

Joint ICTP-IAEA College on Plasma Physics Kinetic Models of Space Plasma Turbulence

Sergio Servidio Dipartimento di Fisica Università della Calabria sergio.servidio@fis.unical.it https://sergioservidio.wixsite.com/sergio

UNIVERSITÀ DELLA CALABRIA **DIPARTIMENTO DI FISICA**

Part I

- \bullet Introduction to astrophysical plasmas
- Numerical techniques for collisionless plasmas
- **•** From global to local simulations of homogeneous turbulence

Part II

- The role of magnetic reconnection in plasma turbulence
- Intermittency in plasmas turbulence: beyond MHD
- A new paradigm: phase space turbulence

Part III

- \bullet Particles in plasma turbulence
- Turbulence and shocks
- \bullet Beyond the heliosphere, far away in the Universe

Part I

➢ **Introduction on astrophysical plasmas**

Main properties of plasmas from spacecraft measurements

➢ **Numerical techniques for collisionless plasmas** The Eulerian and Lagrangian approaches Advanced numerical schemes for simulations of plasma turbulence

➢**From global to local simulations of homogeneous turbulence** Homogeneous simulations of Vlasov turbulence Comparisons with data

Plasma in the Universe

- A plasma is a ionized gas where charged particles interact via electromagnetic forces
- More than 99.9 % of matter in the Universe can be considered as a plasma
- Observations are somehow limited
- Plasma is mostly collisionless

The "new era" of space missions *⁵*

Tremendous technology improvement: a *golden age* **for space missions**

The heliosphere is a laboratory for the comprehension of the Universe

Pioneering measurements in the solar wind *⁶*

Turbulence

A simple picture of turbulence

Turbulence in space plasmas

Richardson et al, GRL, 1995

Most of the plasma energization (plasma heating and particle acceleration) occurring in turbulent collisionless plasmas, such as those permeating the solar system is expected to occur at kinetic scales (scales \sim particle gyroradii and below)

How is the plasmas heated and how are particles accelerated?

UNIVERSITÀ

Temperature "anomalies" in space plasmas *⁹*

Plasma models *¹⁰*

11

The Vlasov-Maxwell system

$$
\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} \Big[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \Big] \cdot \nabla_{v} f_{\alpha} = 0 \longrightarrow f_{\alpha} = f_{\alpha}(\mathbf{x}, \mathbf{v}, t)
$$

\n
$$
\nabla \cdot \mathbf{B} = 0 \qquad \int f_{\alpha}(\mathbf{x}, \mathbf{v}, t) d\mathbf{x} d\mathbf{v} = N_{\alpha}
$$

\n
$$
\nabla \cdot \mathbf{E} = 4\pi \sum_{\alpha} q_{\alpha} \int f_{\alpha}(\mathbf{x}, \mathbf{v}, t) d\mathbf{v}
$$

\n
$$
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}
$$

\n
$$
\nabla \times \mathbf{B} = \frac{4\pi}{c} \sum_{\alpha} q_{\alpha} \int \mathbf{v} f_{\alpha}(\mathbf{x}, \mathbf{v}, t) d\mathbf{v} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
$$

\n6D + **time!**

Method 1: the Eulerian approach

The Vlasov equation is solved directly for the particle distribution function, on a phase space grid. Moments (density and current) are evaluated by direct integration of the distribution function

- Zero noise
- ▶ Very computationally demanding because of memory limitations

Method 2: the Lagrangian approach

Vlasov is solved via a m*ontecarlo* technique. The equations of motion of a large number of (macro) particles are solved and the distribution function is reconstructed. Maxwell equations are evaluated on a grid, through interpolation • Very cheap from the computational point of view \blacktriangleright Numerical noise

> **We will use both methods, depending on the problem that we want to study**

Method 1: Eulerian

- Nonlinear integro-differential equation in 6D phase space + time
- Very hard and time demanding to solve numerically!
- To date, numerical solutions are available for approximated, reduced systems

9	Hybrid Vlasov-Maxwell		
\n $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e}{m} \left[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right] \cdot \nabla_v f = 0$ \n	\n $\mathbf{E} = -\frac{\mathbf{u} \times \mathbf{B}}{c} + \frac{1}{nec} (\mathbf{j} \times \mathbf{B}) - \frac{1}{ne} \nabla P_e$ \n	\n $\mathbf{e} = -\frac{\mathbf{u} \times \mathbf{B}}{c}$ \n	\n $\frac{\partial f_e}{\partial t} + v \frac{\partial f_e}{\partial x} - \frac{eE}{m} \frac{\partial f_e}{\partial v} = 0$ \n
\n $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$ \n	\n $\nabla \times \mathbf{B} = \frac{4\pi \mathbf{j}}{c}$ \n	\n $\frac{\partial E}{\partial x} = 4\pi e \left[n_0 - \int f_e(x, v, t) dv \right]$ \n	
\n $\mathbf{v} = \mathbf{P}_e(n)$ \n	\n $\mathbf{E} = -\frac{e}{c}$ \n		

Vlasov equation is an advection equation in phase space

- Let us consider the 1D-1V case (we will discuss later the generalization to full phase space) $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial y} = \frac{\partial f}{\partial t} + \frac{\partial (vf)}{\partial x} + \frac{\partial (af)}{\partial y} = 0$ $f = f(x, v, t); a = a(x)$
- Let us focus on advection in *x* first (later we will discuss how to couple it to advection in *v*)

 $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0$ $f = f(x, t);$ $x \in [0, L];$ $t \in [0, T];$ $v = const.$ $f(x, 0) = f_0(x);$ $f(0,t) = f(L, t), \forall t \in [0, T]$

For simplicity, periodic boundary conditions

Three main steps:

14

1) Discretize (*x*,*t*) plane

2) Approximate derivatives in discretized plane (allowed operations are +,-,x,/)

3) Create algorithm to solve the equation

Spatial derivatives

Discretization:
\n
$$
x_{i} = (i - 1)\Delta x; \quad i = 1, \cdots, N_{x}; \quad \Delta x = \frac{L}{N_{x}}
$$
\n
$$
x_{0} = 0, \quad x_{N_{x}} = L - \Delta x
$$
\n
$$
t_{n} = n\Delta t; \quad n = 0, \cdots, N_{t}; \quad \Delta t = \frac{T}{N_{t}}
$$
\n
$$
t_{0} = 0, \quad t_{N_{t}} = T
$$

Derivatives approximation (finite differences):
 $f(x_{i+1}) = f(x_i) + \Delta x \left(\frac{df}{dx}\right)_{x_i} + \frac{1}{2} \Delta x^2 \left(\frac{d^2f}{dx^2}\right)_{x_i} + \frac{1}{3!} \left(\frac{d^3f}{dx^3}\right)_{x_i} + o(\Delta x^4)$ (1) $\frac{df}{dx}\Big|_{x_i} = \frac{f(x_{i+1}) - f(x_i)}{\Delta x} + o(\Delta x)$ $f(x_{i-1}) = f(x_i) - \Delta x \left(\frac{df}{dx}\right)_{x_i} + \frac{1}{2} \Delta x^2 \left(\frac{d^2 f}{dx^2}\right)_{x_i} - \frac{1}{3!} \left(\frac{d^3 f}{dx^3}\right)_{x_i} + o(\Delta x^4)$ (2)
 $\frac{df}{dx} = \frac{f(x_i) - f(x_{i-1})}{\Delta x} + o(\Delta x)$ (1) - (2) \Rightarrow $\left(\frac{df}{dx}\right)_{x_i} = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + o(\Delta x^2)$

(1) + (2) \Rightarrow $\left(\frac{d^2f}{dx^2}\right)_{x_i} = \frac{f(x_{i+1}) + f(x_{i-1}) - 2f(x_i)}{\Delta x^2} + o(\Delta x^2)$ Centered differences

DELLA CALLERIAN **EF ICTP (SEE**) Upwind schemes (first-order Godunov method)

16

$$
f_i^{n+1} = f_i^n - |v| \Delta t \left(\frac{f_i^n - f_{i-1}^n}{\Delta x} \right), \quad v > 0
$$

$$
f_i^{n+1} = f_i^n + |v| \Delta t \left(\frac{f_{i+1}^n - f_i^n}{\Delta x} \right), \quad v < 0
$$

$$
A \le 1 \Rightarrow \Delta t \le \frac{\Delta x}{|v|} \qquad \text{CFL stability condition}
$$

UNIVERSITÀ **Phase space integration: the splitting scheme**

Let's go back to our 1D-1V Vlasov equation

$$
\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial v} = \frac{\partial f}{\partial t} + \frac{\partial (vf)}{\partial x} + \frac{\partial (af)}{\partial v} = 0
$$

$$
f = f(x, v, t); \quad a = a(x)
$$

Now we know how to solve advection equations. Let's split the evolution in 2 parts:

17

Couple $f_{\sf x}({\sf x},t)$ and $f_{\sf v}({\sf x},t)$ to get a solution for $f({\sf x},{\sf v},t)$:

 $f(n\Delta t) = {\Lambda_x(\Delta t/2)\Lambda_v(\Delta t)\Lambda_x(\Delta t/2)}^n f_0 + o(\Delta t^3)$

The splitting scheme *Cheng & Knorr, JCP, 1976;* Generalized to 6D in *Mangeney et al. JCP, 2000*

Method 2: Particle in Cell (PIC)

$$
f_{\alpha} = f_{\alpha}(\mathbf{x}, \mathbf{v}, t) \qquad \qquad \frac{df_{\alpha}}{dt} = \frac{\partial f_{\alpha}}{\partial t} + \frac{\partial f_{\alpha}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial t} + \frac{\partial f_{\alpha}}{\partial \mathbf{v}} \cdot \frac{\partial \mathbf{v}}{\partial t}
$$

If one moves along a particle trajectory (characteristics):

$$
\frac{\partial \mathbf{x}}{\partial t} = \mathbf{v}
$$
\n
$$
\frac{\partial \mathbf{v}}{\partial t} = \frac{q_{\alpha}}{m_{\alpha}} \left[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right]
$$
\nTherefore:
\n
$$
\frac{df_{\alpha}}{dt} \bigg|_{orbit} = \frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} \left[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right] \cdot \nabla_{v} f_{\alpha} = 0
$$

Vlasov equation can be solved by integrating numerically the particle equations of motion (Runge-Kutta, Adams-Bashforth, Boris, etc.)

The distribution function can be reconstructed using the fact that it remains constant along particle trajectories

PIC: a global scheme

Individual particles are tracked in continuous phase space, whereas moments of the distribution are computed simultaneously on mesh points ∂ *x*

$$
\frac{\partial \mathbf{v}_p}{\partial t} = \mathbf{v}_p
$$
\nwhere\n
$$
\frac{\partial \mathbf{v}_p}{\partial t} = \mathbf{E} - \mathbf{v}_p \times \mathbf{B}
$$
\n
$$
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} = \nabla \times \left[\mathbf{u} \times \mathbf{B} - \frac{1}{\rho} \mathbf{j} \times \mathbf{B} - \frac{1}{\rho} \nabla P_e - \eta \mathbf{j} \right]
$$
\n
$$
\rho_e = \rho_i \equiv \rho = \int f_p(\mathbf{x}_p, \mathbf{v}_p) d^3 \mathbf{v}_p; \quad \mathbf{u} = \frac{1}{\rho} \int \mathbf{v}_p f_p(\mathbf{x}_p, \mathbf{v}_p) d^3 \mathbf{v}_p
$$
\n
$$
P_e = \rho^3; \quad \mathbf{j} = \nabla \times \mathbf{B}
$$

• Approximate long range EM interactions

- Use macro-particles
- Track macro-particles continuously in velocity space
- Compute fields, densities and currents on a mesh (grid)
- Problem no longer scales as *O(n²)*

Current-advance method plus a leapfrog scheme. Based on:

Finite difference schemes for the fields:

PIC: Interpolation

Example of 2D interpolation

From bilinear approximation of the function, one gets:

$$
F_p = \frac{F_{i,j}A_3 + F_{i+1,j}A_4 + F_{i+1,j+1}A_1 + F_{i,j+1}A_2}{A_1 + A_2 + A_3 + A_4}
$$

Parallel computing

OpenMP

Plasma simulations of turbulence *²³*

Karimabadi et al, PoP, 2013

Global & local simulations *²⁴*

(I) Corona (II) CME (III) Global fluid & kinetic models

> **(IV)Magnetopause simulations**

(V) Homogeneous turbulence

A "classic": MHD global simulations *²⁵*

3D compressible MHD simulation, based on a upwind finite volume method, of the solar wind – earth system

T=04:00:00 hrs

T=08:00:00 hrs

Can we model large systems with self-consistent kinetic simulations?

Global kinetic simulations *²⁷*

Hybrid Vlasov

Full PIC

M Palmroth et al., LRCA 4 (2018) V. Roytershteyn et al, PoP (2014)

Global Vlasov simulations: kinetic effects *²⁸*

TABLE I. List of parameters for the global hybrid simulation runs shown in this paper. The number of particles per cell was 200. The spatial resolution was 0.5*d*, except for runs 1, 5 $(1d)$ and run 6 $(0.25d)$.

Time evolution of the magnetosphere where the IMF direction changes in time. The arrows indicate the direction of the magnetic field. A large foreshock bubble is evident

Kinetic turbulence? *²⁹*

For all the systems we saw so far, high-resolution simulations suggest:

- Quasi-homogeneous turbulence
- Small scale structures
- Small scales reconnection events?

From global to local

Global simulations Local simulations

• Kinetic protons & alpha particles, while electrons are treated as a massless fluid *3 rd* order splitting scheme

UNIVERSITÀ

Eulerian Hybrid Vlasov-Maxwell (HVM) solver

$$
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \left[\mathbf{E} + \mathbf{v} \times \mathbf{B} \right] \cdot \nabla_v f = 0
$$
\n
$$
\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \frac{1}{n} \mathbf{j} \times \mathbf{B} - \frac{1}{n} \nabla P_e + \eta \mathbf{j}
$$
\n
$$
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}
$$
\n
$$
\nabla \times \mathbf{B} = \mathbf{j}
$$
\n
$$
m_e \approx n_i \approx n
$$
\n
$$
P_e = nT_e
$$
\n
$$
P_e = nT_e
$$
\n
$$
V_A = \frac{B}{(4\pi \rho_p)^{1/2}}; \quad \Omega_p = \frac{e}{m_p c}; \quad d_p = \frac{V_A}{\Omega_p}
$$
\n
$$
V_A = V_A = V_A = 1000 \text{ Tb}!!
$$
\n
$$
V_A = \frac{V_A}{(4\pi \rho_p)^{1/2}}; \quad \Omega_p = \frac{e}{m_p c}; \quad d_p = \frac{V_A}{\Omega_p}
$$
\nTo expressive, from the equation of view!

Reduced geometry 2D-3V:

- 2D in space (fields have 3 components but depend only on 2 coordinates) • 3V in the velocity space
- Turbulence is studied in a plane perpendicular to B_{α} , where its intensity is maximum (spectral anisotropy)

 $L_0 = 2 \pi \alpha d_i$, $B_0 = 1 \hat{e}_z$, $T_e / T_i = 1$, $\eta = 1.7 \times 10^{-2}$, $v_{max} = \pm 5 v_{ti}$, Parameters: • Periodic boundary conditions in space $f(|v|) > v_{max} = 0$

*N*_{*x*}</sub> = 512^2 , *N*_{*v*} = 81^3 → 3.5×10^{10} *points*

DELLA CALABRIA EF (CTP) A recipe to study turbulence: initial conditions

33

- Decay turbulence simulations
- $\delta b/B$ _o ~ 1/3, 2/3 (as in the solar wind)
- Plasma beta from $\beta \sim 0.2$ to 5
- Maxwellian distribution with uniform density and temperature
- *L 0 ~ 100 d i* (large scale box)
- Incompressible initial conditions
- No correlation between velocity and magnetic field
- Large scale, uncorrelated (random) eddies, in order to mimic turbulent cascade in fluids: energy only in a box in *k*-space, for|*k*|<|*K*ֵl, and with random Fourier phases $\phi_{_{\rm K}}$

Decaying turbulence

The cascade is fully developed when small scale activity reaches its maximum. This time can be quantified as the maximum of the mean square current density:

UNIVERSITÀ

Spectral features of turbulence

- \triangleright Equations that describe the plasma in a self-consistent way are very complex and computationally demanding
- \triangleright There are two approaches to study plasma dynamics: the Eulerian (evolve the distribution function) and the Lagrangian approach (solve equations for particles)
- \triangleright Global simulations suggest that turbulence is triggered throughout the heliosphere: local homogeneous simulations of turbulence represent an excellent strategy
- \triangleright Numerical simulations are complementary to observational data. Understanding the reality cannot rely on simulations or observation alone, comprehension is given by a right balance among the two

Vlasov turbulence: **Servidio et al., PRL 2012, PRL 2016, PRL 2017**

"Calculators can only calculate they cannot do mathematics." J. A. Van de Walle