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Giambiagi Lecture Hall
Juan Jose Giambiagi graduated in physics in 1948 at the University of 
Buenos Aires (Argentina) and received his PhD in 1950. 

He was Director of our Physics Department in 1966, and had to leave the 
University of Buenos Aires and the country during a military coup, after  
the so-called “night of the long sticks”. 

He settled in Brazil and pioneered the development of physics in 
Latinamerica. He was the Director of the Centro Latinoamericano de 
Fisica (CLAF) for several years (1986-1994). 

He also participated in the early stages of the creation of ICTP in the 
early 60s and was a member of its Scientific Council from 1987 to 1995. 

He made important contributions to dimensional regularization in 
collaboration with Carlos Bollini.



Earth and planets Sun and stars Interstellar medium

Pulsars Accretion disks Galaxies

Magnetic fields in Astrophysics



➡ It is a fluid-like theoretical description for the dynamics of matter 

➡ Baryonic matter in the Universe is mostly hydrogen.  

➡ At temperatures above 104 K  it becomes a hydrogen plasma, i.e. a gas made of   
        protons and electrons 

➡ The large scale behavior of this gas can be described through fluidistic equations  
 (Navier-Stokes). 

➡ This fluid is made of electrically charged particles and therefore it suffers electric and  
 magnetic forces. 

➡ Not only that, these charges are sources of self-consistent electric and magnetic fields. 
 Therefore, the fluid equations will couple to Maxwell’s equations. 

➡ At small spatial scales (and fast timescales) non-fluid or kinetic effects become  
 non-negligible. 

What do we mean by MHD?



➡ The MHD equations are: 

which describe the dynamics of the fluid as well as the evolution of the magnetic field.  

➡ The induction equation is the result of Ohm’s law 

and Faraday’s equation.
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MHD equations



∂ B⃗
∂ t

= ∇⃗ × ( u⃗× B⃗ )

➡ The magnetic force can be split into:

➡ In the asymptotic limit of negligible resistivity:

Magnetic pressure  
and magnetic tension

Frozen-in condition
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MHD equations



➡ Within this level of description (which is adequate at large spatial scales) there  
 is a variety of important plasma processes that have traditionally been addressed: 

➡  Instabilities, shocks and waves (Alfven and magnetosonic) 

➡  Dynamo mechanisms to generate magnetic fields 

➡  MHD turbulence 

➡  Magnetic reconnection  

Aplications of MHD



➡ We integrate the MHD equations numerically, using a 
spectral scheme in all  three spatial  directions  (Gomez, 
Milano and Dmitruk 2000; also Dmitruk, Gomez & 
Matthaeus 2003) 

➡ We show results from 256x256x256  runs performed  in 
(CAPS), our linux cluster with 80 cores 

➡ For the spatial derivatives, we use a pseudo-spectral  
scheme with  2/3-dealiasing. Spectral codes are well suited 
for  turbulence studies, since they provide exponentially fast 
convergence.  

➡ Time integration is performed with a second order Runge-
Kutta scheme.The time step is chosen to satisfy the CFL 
condition.

Simulations



Energy cascade 
  - energy flux toward high k 
  - vortex breakdown 

Scale invariance  
   - energy flux in k: 

   - energy power spectrum: 

Therefore
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➡ From mean field theory (Krause & Radler 1980), we know that the turbulent generation of 
magnetic fields (the alpha effect) is proportional to the kinetic helicity of the flow. 

➡ To study this mechanism through direct simulations, we externally drive the flow with a helical 
force at large scales (an ABC pattern), until a stationary turbulent state is reached (Mininni, Gómez 
& Mahajan, 2003, ApJ, 587, 472; Mininni, Gómez & Mahajan, 2005, ApJ, 619, 1019)  

➡ At that point, a magnetic seed is implanted at small scales and the  
3D  MHD equations are evolved (Meneguzzi, Frisch & Pouquet 1981). 
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➡ The boxes show the intermittent 
spatial distribution of positive and 
negative kinetic helicity H, clearly 
displaying a net unbalance.
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➡ The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003).  

➡ The Kolmogorov slope is also displayed for reference. 

➡ The full line is the kinetic energy power spectrum and the 
dotted line is the total energy.  

t = 0

t = 20

Energy power-spectra



➡ The power spectrum of magnetic energy grows in time until it 
reaches equipartition at each scale (Brandenburg et al. 2003).  

➡ The Kolmogorov slope is also displayed for reference. 

➡ The green line is the kinetic energy power spectrum and the 
red line is the magnetic energy.  

t = 0

t = 20

Energy power-spectra



➡ The image on the right shows the spatial  
distribution of magnetic energy. 

➡ The image below shows an initial exponential  
growth stage (kinematic dynamo) for the total  
magnetic energy. At later times it saturates when  
it reaches approximate equipartition with the total  
kinetic energy of the turbulent flow.

➡ As predicted by MFT (Steenbeck et al. 1966), 
kinematic helicity (H) at the microscale 
produces magnetic field at macroscopic scales 
(large-scale dynamos).

Turbulent dynamos



➡ When forcing is applied at intermediate  
scales, an accumulation  of magnetic  
energy is observed at the  largest scales. 

➡ This behavior is caused by the inverse 
cascade of magnetic helicity.  

➡ The magnetic field at large scales is  
approximately force-free, i.e.
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➡ Small scales, however, are consistent with a strongly 
turbulent MHD regime. 

➡ This configuration can be representative of active 
regions of the solar corona, which are approximately force-
free at large scales and at the same time are being heated 
by a strong MHD turbulence at smaller scales (Gómez & 
F.Fontán 1988)

Force-free equilibria



Fluid equations for multi-species plasmas
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➡ For each species s we have (Goldston & Rutherford 1995): 

‣        Mass conservation 

‣        Equation of motion 

‣        Momentum exchange rate 

➡ These moving charges act  as sources for electric and magnetic fields: 

‣        Charge density 

‣        Electric current density
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Small scales: two-fluid MHD

➡ The dimensionless version, for a length scale      , density       and Alfven speed0L 0n 00 4/ nmBv iA π=

➡ We define the Hall parameter 

    as well as the plasma beta                                       and the electric resistivity 

➡ Adding these two equations yields: 

    where  

    and 
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Generalized Ohm’s law

whereμ
d ⃗Ue

dt
= −

1
ϵ

( ⃗E + ⃗Ue × ⃗B ) −
β
n

⃗∇ pe +
η

nϵ
⃗J

Note that the equation of motion for electrons is also Ohm’s law

μ =
me

mi
≪ 1

Considering that

⃗U =
me

⃗Ue + mi
⃗Ui

me + mi

⃗J = n( ⃗Ui − ⃗Ue)

n = 1 (incompressible)

⃗Ui = ⃗U + μϵ ⃗J

⃗Ue = ⃗U − (1 − μ)ϵ ⃗J

In the limit of massless electrons (i.e.                   )μ → 0

0 = − ( ⃗E + ( ⃗U − ϵ ⃗J ) × ⃗B ) − βϵ ⃗∇ pe + η ⃗J also known as the generalized Ohm’s law

At large scales, much larger than the ion inertial length (i.e.   ), it reduces toϵ → 0

E + ⃗U × ⃗B = η ⃗J



Ideal invariants in multi-fluid plasmas
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➡ For each species s  in the incompressible  and  ideal limit 

➡ Using  that                                                              and  

    we can readily show  that  energy is an ideal invariant, where 

➡ We also have a helicity per species which is conserved, where 
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Normal modes in 2F-HMHD 

➡ If we linearize our equations around  an  equilibrium characterized by a uniform magnetic field we obtain, in the 
    incompresible case, the following dispersion relation: 

➡ Asymptotically, at very large k, we have two branches 

    while for very small  k, both branches simply become   
    Alfven modes, i.e. 

➡ Different approximations, just as one-fluid MHD, Hall-MHD and electron-inertia MHD  can clearly be identified  
in this diagram.
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MHD 

RMHD heating of solar coronal loops (Dmitruk & Gomez 1997, 1999) 

Kelvin-Helmholtz instability in the solar corona (Gomez, DeLuca & Mininni 2016) 

Hall-MHD 

3D HMHD turbulent dynamos. (Mininni, Gomez & Mahajan 2003, 2005; Gomez, Dmitruk & Mininni 2010) 

2.5 D HMHD reconnection at Earth magnetopause (Morales, Dasso & Gomez 2005, 2006) 

RHMHD turbulence in the solar wind (Martin, Dmitruk & Gomez 2010, 2012) 

Hall MRI in accretion disks (Bejarano, Gomez & Brandenburg 2011) 

Electron inertia 

1D model of perpendicular shocks (Gomez et al. 2021). 

Two-fluid turbulence in the solar wind (Andres et al. 2014, 2016). 

Fast reconnection in 2.5 D (Andres, Dmitruk & Gomez 2014, 2016).

Some applications



Today we presented the MHD equations  as a valid description of the large-scale 
behavior of astrophysical plasmas. 

As an example, we numerically show a turbulent dynamo in action. An initial 
magnetic seed grows to equipartion with kinetic energy, provided that the flow is 
helical. 

We also introduced  the two-fluid description as an extended version of MHD that 
goes beyond the ion and even the electron inertial lengths. 

In the next lecture, we will explore various applications of this extended MHD, such 
as shock formation, turbulence and magnetic reconnection. 

Conclusions



➢ We focus on Fourier-Galerkin methods. Let us illustrate on Burgers equation 

for u(x,t) on the interval                        assuming periodic boundary conditions and 
the initial condition  

➢ We expand in a truncated Fourier expansion 

➢ Demanding zero projection of the solution u(x,t) on the truncated Fourier space 

➢ This truncated expansion                  converges exponentially fast to the exact 
solution as   

However, it is computationally very demanding, it involves                  operations.
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Simulations: spatial integration



➢ The FFT algorithm yields the discrete set         from the set               after                        
floating point operations. 

➢ The strategy of computing spatial derivatives in Fourier space and nonlinear terms  
in physical space, is known as pseudo-spectral, i.e.  

➢ The relation between discrete Fourier coefficients           and the continuous ones is  

➢ This sum causes a spurious effect known as aliasing when computing nonlinear terms. 
Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.
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Simulations: spatial integration



➢ We advance the solution through discrete time steps 

➢ In compact notation, if      

where F is a nonlinear and spatial differential operator, we use a second order 
Runge-Kutta scheme.  

➢ We first advance half a step 

and use                   to jump the whole step 

➢ This is second order accurate (i.e.                   ). The size of the step is limited by  

the CFL condition, i.e                               for 

titi Δ=

),( tUF
dt
dU

=

),(
2

2
1

i
iii tUFtUU Δ

+=
+

2
1+iU ),(

2
1

2
11

+

++ Δ+= i
iii tUFtUU

))(( 2tO Δ

0/uxt Δ≤Δ uuu xt ∂=∂ 0

Simulations: temporal integration


