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Ionosphere: Galloping introduction
3D volume of plasma and 2D maps of its properties

NmF2 hmF2
One day of ionospheric dynamics

1D vertical pro1le of plasma density
“Ionosphere is a major operational nuisance” © USAF“Ionosphere is a major operational nuisance” © USAF
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Layout

• Natural Language AI: Forecasting Ionosphere  by  Historical
Analogy

• Pessimist: “when you saw an
ionospheric storm, you have seen
one storm”
• a.k.a. “No storms are alike”

• Realist:
• Yes, the prior ionospheric state

does not inform the future state
• (No inertia… quick reply to

drivers)
• Need the Sun-Earth activity

context

• But individual weather
processes admit their

description
• but their interplay de1es

prediction

GNSS PPP / RTK
• A�ected systems:
autonomous vehicles
and machinery

• TID as a Silent Accuracy
Killer

• Worse than
the loss of
lock and
scintillation

• (Hard to
detect)

HF Geo
• Geolocation of
uncooperative
HF transmitters

• Tens of km
positioning
errors

• Short-range 
catastrophe
during

[NRL, 2013]
TID passage

Also, HF comms for civil aviation,
spacewalk planning on ISS, etc.

Deep Learning:
Panacea?
or a Snake Oil…
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Neural Doctrine: Galloping Introduction

Natural Neuron Arti1cial Neuron
(classic spin)

(mean-1eld also available)

Neural Network Energy Function
of Neural Dynamics

The roaring 1990s: an outburst of algorithmic NNs to replicate human intelligence

4



Historical Average © Feed-forward NN

• Training phase
• present NN with known examples (input and output) for training 

• determining the Wij weights – back-propagation method

• Execution phase
• WHAT-IF: present trained NN with previously unknown inputs to obtain a 
predicted output

• Superior inductive bias of NNs: the capability of gleaning the nature of the 
system in order to do good WHAT-IFs.

• Superior but little understood
• Black-Box: No clue how and why it works well

• Caused a severe AI Winter in the 2000s

• NSF would not fund NN projects

• Physics journals would not publish NN model results

• All feed-forward NN architectures are in “historical analogies” 
category
• Subject to AI Winter
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Feed-forward NN for forecasting 
ionosphere

• Train a NN to predict peak 
density in the ionosphere 
NmF2 12 hours ahead, as a 
function of:
• Time of day

• Date (year, day of year)

• Location (lat, lon)

• Geomag index Kp

• WHAT-IF: run for diGerent 
Kp values, dates, times, 
and locations

Kp

(lat,lon)

Date
NmF2( t + 12 hrs)

Time of day t

FORECASTING NN MODEL FOR 12 HOURS AHEAD

Space Physics community: 
no-no, this is a SNAKE OIL
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Feed-forward NN for forecasting 
ionosphere

• Train a NN to predict deviation 
of NmF2 from the expected 
quiet-time behavior 12 hours 
ahead, as a function of:
• Time of day

• Location (lat, lon)

• Geomag index Kp

• Run it for diGerent Kp values 
and locations (what-if)
• Obtain 2D map of ΔNmF2

• Apply Δ to quiet-time predicted 
2D map of NmF2

Kp

(lat,lon)
ΔNmF2(t + 12 hrs)

Time of day t

FORECASTING NN MODEL FOR 12 HOURS AHEAD

Space Physics community: 
still not good
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“Storm” option of NmF2 in IRI

• “Storm” option for NmF2 forecast 
in IRI, [Fuller-Rawell et al, 1999]
• Ap is tested for a threshold value to 
determine if the day is quiet or 
disturbed

• This is an “average” storm behavior 
of ionosphere on disturbed days

• The storm behavior is stored as 
ΔNmF2 for any location and forecast 
time up to 24 hours ahead 

• Other “storm” options are pursued 
based on this principle
• Blanch and Altadill [2012]

{Ap} ΔNmF2(lat,lon,tfore)

tfore = (t, t + 24 hrs)

FORECASTING MODEL FOR UP TO 24 HOURS AHEAD

Research funding agencies: 
but this is an empirical model… oh well
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Concept of the “Triggered” storm 
option

time
storm 
onset 
time

ΔNmF2

remembered “average storm behavior

quiet-time behavior

Forecast by analogy to an average “anomaly” timeline

0
quiet



Next step: Library of the storm 
storylines
instead of the “average storm timeline”

• Instead of an “average” storm, keep a library of previous
storm storylines of ΔNmF2
• To forecast, just 1nd the most relevant storm in the library

• Each storyline must be remembered in the context of the
activity in the Sun-Earth environment
• i.e., not just replay a storm line using one “trigger”

• Need to build a grand storyline of driving events in the heliospace and
geospace

• Assumption: if we know all driver stories well, the ionosphere can be
explained
• This is a strong assumption

• Need good ideas for
• The storm library

• Search-and-retrieval algorithms

• Tweaking the library copy to current conditions
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Example: Halloween storm as seen by 
RPI

X17 Solar Flare #2 X10 Solar Flare #3

22 hours of G5 storm

~19 hours
(solar wind at 2200 km/s)

Kp of 9o @ 0839 UT

• Solar wind
velocity can
vary

• Timelines will
vary as well

• But… natural
language AI
will come to
the rescue!
• varying speed

of words 11



Unrelated example: mega-Pare 6 days 
later

X28 Solar Flare #6

• X28 ranking is 
questioned: 
instruments 
got blinded!!

• Nothing 
arrived to the 
Earth, though
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Alexa, play Yesterday by The Beatles

• “Yesterday” is interpreted in the context of “play”
• Not a reference to one day earlier

• A title to be fetched from the database of song titles

• DEEP LEARNING: multi-layered recurrent (feed-back) network 
topologies 
• Support interpretation of subelements in the context of other cues

• Starting position of NN (the green ball) is determined from the context

• Network evolves into the closest stable condition (remembered state)

• That state propagates to the next layer of the network

• Appears matching to the idea of interpreting ionospheric dynamics in the 
context of the external forces acting on it
• Context: reports of ongoing Sun-Earth activity

• Output: ionospheric dynamics fetched from the historical record database

• What is diGerent? Deep Learning the interplay of helio- and geo-activity 
markers
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Natural Language AI for space 
weather?

• Detect “Alexa!”
• Recognition of the storm onset

• Solar Pare?.. signature of CME?.. Solar wind pressure?.. lots of ideas!

• Maybe all of the markers must be used to determine reference time

• Then, somehow, interpret the available “Play Yesterday by The Beatles”
• Extract context cues to retrieve the best-matching storyline in the Storm Library

• Context of the sentence == Context of the relevant system driver storylines

• Combination of context cues and their relative strength = Deep Learning

• Retrieve and process the closest storm storyline from the library
• Process? Encoding is needed to avoid varying timing of the processes

• [to support varying speed of word pronunciation]

• Apply the processed storyline to forecast the upcoming departure of the stormy 
weather from the quiet-time model

• REPEAT
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Capturing Context of Ionospheric 
Dynamics

• Ionosphere: immediate response to
external forcing
• Thus its current conditions do not inform
future states

• Need to use storylines of all external
drivers as context
• Cannot be just one instant “triggering” driver
(e.g., Kp=6)

• Driver dynamics is matched (paired) to the
ionospheric storm dynamics
• Across the complete forecast storyline from
onset to end

• Important: which driver is relevant out of the
set? (Deep Learning helps; inductive bias) Sensor data @ 2 hour latency are useless

high solar activity, mostly quiet time

15



Why “REPEAT” step is needed?

• Ionospheric response to the 
storm-time impacts is not just a 
“triggered option for a disturbed 
plasma day”
• Context of the disturbed ionosphere 
dynamics is a continuous function of t
• Driver storylines need to be complete 
to retrieve the best matching storm in 
the library

• But in the forecast scenario, only an 
initial fragment of the storylines may 
be available

• Forecast shall be repeated as time 
progresses and larger fragments 
of the storylines become available
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How to get storyline from a fragment

• Note: not the storyline of the storm, 
but of the storm drivers
• Simpler task… divide and conquer

• It is the interplay of drivers that matters

• Associative Memory is one possibility
• Used in recognition of handwriting

• Also for recalling stored data from their 
noisy and incomplete realizations

• Recursive, feed-back NN architecture
• Hop1eld networks

• No input layer, no output layer

• Neurons are clipped to available data and 
evolve into the nearest local minimum of E

Associative memory
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PITHIA-NRF and T-FORS: European SWx

• Real-time data for forecasting by historic analogy are not easy to 
come about
• Need a consortium of real-time data providers

• PITHIA-NRF is an emerging space physics data infrastructure in 
Europe

• Look it up! www.pithia-nrf.eu

• HORIZON 2020 project

• Based on EGI Foundation mega-facility of computing resources

• Public funding = better prospects of longevity

• And a Network of Research Facilities (BRF)

• some facilities have decades of uninterrupted operation

• T-FORS is the pilot project to leverage PITHIA-NRF collections
• TID Forecasting System

• HORIZON 2020 project

• Listen to Elvira Astafyeva talk later this morning (TID)
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Forecast Architecture

Library of ionospheric storm storylines
Deep Learning context-driven architecture
Time-neutral storage? (pronunciation)

Time Warping 
and Scaling

Climate
prediction

Weather
Forecast

Best-match
ΔNmF2history

Storm
onset time

Storm
onset time

ΔNmF2

Storm
onset time

R
e
a
l-
ti
m
e
 H
e
li
o
- 
a
n
d
 G
e
o
-D
ri
v
e
rs

Associative memories
of the driver storylines

Alexa!

Driver
context

REPEAT: forecast quality improves with each 
iteration as longer storylines are coming in

Play “Yesterday” by The Beatles

key driver support drivers

add new storylines

IGRF



Dynamic Time Warping (DTW)

• Warp library-provided storm 
storyline
• DTW 1nds similarity between 2 
storylines

• Driver storylines may be indicative 
of how diGerent the actual storm 
timing is from the Library copy

• Corresponding time warping shall 
be applied to the correction ΔNmF2
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Library of storms in longitude-neutral 
form

“Classic” view of NmF2 Local Time Noon view of 
NmF2

De-magnetized view of 
NmF2
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Encoding library storylines of ΔNmF2

• Total 1024 coeVcients to store 
24 hour global animated 2D 
maps

• Can be expanded to 2048 
coeVcients to store 2-day 
storyline

Longitude

L
a
ti
tu
d
e

Climate
prediction

Weather
Forecast

Storm
onset time

ΔNmF2

IGRF

The IGRF model of 
the Earth magnetic 
1eld is needed to 
re-magnetize the 
retrieved library
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Forecasting by context-driven memory

• NOT to build a least-square regression on 1024 unknowns

• NOT to build a back-prop feed-forward NN with 1024 outputs

• Just memorize them, cleverly
• Associate the timeline of ionospheric dynamics with timelines of 
ionospheric state drivers
• Deep Learning: placing the storm vocabulary into the context of a “sentence” 
of ongoing geospace activity

• Rely on NN superior inductive bias to build the context

• Plus other tricks:

• Dynamic Time Warping (DTW)

• Associative memory (AM) 

• Restore a driver’s full storm timeline from its initial observed fragment
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Natural Language Processing as DTW 
example

• Analogous to 
Sound/Syllable 
recognition

• Custom Language to 
describe storm 
progression
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Summary

• Deep Learning “Ice-Break” is ongoing in NN-based forecasting
• DL learns the system from its previous behavior

• A concept study of DL-based forecast of the ionospheric storm storylines:
• Forecast deviation timeline of the disturbed ionosphere 

• Deviation from the quiet-time LT-centered/demagnetized ionosphere

• Sync the deviation timeline to the actual/de1nitive storm onset time (Alexa!)

• Use Dynamic Time Warping to maintain a smaller vocabulary of the storm behavior

• Deep Learning to describe ionosphere timeline in the context of key storm driver 
timelines 

• For each activity driver, use associative memories to retrieve a full-length storyline 
from the initially observed fragment

• Procedure: 
• Detect storm onset, obtain full-length driver storylines

• Take 30-day median current ionosphere, LT-center, de-magnetize, 

• Retrieve deviation storyline from the storm library, time-warp to current activity 

• Apply deviation to the median, position at reference LT, re-magnetize.
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