Magnetic reconnection

Ideal Ohm’s law
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The total variation of the magnetic flux
through a surface in motion with the fluid

is conserved.

Frozen-in condition: two fluid elements
connected by a field line at a given time stay
connhected at later times.




Magnetic reconnection

A 2D example
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Magnetic reconnection

- The magnetic flux

Non ideal Ohm’s | - »X» 0B > is not conserved.
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FIG. 1. (Color online) Evolution of measured central electron temperature (T.) profile on a poloidal plane during a short crash phase, and expected flux surfa-
ces during the same period based on MSE diagnostics. (a) Flux build up time (ty) is typically 100 ms and crash (reconnection) time (7,..) is 100-150 ys. (b)
Crash phase evolution of T.(R,Z) during 150 ps. (c) Shaded (gray) area shows constant T, region indicating field lines that are reconnected through the recon-

nection region. Broken lines show the original radius of q = 1 flux surface.®
Yamada, PoP 2011
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MR resistive or collisionless?

At high temperature, such as in a fusion experiment, resistivity is very low.

Discrepancies between theoretical predictions based on the resistive MHD and
typical today's large experiments values brought the attention to electron inertia.

From Sweet-Parker model (Wesson 1990) for the Jet parameters:

T, ~3ms ; T, ~300 s

r

Electron inertia drives the reconnection process providing the effective impedance
to the parallel electric field, relaxing the frozen-in condition of the ideal MHD.



MR: linear results

* |If we linearize the system of equations of the MHD model assuming an equilibrium
with no flow equilibrium and: B = —tanh(x)e,, y = log(cosh(x)), ¢ = 0.

« and look for solution of the type: @ = dy(x)exp(iky + yt), ¢ = dp(x)exp(iky + yt)

* Adopting the standard matching asymptotic techniques for boundary g +
layer problems we can find an expression for the free energy of the A= lim( ?ln l,flom)
system for the instability to grow and for the dispersion relation for 501 4% )

the growth rate of the reconnecting mode.

* We report here the growth rates for the two regimes resistive and collisionless:

small A’ regime: large A’ regime:
; resistive
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Past two decades results in 2D
Quasi-explosive behavior
Phase mixing process
Secondary instabilities
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Secondary instabilities: riasmoid

* Current sheets that form during the nonlinear development of spontaneous magnetic
reconnection are characterized by a small thickness. They can become unstable to the
formation of plasmoids, which allows the magnetic reconnection process to reach high
reconnection rates.
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Granier et al. PRE 2022



Secondary instabilities: «uinuemnor
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Secondary instabilities: «uinuemnor
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Borgogno et al. PoP 2005

M R COI I iSion IeSS Past two decades results in 3D

Magnetic chaos
Coherent structures influencing transport

B=B,¢ +Vy (X,t)x¢,

Magnetic field line equations:
for fixed time, t, z plays the role
of field line time.

dx__ oy, dy_oy

dZz 0y’ dz 0x

* A reconnection event has been induced
by a double helical perturbation
resonating at two different surfaces.

* The island sizes increase until they start
to influence each other leading to a
chaotic setting initially enclosed between
the islands

NO INFORMATION ON TRANSPORT!



PoP 2017

Perona et al.

M R COI I iSion Iess Past two decades results in 3D
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Applications

* Control of magnetic islands in tokamaks by ECCD injection

The magnetic island evolution under the action of a current generated
externally by electron cyclotron wave beams is studied using a RRMHD
plasma model. The use of a 2D reconnection model shows novel featur:
of the actual nonlinear evolution as compared to the zero-dimensional

model of the generalized Rutherford equation. When the radiofrequenc (®)

control is applied to a small magnetic island, the complete annihilation
of the island width Is followed by a spatial phase shift of the island,
referred as “flip” instability. On the other hand, a ECCD injection in a
large nonlinear island can be accompanied by the occurrence of a KH
instability. These effects need to be taken into account in

designing tearing mode control systems based on radio frequency
current-drive
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Applications

* MR under effect of a runaway current in tokamaks

The goal of this work is to investigate the problem of the tearing
stability of a post-disruption weakly collisional plasma where the
current is completely carried by runaway electron, adopting a two
fluid model in the description of the reconnection process.
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Applications

* Temperature transport barriers in RFX

Increasing the plasma current RFX-mod
experiments show (RFX group, Nature 2009):

* transition from chaotic configurations to ordered
ones, named Quasi Single Helicity (QSH) states;

* consequent formation of a strong transport barrier ™
enclosing high temperature zone. S
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Le et al. GRL 44, 2096-2104 (2018)

the Earth’s dayside
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Literature analyzing data from the MMS
mission explains the particle emission in the
out of page direction by the passage of the
spacecraftinside the asymmetric magnetic
island.
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Kelvin-Helmholtz instability

* Magnetic reconnection processes always lead to the formation of regions with
high velocity shear confined to narrow sheets.

* Neutral gas: Linear equation for the vorticity:

oW1 + Vo - Vwi 4+ v - Vwy =0
Vortex sheet Vix) = { Vi x<0 W1t Vo 1+ V1 0
- V, x>0 wi = V21, vi = e, X Vo1
A vortex sheet is always unstable to perturbations:
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D. Biskamp, Magnetic Reconnectionin Plasmas, Cambridge University Press 2000




Kelvin-Helmholtz instability

* The term KH is used in a broader sense for general shear-flow instabilities

* Neutral gas:

Bickley jet

There are two classes of solution:

» V(x)=sech’x

* Even mode: corresponds to kinking of the jet (like KH for vortex sheet)

* Odd mode: corresponds to pinching of the jet

Kink (even) mode more unstable
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Magnetized Kelvin-Helmholtz

* A magnetic field parallel to the velocity field influences the instability
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Magnetized Kelvin-Helmholtz

Bickizy jet
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Summary

* Fluid equations allow to simplify problems and to switch physical parameters one at time

* In plasma physics the problem of magnetic reconnection can be firstly addressed in the
fluid framework

* Examples of studies carried out in the fluid framework addressing specific issues relevant
in laboratory and space plasmas

* The process of magnetic reconnection is intimately linked to fluid instabilities

* Tomorrow we see how these two classes of instabilities coexist and compete in a
turbulent context
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