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THERMOSPHERE: Temperature increases
steadly with altitude because is heated
mainly by absorption of EUV and XUV
radiation through dissociation of molecular
oxygen. Temperature is highly variable with
time of day and solar activity.

MESOSPHERE: Temperature decreases with
altitude because ozone density
decreases faster than the increase

e L of incoming radiation.

STRATOSPHERE: Temperature increases with

altifude due to heating from the ozone which

absorbs the solar ultra-violet radiation that
Stratosphere penetrates down to these altitudes.

TROPOSHERE: Temperature decreases with
Troposphere altitude. Heated mainly by the ground,
e m absorbs solar radiation and re-emits it in the
Tareperadiuy i infra-red.




Photochemical processes in the
atmosphere

The atmosphere of the Earth is made up of a large number of
chemical constituents.

Major constituents are N, O, and Ar, but many more constituents are

produced in the atmosphere by photochemical processes of solar origin
or at the surface by different natural processes and human activity.

Photochemical processes play a fundamental role in the middle and
upper atmosphere including the ionosphere.
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Photochemical absorption
processes of solar radiation
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Chapman theory of solar radiation
lonization in the atmosphere

Named for Sydney Chapman, who first
derived mathematically the theory in
1931

The theory assumes:

A monochromatic ionizing
radiation from the sun,

A single nevutral constituent
to be absorbed or ionized
distributed exponentially,
Photochemical equilibrium




% Radiation intensity
decreases and neutral
density increases with
decreasing alfitude.
AS O conseguence ion

production reaches a
maximum and after that
decreases, forming a
layer with a clearly

defined peak.
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Layered structure varying with fime and solar activity due to
different ionization production and loss processes
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lonosphere
variations
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Infroduction to the topic

The variations of time and spatial series of ionosphere parametres data
are the basic source of information to understand the physical processes
that control the behavior of the ionosphere and predict such behavior

We will concentrate on the variations of the F2 layer through
two parametres that are related to the peak electron density
and the total electron content in the ionosphere.

The starting point will be to mention experimental fechniques
used to derive these parametres.

We are not going to look at the physical processes

that the variations of the time and spatial series reveals
and we will concentrate on the characteristics of such
variations

13



lonosonde

CRITICAL FREQUENCY
The frequency at which the

wave penetrates the layer
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lonosonde contribution to ionosphere
research
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Total electron content

The total electron content (TEC) is the

total number of electrons along a path
between a transmitter and a receiver

Can be obtained by different means,

mainly from GNSS and satellite born
altimeters

16




GNSS derived TEC conftribution to
lonosphere research
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Two types of variations

Climate or Regular Weather or Irregular
Variations occurring in Variations mostly due to
cycles. Solar induced Space
Can be predicted with Weather but also due by
reasonable accuracy coupling with lower

atmosphere

18



A well defined Solar Activity controlled
variations of foF2 and TEC
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From: L. Perna, lonospheric plasma response to From: Chintan Jethva, Mala S. Bagiya, H.P. Joshi, On the

the anomalous minimum of the solar cycle GPS TEC variability for full solar cycle and its comparison
23/24: modeling and comparison with IRI-2012 with IRI-2016 model, Astrophysics and Space Science

PhD Thesis, Universita di Bologna, 2017 (2022) 367:80 hitps://doi.org/10.1007/s10509-022-04112-y
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Expected cyclic variability from
Chapman theory

Following the solar zenith angle, Ne, o : \

% Should reach the daily highest value
when the solar zenith angle is the
largest.

% Should be greater in summer than in
equinox and smallest in winfer.

* Ne, o should reach the highest value at
the geographical equator.

20




lonosphere climate
variations and
“anomalies”
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The “anomalies”

% Historically, when the behavior \
of the Ne, o« deviated
significantly in time and in space
from the values predicted by
Chapman theory, they were
called Yanomalies”.

% They behave in cycles.

22



The * winter anomaly”

Characteristics:

% Itis defined by larger values of Ne,,ox /fOF2in

Winter than in Summer.

% Its maximum development is in the Northern

Hemisphere at solar maximum
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Figure 1.5: Monthly median values of NmF2 as recorded at Rome in April, June, October and
December for the years of maximum activity 1990-1991 (max of solar cycle 22) and 2001-2002 (max
of solar cycle 23).

From: L. Perna, lonospheric plasma
response to the anomalous minimum of
the solar cycle 23/24.

modeling and comparison with IRI-
2012, PhD Thesis, Universita di Bologna,
2017

23



The * semiannual anomaly”

Characteristics:

% Itis defined by larger values of Neyox /TOF2in
equinoctial months than in solsticial monthes.
% At middle latitudes it develops during HSA.
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From: Yoon-Kyung Park, Young-Sil Kwak, Byung-
Ho Ahn, Young-Deuk Park, and lI-Hyun Cho,
lonosphericF2-Layer Semi-Annual Variation in
Middle Latitude by Solar Activity, J. Astron.
Space Sci. 27(4), 319-327(2010),

DOI: 10.5140/JASS.2010.27.4.319
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The “"annual anomaly”

Characteristics: \

% At the Earth as a whole, on average, Nemoxis
greater in December/January than in June/July.

% The annual anomaly con be separated from the
winter anomaly only by combining data from
opposite seasons in the two hemispheres.

Assuming with Rishbeth and MUller-Wodarg (2006) an “annual asymmetry index”:
NmEF2(N + S)jaq — NmF2(N + S)jyty
NmF2(N + S)fan + Nm F2(N + )y

Al=(A/M)=
Station Pairs

lonosonde g S
(noon) " = - — Wk—P5 (38%) 7
oy ! "\ cenvw Ko—Hu  (17) 3

Al will be positive if January/July ratio exeeds 1.

From :Rishbeth H, Muller-Wodarg ICF (2006) Why is there more ionosphere
in January and in July? The annual asymmetry in the F2 layer. Ann
Geophys 24:3293-3311. doi:10.5194/angeo-24-3293-2006
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The “equatorial anomaly”
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Nava B., Radicella S.M., Pulinets S. and Depuev V. ‘Modelling bottom and topside ‘ . »
electron density and TEC with profile data from topside ionograms ’; Advances in the fountaln Eﬂect
Space Research, V. 27, pp. 31-34, 2001.
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Contribution of Machine Learning
techniques to the Study of “anomalies” (1)

Principal Component Analysis (PCA) is a machine learning technique to reduce the dimensionality of data
but at the same time retaining as much as possible of the variation present in the original data. Applying the
PCA technigue to the time series of the global vertical (TEC) maps provides an efficient method for analysing
the main ionospheric variability on a global scale being able to decompose periodic variations (e.g., annual
and semiannual anomalies) while retaining the asymmetry in the temporal and spatial domains (e.g.,
seasonal hemispheric and equatorial anomalies).

1.-Natali MP, Meza A (2010) Annual and semiannual VTEC effects at
low solar activity based on GPS observations at different geomagnetic
latitudes. J Geophys Res 115:D18106. doi:10.1029/2010JD014267

2.-Natali MP, Meza A (2011) Annual and semiannual variations of vertical
total electron content during high solar activity based on
GPS observations. Ann Geophys 29(865-873):2011. doi:10.5194/angeo-29-865-2011

3.-Meza A, Natali MP, Fernandez LI (2012) Analysis of the winter
and semiannual ionospheric anomalies in 1999-2009 based on
GPS global International GNSS Service maps. J Geophys Res
117:A01319. doi:10.1029/2011JA016882

4.-Jingbin Liu, Manuel Hernandez-Pajares, Xinlian Liang, Jiachun An,

Zemin Wang, Ruizhi Chen, Wei Sunb, Juha Hyyppd, (2017) Temporal and

spatial variations of global ionospheric fotal electron content under

various solar conditions, J Geod 91:485-502 DOI 10.1007/s00190-016-0977-7 27



Contribution of Machine Learning
techniques to the Study of “anomalies” (2)

1.- Natali MP, Meza A (2010): Applied the PCA technique on a time series of
global IGS VTEC maps to analyse the main ionospheric anomalies on a global scale.

2.-Natali MP, Meza A (2011): Applied the PCA technique to study Annual and
semiannual anomalies of vertical TEC during high solar activity using Global IGS TEC maps.

3.-Meza A, Natali MP, Fernandez LI (2012): Applied the PCA technique to study the winter
and semiannual ionospheric anomalies in 1999-2009 using Global IGS vertical TEC maps.

4.-Jingbin Liu, Manuel Hernandez-Pajares, Xinlian Liang, Jiachun An, Zemin Wang,

Ruizhi Chen, Wei Sun5, Juha Hyyppad, (2017): Apllied PCA technique to analyse time and
spatial variations of the ionosphere under various solar conditions in the period 1999-2013.
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lonosphere weather
(irregular)variations
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Variation of NmF2 at Slough

for every day during four 2-
month periods in 1973-1974.

From: H. Rishbeth, M. Mendillo, Journal of
Atmospheric and Solar-Terrestrial Physics, 63
(2001) 1661-1680




Vertical TEC diurnal and day-tfo-day
variations
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Vertical TEC Meridional cross section and
day-to-day Variations at the crests of the
Equatorial Y*anomaly”
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Causes of the day-to-day variations

/
000

)
0’0

of foF2 and TEC

The main cause of the day-to-day variations of foF2 and
TEC is being considered as varying effect of Space
Weather on the ionosphere. It means essentially the effect
of solar and geomagnetic activity.

Now it is recognized that driving from Tropospheric
Weather can contribute substantially to the day-to-day
variations of ionospheric parametres.
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Tropospheric induced ionospheric variations @Y

(1)

From: “Day-to-day ionospheric variability due to lower
atmosphere perturbations” by H.-L. Liu, V. A. Yudin, and R. G.
Roble;(2013) GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 665-670.

LIU ET AL: DAY-TO-DAY IONOSPHERIC VARIABILITY

This study demonstrates that the
thermosphere-ionosphere-mesosphere

electrodynamics general circulation
model (TIEGCM) constrained by the
atmosphere community climate model

(WACCM) simulations is capable of
reproducing observed features of day-
to-day variations in the F2 region at low
latitudes.

Figure 4, Daily velues of NmF2 (gray mean values (black solid), ard deviation (dashed) for
(a) 51.25°N/0 longitude, (b) equator/75°W, and (c) 51.25°8/57.5°W (all geographic). (d) Mean values (shades) and standard
deviation (lines) of NmF2 for LT1300. Contour intervals: 2.5%10'% m >,

Under constant solar minimum
and geomagnetically quiet

conditions the meteorological
driving may contribute
comparably with geomagnetic
forcing to the ionospheric day-to-
day variability.



Tropospheric induced ionospheric variations

(2)

From Yu and Liv (2021) abstract:This study analysed the variation of three ionosphere-related parametres based
on the GPS data including scintillation index $4, cycle slips, and total electron content (TEC) rate (TECR)* during

the tropical cyclone event (the 2013 TC Usagi) in the Hong Kong region. The results showed that the ionosphere-
related parametres had a consistent significant increase on the second day after the Usagi made landfall near

Hong Kong.
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Tropospheric induced ionospheric variations
(3)

Consequently, the positioning performance of GPS precise point positioning (PPP) and relative
positioning modes was degraded. The degradation was ~ 138%, ~ 181%, and ~ 460% in the
east (root mean square (RMS) 0.050 m), north (RMS 0.045 m), and up (RMS 0.185 m),
respectively, compared with the RMS of 0.021 m in the east, 0.016 m in the north, and 0.033 m
in the up on the normal day.
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Origin of the lonosphere variations

Variations
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Much has to be investigated still to understand all the coupling mechanisms and
Machine Learning techniques can contribute substantially to this purpose. 37



This lecture gives only a pale idea of the complexity of
the ionosphere variations but indicates just some aspects
of such variations. Much has to be investigated to
understand the origin of the ionosphere variations and
their predictability. 7

Thank you
for your
attention -
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