂(𝑡) with given 
identical auto-correlation functions ΨC are generated. Then the amplitude 
𝑎 = 𝑉 of the complex random process 𝑉 𝑡 = 𝜉(𝑡) + 𝑖𝜂(𝑡) is governed by 
the Rice distribution

𝑝D 𝑎 = 2𝑎(1 + 𝐾E)𝐼E(2𝑎 𝐾E + 𝐾E% )𝑒?F"?;
! "GF" , 𝐾E =

H!

%I!

• A mapping function  𝑉 → 𝑈 is constructed which is then applied to the 
process 𝑉(𝑡) producing the new complex random process 𝑈 𝑡 having a given 
distribution of amplitude 𝑝: 𝑏 with 𝑏 = 𝑈 being the amplitude of the 
output complex random process 𝑈 𝑡 .

• Another mapping function Ψ)→ΨC is introduced in order to specify the 
auto-correlation function of the initial process ΨC to produce  the given auto-
correlation of the output processΨ) after the transformation 𝑉 → 𝑈 .

The procedure developed provides the specified amplitude distribution and 
correlation properties of the output process 𝑈 𝑡 .
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Input parameters for the simulator are obtained from the solution to the 
equations for the moments of the field.

They are:

• Auto-correlation functions of the in-phase and quadrature components 

Ψ&≈ Ψ' ≈
1
2
Γ

• Value of the mean field
𝑈

• Scintillation index
𝑆0 = Γ0 − 1 ⁄" %

Input parameters
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Random time series for the amplitude and phase of the random field on the 
Earth’s surface, generated employing the developed technique; the scintillation 
index S4 = 0.95, <U>=0 (zero-valued random field).

Random walk of the phasor 

Examples of the simulator output
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Random time series for the amplitude and 
phase of the random field on the Earth’s 
surface, generated employing the developed 
technique; the scintillation index S4 =0.53, 
<U>=0.12 (small, but finite value of the mean 
field).

Random walk of the phasor 

The PDF for the phase 
distribution. 
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- The main goal of this investigation is to present a
realistic predominantly analytic theory for solving the
problems of the VHF and UHF pulsed signal
propagation through a realistic transionospheric
channel of propagation for different regimes of
propagation, including the case of the field strong
scintillation.

- «realistic» means that for an arbitrary given
transionospheric path of propagation the effects of
the inhomogeneous background ionosphere are taken
into account, including the effect of the Earth’s
magnetic field.

- The anisotropy in the problem of propagation is taken
into account through the anisotropic shapes of local
random inhomogeneities of the electron density of
the ionosphere.

Introduction

The geometry of propagation.
The background ionosphere is not                
necessarily spherically-symmetric

Strong Scintillation 3. Pulse propagation of VHF field through 
inhomogeneous stochastic ionosphere
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The pulse mean energy

In our consideration the pulse field is characterized by its mean energy, given 
as follows:

𝑊 𝟎, 𝑧, 𝑡 =< 𝐸 𝟎, 𝑧, 𝑡 𝐸∗ 𝟎, 𝑧, 𝑡 >

= f
?J

GJ

d𝜔"d𝜔%Γ 𝟎, 𝑧, 𝜔", 𝜔% 𝑃 𝜔" 𝑃∗ 𝜔% .

exp 𝑖 𝜔" − 𝜔%
*
K
− 𝑖 𝜔" − 𝜔% 𝑡 −

L!

%:K-"

"
M)
− "

M!
∫E
*𝑁E(𝟎, 𝑧 ,)𝑑𝑧 , . (1)

Here Γ 𝝆 = 𝟎, 𝑧, 𝜔", 𝜔% is the first second order transversal two-position two-
frequency coherence function of the field monochromatic components, propagating 
through the stochastic ionosphere; 𝑃 𝜔 is a given spectrum of a launched pulse 
signal, 𝑁E(𝟎, 𝑧) is the electron density distribution along an arbitrary given path of a 

pulse propagation,  𝝆% = <!

;!(O)
+ P!

A!
, 𝑥, 𝑦, 𝑧 are the Cartesian variables, where 

𝑥, 𝑦 are the transversal difference variables, and z is the variable along the line of 
sight.
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Constructing the analytic solution to the coherence function Γ 𝟎, 𝑧, 𝜔!, 𝜔"

This function is the core point to quantitatively describe the pulse mean energy [2020a,b 
(11, 12)]. To do it for the field propagation in the regime of strong scintillation, below the 
appropriate diffusive Markov approximation is used as follows:

(5
(*
+ 7+*

% ++!?
)
,+*

! 𝛻Q%Γ +
++!?

)
,
+
*

!

,
𝐷- 𝝆, 𝑧, 𝜑, 𝜔", 𝜔% Γ = 0 (2)

𝑘R =
M)?M!

K
, 𝑘S =

M)GM!
%K

.

𝐷- 𝝆, 𝑧, 𝜑, 𝜔", 𝜔% is the transversal two position and two-frequency structure 
function of the dielectric permittivity fluctuations 
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To further solve the equation (2), first, the semi-analytic model of the background ionosphere is 
introduced as shown in Figure below

The distribution of the electron density along the line 
of sight in the background ionosphere is specified by 
one of the known standard ionospheric models 
(NeQuick, blue curve).
A semi-analytic model of this distribution is then 
introduced, which permits further constructing the 
rigorous analytic solution to equation (2) (red dashed 
curve). It provides the same values of TEC and 𝑁! in 
the maximum of the layer as in the model, generated 
by NeQuick. 
Here the top side ionospheric half-layer is modeled by 
half-parabola, and the bottom side is presented by 
hyperbolic cosine  (see details in  2020a,b).
The semi-analytic model permits further constructing 
the rigorous analytic solution to equation (2) with the 
introduced here parabolic structure function. 
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The model of the structure function

For the following consideration, the structure function of fluctuations of the 
dielectric permittivity 𝐷- 𝝆, 𝑧, 𝜑, 𝜔", 𝜔% of the ionosphere is accepted in the 
form of the Gaussian beam as follows the parabolic function in the directions 
orthogonal the line of sight

𝐷- 𝝆, 𝑧, 𝜑, 𝜔", 𝜔% =
%+#-

, * I.
! // (O)

++!?
)
,+*

! ! 𝝆% 𝑥, 𝑦 , 𝝆% = <!

;!(O)
+ P!

A!
, (3)

𝑘./% (𝑧) =
L!D(*)
-"K!:0

𝜑 is the angle between the direction of pulse 
propagation (line of sight) and the Earth 
magnetic field at the pierce point

Parameter 𝑙- (𝜑) is the effective correlation radius of 
the electron density fluctuations in the direction of 
propagation.
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Calibration of the parabolic structure function 𝐷! 𝝆, 𝑧, 𝜑, 𝜔", 𝜔#

• To take account of the realistic inverse power law spectrum of fluctuations of the 

electron density of the ionosphere, the Gaussian structure function (3) should be 

properly calibrated in order to further obtain the solution to the problem of the 

pulse transionospheric propagation, which is in compliance with the inverse power 

law spectrum of the ionospheric electron density fluctuations. To do this, the 

solution to the pure spatial coherence function is employed, which was earlier 

obtained in [2020a,b], independently of the theory, which is developed here. This 

solution is as follows:

• Γ 𝝆, 𝑧, 𝜑 = Γ 𝝆, 𝑜, 𝜑 exp[− ++!

, ∫E
*𝐷-(𝝆, 𝑧 ,, 𝜑)𝑑 𝑧 ,]. 
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Г! 0,0; 𝑧; 𝜑 =
1

𝜓"! 𝑧 𝜓#! 𝑧
𝑒𝑥𝑝 −

𝜎$#𝑙% 𝜑 𝑘&#𝑘'()*

8 𝑘+# −
1
4 𝑘&

#
# 𝑙! 1 + tanh

𝑧
𝑙!

Top-side 
ionosphere

Г, 0,0; 𝑧; 𝜑 =
1

𝜓", 𝑧 𝜓#, 𝑧
𝑒𝑥𝑝 −

𝜎$#𝑙% 𝜑 𝑘&#𝑘'()*

8 𝑘+# −
1
4 𝑘&

#
# 𝑙! 1 +

𝑧
𝑙!

1 −
𝑧#

3𝑙,
#

Bottom-side 
ionosphere

Г- 0,0; 𝑧; 𝜑 =
1

𝜓", 𝑙, 𝜓#, 𝑙, 𝜒" 𝑧 𝜒# 𝑧
𝑒𝑥𝑝 −

𝜎$#𝑙% 𝜑 𝑘&#𝑘'()*

8 𝑘+# −
1
4 𝑘&

#
# 𝑙! 1 +

2
3
𝑙,
𝑙!

Atmospheric 
layer under the 
ionosphere

As the result, the two-frequency coherence function (zero space separation)
along the path of propagation, properly corresponding to the appropriate inverse
power law spectrum of fluctuations of the electron density, which is further
employed for calculating the pulse mean energy is as follows [2020a,b (11, 12)]:
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The carrier
frequency is 
0.5 GHz.

The length of the
input pulse is 5·10-

8 s.

The carrier
frequency is
1 GHz.

The length of
the input pulse
is 10 -8 s. 

The carrier
frequency is
1 GHz.

The length of the
input pulse is
5·10-9 s

The
spectrum of
the energy
of the pulses 
above

The pulse mean energy. Numerical Results. 
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Conclusions to pulse propagation

• The analytical and numerical theory was presented for describing the VHF and
UHF pulse propagation in the stochastic transionospheric channel for the 
conditions of the field strong scintillation. 

• This theory permits modeling pulse propagation for arbitrary given
inhomogeneous background ionosphere and anisotropically shaped fluctuations
of the ionospheric electron density. 

• The core point in the presented theory was building the two-frequency
coherence function of the monochromatic components of the pulsed signal. The
theory to construct this quantity was developed in the papers [2000 (1), 2005(2)]. 
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• In the theory of wave propagation in random media, when studying the statistical 
moments of the propagating field in the conditions of strong scintillation, the approach 
is widely used, which is based on the diffusive Markov moment equations. 

• In this approach the closed form equations for the field moments are derived in the 
approximation of the delta-correlated fluctuations of the medium.

• To account for the effects of finite values of the longitudinal correlation length of 
fluctuations of the medium of propagation, the appropriate non-local (integro-
differential) equations should be considered.

In particular, such the non-local equation for the mean field can be found in classic books 
Tatarskij, et. al. [1978], Ishimaru [1978], Klyatskin [1980]. Along with this, we could never 
find any solution to this equation.

S.M.Rytov, Yu.A.Kravtsov, V.I.Tatarskii. Introduction to Statistical Radiophysics
V.I.Klyatskin. Stochastic Equations and Waves in Randomly-Inhomogeneous Media
A.Ishimaru. Wave Propagation and Scattering in Random Media

Extended Treatment of Statistical Moments of Random Fields in 
Nonlocal Markov Approximation [2021a,b (13,14); 2022 (15)]
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This is the approximation of the delta-correlated random field in the direction of propagation. 
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Simplified equations for the statistical moments

For the case of the incident field in the form of a plane wave propagating in z-direction in
the transversally layered medium, further simplifications in these equations can be
performed. 𝜀E = 𝜀E 𝑧 𝑣 = 𝑣 𝑧
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The correlation function of the exponential type

The explicit analytic solution to the integro-differential equations can be obtained for the
exponential model of the fluctuations of the form:

𝐵n 𝑧 − 𝑧l, 𝛒 = H. 𝛒
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𝑒
?|2$23|-∥ , Φo(𝛒, z)=

M#, *
M, 2𝐴n 0 − 2𝐴n 𝛒

Here 𝛒 = 𝛒" − 𝛒% , 𝑙|| is the longitudinal correlation radius of the electron density
fluctuations. For this model the explicit solutions to the equations are obtained in general case
of the medium which is non-homogeneous in the direction of propagation.
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Explicit representation for the mean field in the case of the 
exponential model and homogeneous background medium



• The plasma layer was specified by the 
Chapman profile with critical frequency 
10 MHz and scale height 40 km. 

• The transmission frequency was 
1000 MHz.

• The fluctuations of the fractional 
electron density were supposed to be a 
spatially homogeneous stochastic field 
with standard deviation of 0.02 and 
correlation function specified by the 
anisotropic exponential model with 
different vertical and horizontal scales 
(20 km and 1 km, respectively)

An example. Propagation through the non-homogeneous 
ionospheric layer

51



Fig. 2. Attenuation of the mean field of the plane wave at different values of the longitudinal 
correlation radius of fluctuations. The left panel presents a fragment of the graph on the 
right panel for the values of the variable s within the range 0 < s < 0.8. For larger values of s 
both curves merge.

Fig. 1. Correlation function at various values 
of correlation radius l
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Power spectrum (left) and correlation function (right) in the case of the 
inverse power-law spectrum of fluctuations at several values of inner scale 
and power exponent (k0=0.2 in these computations). 

Computations are performed at p=3.7 , k0=0.5, Aε(0)=1.
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• The analytical technique was developed for calculating the 
statistical moments of the field in a non-homogeneous background 
plasma layer, which also contains the fluctuations of the electron 
density, characterized by a finite value correlation scale.

• The nonlocal equations for the mean field and the coherence 
function were derived and solved, which presents the next order 
approximation, as compared to the traditional delta-correlated 
Markov approximation. It takes account of the finite values of the 
longitudinal correlation radius of fluctuations of the electron 
density.

• These results allow for refining the solution for the statistical 
moments of the field and evaluating the suitability of the first 
Markov approximation.

Conclusion
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IONOSPHERIC REFLECTION CHANNEL

Some problems of modelling the wideband HF ionospheric sky wave
channel of propagation will be discussed. The basis for the treatment is
the theory of HF propagation in the three-dimensional fluctuating
ionosphere. The HF ionospheric fluctuating channel is characterized in
terms of the:

i) statistical moments of the received wideband signals;
ii) this allows for generating any required random time series of the signal.

One hop path
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The basic representation for simulating the pulsed signal
propagating through the fluctuating ionosphere is represented
as the following Fourier integral

E is the field at the point of observation r, represented by the sum n of
propagating ionospheric modes;

P is the spectrum of the launched pulse;
Tn is the transfer function of the n-th mode in the background ionosphere;
Rn are the random functions (also called phasors), which account for the

effects of the ionospheric electron density fluctuations on each mode.
t is the slow time describing the quasi stationary motion of the medium
𝜏 is the fast time (fly time) of the signal
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Equation (1) is the basic representation, which allows for 
obtaining the field statistical moments of the signal E (e.g. 
scattering function, correlation and coherence functions, 
etc.), as well as its random time series representation 
generated.

To accomplish this: 

i) transfer functions Tn of each mode propagating in the 
background ionosphere should be constructed in terms of 
the geometrical optics approximation;

ii) statistical properties of random functions Rn (phasors) 
should be described.
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Transfer functions Tn is constructed in terms of the
geometrical optics employing the ray-tracing technique, so
that Tn can be represented for any given model of the
background ionosphere.

Left: Ionogram of oblique sounding.            Right: Corresponding reflection height
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The random phazors Rn are represented in terms of complex phases

)2(, nnnn iSeR n +== cyy

Complex phases  are represented by the appropriate integrals, written in ray-
centred co-ordinates where ray trajectories constructed for the background 
ionosphere are employed as the reference rays. 
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[2005 (25)]   V.E. Gherm, N.N. Zernov, H.J. Strangeways. HF Propagation in a Wideband 
Ionospheric Fluctuating Reflection Channel: Physically Based Software Simulator of the 
Channel. Radio Science, 40(1), RS1001, doi:10.1029/2004RS003093, 2005.
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The scattering effects are described in the Fresnel 
approximation for forward scattering. As the result,  the full-
wave type solution of the problem of HF propagation in the 
fluctuating ionosphere is determined accounting for ray bending 
and scattering on local random inhomogeneities including the 
contribution of diffraction in the scattering. 

The product of the complex phase method is the spaced time 
and frequency auto- and cross-correlation functions of       and      
and their frequency and time spectra. 

ncnS
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Correlation functions of complex phases
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- normalisation coefficient

- distribution of the dielectric permittivity of the     
background ionosphere along the reference ray

- variance of the fractional electron density fluctuations
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In the numerical simulation the following anisotropic inverse 
power law spatial spectrum of fluctuations of the ionospheric 
electron density is employed 

This is all further utilised to produce the statistical moments of 
the full field as well as random time series for      ,       and the full 
field.
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Spaced time and frequency correlation for phase fluctuations
and its frequency-time spectrum nS
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Spaced time and frequency correlation for log-amplitude
and its frequency-time spectrum

nc
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Spaced time and frequency cross-correlation function of
and        and its frequency-time spectrum

nc
nS
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Scattering function for the field E from (1 same as on  p.56)

Ψ!(Ω, 𝛿, 𝑡, 𝛥𝑡) is the correlation function for       , expressednR
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in terms of correlation functions of         and         .nc nS
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Spaced time and frequency correlation function ΨD(Ω, 𝛿, 𝑡, 𝛥𝑡) of
the random phasor         (for the fixed value of  Ω )nR
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Two-mode scattering function
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Time random walk of          for a given frequencynR
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Impulse with the bandwidth 12 kHz
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Simulated realizations of the multi-moded pulse propagation. 
The pulse length is 25 µs.
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Scattering function reconstructed from the simulated realizations of 
the pulse propagation. The pulse length is 25 µs.
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Impulse with the bandwidth 500 KHz
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As the result:  

The analytic-numerical technique demonstrated allows simulation of the effects on 
the wideband ionospheric HF channels of a wide range of the following parameters: 

(1) the transmission bandwidth
(2) the transmission frequency 
(3) the variance of fractional electron density fluctuations
(4) the speed and direction of the drift of the turbulence
(5) the anisotropy and outer scale of the irregularities
(6) the background ionosphere model
(7) the orientation of the propagation path to the     

geomagnetic meridian  
(8) the multi-mode effects. 
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Final remarks:

We have presented here the complete description of the transionospheric
stochastic channel of propagation. This included both the cases of weak
and strong scintillation of the fields of the frequencies of 100 – 1000 MHz.

As far as the ionospheric reflection HF channel is concerned, its description was
confined by the case of weak fluctuations (scintillation). This is because at
frequencies of the HF band the diffraction effects of the field on local random
inhomogeneities of the ionospheric electron density are much more
pronounced, than for the band of 100 – 1000 MHz.

Taking these effects into account for frequencies of the HF band requires further
extension of the known theories. The extended theory should be able to
describe the essential diffraction effects of the field on local random
inhomogeneities of the electron density of the ionosphere in the conditions of
fairly inhomogeneous background ionosphere, which additionally gives birth to
essentially curved ray paths in the background ionosphere. This is the subject for
further investigation.
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