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Outline

 What can Machine Learning do for Space Weather?
 Why does it work so well? (a short digression)
* Path forward: challenges and opportunities




What can ML do for Space Weather?

(2 non-comprehensive list)

* Regression problems, i.e. predict:

The value of a geomagnetic index (Dst, Kp, etc.);
The arrival time of a Coronal Mass Ejection;
Global Total Electron Content (TEC) maps;

Solar wind speed,;

Relativistic electrons at GEO;

Ground magnetic field (dB/dt)

Electron precipitation




What can ML do for Space Weather?

(2 non-comprehensive list)

* Classification problems, i.e. what is the probability that:

An active region will flare in the next 24 hours?

dB/dt will exceed a given value?

The solar wind is originated by coronal holes/ejecta, etc.
A region of the Sun belongs to a coronal hole




Geomagnetic indices

* ML works better than physics-based simulations to The Dst (Disturbance storm time) index is an

forecast global/average indexes such as Dst I @F [RIEMENE SEniy) eRhies 1o
network of near-equatorial geomagnetic

- Why? Because in a physics-based approach of a observatories
complex system you need to get ‘every single piece

Space Weather
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Geomagnetic indices

* ML works better than physics-based simulations to The Dst (Disturbance storm time) index is an

forecast global/average indexes such as Dst I @F [RIEMENE SEniy) eRhies 1o
network of near-equatorial geomagnetic

- Why? Because in a physics-based approach of a observatories
complex system you need to get ‘every single piece
right’

-50

Space Weather’ -

-150

—200
/\ —250
—— Prob —-300

—— 50% probability
—— Dst

=]
co

e
=)

Research Article & OpenAccess (@ (® &

Probability
e
o~

Probabilistic Prediction of Dst Storms One-Day-Ahead Using Full-
Disk SoHO Images

@
b

A. Hu¥ C. Shneider, A. Tiwari, E. Camporeale —350

e
=]

—400

First published: 23 May 2022 | https://doi.org/10.1029/2022SW003064

2003-10-25
2003-10-27
2003-10-29
2003-10-31
2003-11-01
2003-11-03

Date



Geomagnetic indices

New Findings from Explainable SYM-H Forecasting
using Gradient Boosting Machines

Daniel Iong', Yang Chen', Gabor Toth?, Shasha Zou?, Tuija Pulkkinen?, Jiaen
Ren?, Enrico Camporeale®*, Tamas Gombosi’
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Geomagnetic indices

New Findings from Explainable SYM-H Forecasting
using Gradient Boosting Machines

Daniel Iong', Yang Chen', Gabor Toth?, Shasha Zou?, Tuija Pulkkinen?, Jiaen
Ren?, Enrico Camporeale®*, Tamas Gombosi’
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Segmentation of coronal holes In
solar disk images

 Segmentation of solar disk images
(supervised or unsupervised):

Automatically extract different solar regions
(that are associated with different solar
wind/geoeffectiveness)

"ﬂ‘" @
ROYAL ASTRONOMICAL SOCIETY
MNRAS 481, 5014-5021 (2018) doi:10.1093/mnras/sty2628
Advance Access publication 2018 October 1

Segmentation of coronal holes in solar disc images with a convolutional
neural network

Egor A. Illarionov!** and Andrey G. Tlatov>?
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Solar flare prediction

* Possibly the most active research area in ML
for space weather!
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Solar flare predictions

SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A
MACHINE-LEARNING ALGORITHM
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Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence
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3 Forecasting Solar Flares Using Magnetogram-based
Decreasing False-alarm Rates in CNN-based Solar Flare Prediction Using SDO/ Predictors and Machine Learning
HMI Data
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Solar wind classification

The geoeffectiveness of solar wind is related to its source region

Xu & Borovsky (2015) introduced a 4-category solar wind: ejecta, coronal holes,
sector reversal, streamer belts

40 years of OMNI data have been automatically categorized (based on a training set
of ~9,000 hours covering 1995-2008)

Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE ~ Classification of Solar Wind With Machine Learning
10.1002/2017JA024383

Enrico Camporeale' ', Algo Caré'" "', and Joseph E. Borovsky?
Key Points:

- Gaussian Process classification yields 1 i . 5 )
excellent accuracy in classifying the Center for Mathematics and Computer Science (CWI), Amsterdam, Netherlands, “Center for Space Plasma Physics, Space
solar wind according to the Xu and Science Institute, Boulder, CO, USA




Unsupervised classification

Visualizing and Interpreting

Unsupc—:,-rws_;ed Solar Wind '
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Data-Driven Classification of Coronal Hole and Streamer
Belt Solar Wind

Téo Bloch!® - Clare Watt! @) - Mathew Owens!
Leland McInnes2® - Allan R. Macneil'

Objectively Determining States of the Solar Wind Using Machine Learning

: .2 a .
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Solar wind speed
Space Weather i

RESEARCH ARTICLE  Attention-Based Machine Vision Models and Techniques for
10102920215 W002976 Solar Wind Speed Forecasting Using Solar EUV Images

Special Section; Edward J. E. Brown"*?* (), Filip Svoboda', Nigel P. Meredith? (*), Nicholas Lane'#, and
Heliophysics and Space Weather Richard B. Horne?
Studies from the Sun-Earth
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Solar Wind Speed Prediction via Graph Attention Network
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Radiation belts’ electron flux

Space Weather a

RESEARCH ARTICLE  Relativistic Electron Model in the Outer Radiation Belt
10.1029/2021SW002808 Using a Neural Network Approach

Xiangning Chu' ", Donglai Ma? %, Jacob Bortnik? ), W. Kent Tobiska? \*, Alfredo Crnz?
8. Dave Bouwer?, Hong Zhao* ¥, Qianli Ma?* U, Kun Zhang® '*', Daniel N. Baker!
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Key Points:

2
« A ncural network modcl was

developed to forecast relativistic ’

electron fluxes with energies

JGR Space Physics

RESEARCH ARTICLE  Data-Driven Discovery of Fokker-Planck Equation for the
{0 A0R02A0R05T Earth's Radiation Belts Electrons Using Physics-Informed
Special Section: Neural Networks

Machine Learning in

Heliophysics E. Camporeale'? (=, George J. Wilkie® (), Alexander Y. Drozdov* (), and Jacob Bortnik*

ICIRES, University of Colorado, Boulder, CO, USA, INOAA, Space Weather Prediction Center, Boulder, CO, USA,
*Princeton Plasma Physics Laboratory, Princeton, NJ, USA, *University of California Los Angeles, Los Angeles, CA, USA

Key Points:

o We analyze the relative importance




The final frontier: Interpretable Al

Assumption:
The physics obeys FP equation
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Why does it work (so well) ?
A short digression

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

Richard Courant Lecture in Mathematical Sciences delivered at New York University,
May 11, 1959

EUGENE P. WIGNER

Princeton University

“The miracle of the appropriateness of the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.”




Why does it work (so well) ?

The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The unreasonable effectiveness of deep learning in
artificial intelligence

Terrence J. Sejnowski®®’

2Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037; and PDivision of Biological Sciences, University of
California San Diego, La Jolla, CA 92093

We are not in the same boat with image and text recognition, self-driving, or
recommendation systems!




Why does it work (so well) ?
Physics to the rescue!

Physical properties such as invariance, symmetry, conservation laws, etc.
reduce drastically the ‘search space’ of parameters

Any system that follows ‘laws of physics’ should be learnable by Machine
Learning

Any simulation can be emulated by ML
The major hurdle is Data Quality & Quantity!

J Stat Phys (2017) 168:1223-1247 @ N
DOI 10.1007/510955-017-1836-5

Why Does Deep and Cheap Learning Work So Well?

Henry W. Lin! . Max Tegmark? . David Rolnick?




Why does it work (so well) ?
Physics to the rescue!

SCIENCE ADVANCES | RESEARCH ARTICLE

COMPUTER SCIENCE

Al Feynman: A physics-inspired method for
symbolic regression

Silviu-Marian Udrescu' and Max Tegmark"*#

A core challenge for both physics and artificial intelligence (Al) is symbolic regression: finding a symbolic expression
that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions
of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In
this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network
fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics,
and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-
based test set, we improve the state-of-the-art success rate from 15 to 90%.




Path forward for ML in SWx

Freely adapted from:

Space Weather

FEATURE ARTICLE
10.1029/20185W002061

The Challenge of Machine Learning in Space Weather:
Nowecasting and Forecasting

GRAND E. Camporeale'?
CHALLENGES

CENTENNIAL COLLECTION ICIRES, University of Colorado Boulder, Boulder, CO, USA, 2Centrum Wiskunde & Informatica, Amsterdam,

The Netherlands




Path forward for ML in SWx

The information problem: What is the minimal physical
Information required to make a forecast?

HMI Dopplergram
Surface movement
Photosphere

AlA 4500 A
6000 Kelvin
Photosphere

AlA 211 A
2 million Kelvin
Active regions

HMI Magnetogram
Magnetic field polarity
Photosphere

AlA 1600 A
10,000 Kelvin

Upper photosphere/
Transition region

AlA 304 A
50,000 Kelvin
Transition region/
Chromosphere

AlA 335 A
2.5 million Kelvin
Active regions

HMI Continuum
Matches visible light
Photosphere

AIA 171 A
600,000 Kelvin
Upper transition
Region/quiet corona

AlA 094 A
6 million Kelvin
Flaring regions

200M pixels

AIA 1700 A
4500 Kelvin
Photosphere

AIA 193 A
1 million Kelvin
Corona/flare plasma

AlA 131 A
10 million Kelvin
Flaring regions

1 scalar value




Path forward for ML in SWx

* The gray-box problem: What is the best way to make an optimal use

of both our physical understanding and our large amount of data in
the Sun-Earth system?

JGR Space Physics

RESEARCH ARTICLE A Gray-Box Model for a Probabilistic Estimate of Regional
{OI0ZOIIR0ZT0M Ground Magnetic Perturbations: Enhancing the NOAA
Key Points: Operational Geospace Model With Machine Learning

We present a new model to forecast
the maximum value of dB/dt over
20-min intervals at specific locations

E. Camp()realel'2 , M. D. Cash® H. J. Singer3 , C. C. Balch®(2), Z. Huang", and G. Toth*
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Path forward for ML in SWx

e The surrogate problem: What components in the Space Weather
chain can be replaced by an approximated black-box surrogate
model? What is an acceptable trade-off between lost of accuracy and

speed-up?

d I‘le > physics > arXiv:2203.13372

Physics > Computational Physics

[Submitted on 24 Mar 2022]

Predicting Solar Wind Streams from the Inner-Heliosphere to Earth via Shifted Operator Inference

Opal Issan, Boris Kramer




Path forward for ML in SWx

* The uncertainty problem: Most Space Weather services provide
forecast in terms of single-point predictions. There is a clear need for
understanding and assessing the uncertainty associated to these
predictions and how uncertainty propagates.

Space Weather

RESEARCH ARTICLE On the Generation of Probabilistic Forecasts From
10.1029/2018SW002026 Determil‘listic MOdelS

Key Points:
ey Points E. Camporeale?"/, X. Chu?'/, O. V. Agapitov*'", and J. Bortnik®

« We introduce a new method to
estimate the uncertainties associated

International Journal for Uncertainty Quantification, 11(4):81-94 (2021)

ACCRUE: ACCURATE AND RELTABLE UNCERTAINTY
ESTIMATE IN DETERMINISTIC MODELS

Enrico Camporeale™ & Algo Caré?




Path forward for ML in SWx

The too often too quiet problem: Space weather data sets are typically
Imbalanced: many days of quiet conditions and a few hours of storms. This
poses a serious problem for any machine learning algorithm. It is also
problematic for defining meaningful metrics that actually assess the ability of
a model to predict interesting but rare events.

1 by sl oy 17 Sl Ly
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SPACE WEATHER, VOL. 10, 502012, doi:10.1029/2011SW000734, 2012

On the probability of occurrence of extreme space
weather events

Pete Riley"




Path forward for ML in SWx

The knowledge discovery and explainability problem: How do we
distill some knowledge from a machine learning model and improve
our understanding of a given system? How do we open the black-box
and reverse-engineer a machine learning algorithm?

arXiv.org > physics > arXiv:2107.14322

Physics > Space Physics

[Submitted on 29 Jul 2021]
Machine-learning based discovery of missing physical processes in radiation belt modeling

Enrico Camporeale, George J. Wilkie, Alexander Drozdov, Jacob Bortnik




Summary

ML 4 SWx is the quintessential interdisciplinary field.

These 6 problems not only hinder progress in Space Weather,
but pose fundamental challenges in the fields of Al and UQ.

The information problem

The gray-box problem

The surrogate problem

The uncertainty problem

The too often too quiet (rare events) problem

The knowledge discovery and explainability problem

Contact: enrico.camporeale@noaa.gov






