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Outlook

• Introduction in ML-based decision making systems?
• The issue of fairness in such systems: why do we have to care for fairness?
• Conceptually: What is fairness? 
• Practically: How to measure fairness?
• Concretly: How to build fair ML-based decision systems
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Ethical and Societal Challenges of AI: The European AI Act

“The AI Act aims to implement an ecosystem of trust by proposing a legal 
framework within which people use AI-based solutions while encouraging 
businesses to develop them.“ (https://www.mondaq.com/india/new-technology/1193996/eu-artificial-intelligence-act-an-overview )

• Draft (2021) under discussion - to be finalized in the next months

Basis: Ethics guidelines for trustworthy AI (2019)
1. Human Agency and Oversight.
2. Technical Robustness and Safety.
3. Privacy and Data Governance.
4. Transparency.
5. Diversity, Non-discrimination and Fairness.
6. Societal and Environmental Well-being.
7. Accountability.
(see https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf) 

https://www.mondaq.com/india/new-technology/1193996/eu-artificial-intelligence-act-an-overview
https://www.aepd.es/sites/default/files/2019-12/ai-ethics-guidelines.pdf
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Data-based decision making
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Applications
• Grant loans (banks)
• Individualized insurance

premiums
• Algorithmic Hiring
• Predicting Policing

• Law inforcement
• Optimize social care
• Admission to university programs
• …
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The case of COMPAS
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Fairness of decision systems

Fairness is about consequences in people’s life
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Driver: Goal of decision maker: «making better decision»
• Making more money, saving more lives, …

Consequences: harm/benefit is distributed between groups
• Fairness =  moral aspects of this distribution
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Example: Bank loan

Loan: 1 M€, for 4 years, interest rate 10%
Customer has a payback probability of p (0<p<1)
Under which conditions should the bank give a loan to the customer? 

Solution: p>0.714
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Which customers to accept? (hypothetical data)

Condition for acceptance: 
p>0.714

Acceptance 
threshold

ID prediction p
1 0.81
2 0.80
3 0.79
4 0.77
5 0.75
6 0.74
7 0.74
8 0.73
9 0.72

10 0.72
11 0.68
12 0.68
13 0.68
14 0.62
15 0.60
16 0.55
17 0.48
18 0.47
19 0.40
20 0.37
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Looking at gender

ID
prediction 
p

decision 
D sex

1 0.81 1 m
2 0.80 1 m
3 0.79 1 m
4 0.77 1 m
5 0.75 1 f
6 0.74 1 m
7 0.74 1 m
8 0.73 1 m
9 0.72 1 f

10 0.72 1 f
11 0.68 0 m
12 0.68 0 m
13 0.68 0 f
14 0.62 0 f
15 0.60 0 f
16 0.55 0 m
17 0.48 0 f
18 0.47 0 f
19 0.40 0 f
20 0.37 0 f

Compare men and women:  
- What is the chance to receive a 
loan?

men: 7 out of 10  70%
women: 3 out of 10  30%

Result: 
systematic disadvantage of 

women
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Digging deeper: What is meant with «fairness»?

Most popular definition: Fairness = nondiscrimination («Group fairness»)

• We consider social groups, e.g. men and women

• Does the decision system lead to unjustified inequality? Is one group «worse off» 
compared to another, in a non-justifiable way? 

Example:
Normative position: «Men and women should have the same chance for a positive decision
(D=1)»
• Compare 𝑃𝑃 𝐷𝐷 = 1 𝑚𝑚 with 𝑃𝑃 𝐷𝐷 = 1 𝑓𝑓

Fairness would then mean: 𝑃𝑃 𝐷𝐷 = 1 𝑚𝑚 = 𝑃𝑃 𝐷𝐷 = 1 𝑓𝑓
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What is fairness? - Approaches

Group fairness: Consequences of decisions are equal for groups
(on average)  ???

Individual fairness: Similar persons receive similar decisions:

𝑥𝑥 ≈ �⃗�𝑦 ⇒ 𝐷𝐷(�⃗�𝑥) ≈ 𝐷𝐷(�⃗�𝑦) ???

Counterfactual fairness: «If I were a woman, the decision is the same!»:

�⃗�𝑦 = 𝐶𝐶𝐶𝐶 �⃗�𝑥 ⇒ 𝐷𝐷 �⃗�𝑥 = 𝐷𝐷(�⃗�𝑦) ???
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FairnessBias of prediction

Sidenote: Bias vs fairness

Input: data
• Data quality
• Bias (selection, 

observation, model …)

Output: decisions
benefit / harm for individuals
Inequalities between social 
groups

Predictive 
model

Decision 
rule

Known 
features 

�⃗�𝑥

Prediction �𝑌𝑌 of 
unknown 
variable Y

Decision  
𝐷𝐷 = 𝑔𝑔( �𝑌𝑌, 𝑧𝑧)

External 
factors 𝑧𝑧
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Different ways of defining fairness
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Bank loan: 

• Option 1: Fair is if men and women applicants have the same chance of 
acceptance

• Option 2: Fair is if, among the customers who are able and willing to pay back, 
men and women applicants have the same chance of acceptance

Learnings

Fairness might be defined differently! 
The appropriate definition depends on use case and on normative position!
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Established Fairness metrics in ML literature
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Two problems

1. Impossibility theorems: It is not possible for a decision system to be fair with
respect to all fairness metrics

It is even worse: The different metrics exclude each other
• If a system is fair according to one metric, it is unfair with respect to most others

2. How to find the «appropriate» fairness definition?

This is an ethical questions, not a technical one!
• «Techies» cannot decide this (alone) – responsibility is with the owner of the

system
• BUT: «Technies» have to be aware of the problem and ask for a decision
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Reality check: Unfairness is the rule, not the exception!

Maximization of decision makers utility does not care about fairness!

It is pure luck if a prediction-based decision system is fair!
− In most cases, it is not, unless fairness is explicitly built in!

Many real-world examples show this.
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How to build a fair ML-based decision system?

Each decision system results in 
• Degree of goal achievement of decision maker

• Average over the full population of decision subjects
• Degree of fairness

• Based on some fairness metric

Task: Maximize goal achievement, while still caring for fairness

Approaches:
• Solve constraint optimization problem

• Maximize goal, with respect to «degree of fairness > F0»)

• Analyze different designs of decision system with respect to these two variables 
(goal achievement, fairness) and find optimum combination
• Multicriteria optimization
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Goal achievement and Fairness – the cost of fairness
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The fairness lab: trade-off between fairness and goal achievement
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Technical solutions for achieving fairness

Preprocessing: Find better predictive model by manipulating learning data

In-Processing: Find better predictive model by manipulating learning strategy

Post-Processing: Take predictive model as it is, and find better decision rule

21
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Conclusion

Applying ML for «making better decisions» normally leads to social injustice
(unfairness), unless fairness is explicitly built in

Fairness can be measured (fairness metrics) – different definitions possible
• They reflect what «fairness» means in the specific context
• A choice has to be made (moral analysis)

Fairness can be implemented technically
• Two dimensions to be distinguished: Goal achievement / fairness
• Task: find optimum solutions
• Methods: pre-processing/in-processing/post-processing

22
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Thank you for your attention!

Happy to answer any questions!

Christoph.heitz@zhaw.ch
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