AfriTEC: A neural network based model of the African regional ionospheric Total Electron Content

Daniel Okoh

International Workshop on Machine Learning for Space Weather Buenos Aires - Argentina

7 – 11 November, 2022

AfriTEC is acronym for: African regional ionospheric Total Electron Content. It is a model of the ionosphere over the entire African region.

Motivation for developing the AfriTEC is based on the fact that the African region is least studied. This is obviously due to paucity of data available from the region.

\land AfriTEC					×
Afric	an G	NSS TEC	(AfriTEC)	Mode	el
Diurnal P	rofile	For Entire	Year		
O Spatial N	lap ove	r Africa			
Year	2020	2000-2022			
Day of Year	206	1-366 Olpret	fer to enter Month ar	nd Day of	Month
Hour of Day	15.0783	0-24 UT	Month	07	1-12
Longitude	7.38	-20 to 60	Day of Month	24	1-31
Latitude	8.99	-40 to 40		5	T-
Station ID	SERL	4-digit station ide	ntifier 🔿 Adv	anced s	ettings
ти 🗹			Time resolution for diurn	(in Hours al profile) 1
		Lor	igitude resolution (in for s	Degrees) 1
	RUN	L	atitude resolution (in for s	Deorees patial ma	1

Quiet time

Storm

time

JGR Space Physics

RESEARCH ARTICLE 10.1029/2019JA027065

Key Points:

- The first regional TEC model over the entire African region using empirical observations is developed
- The model offers opportunities to conduct high spatial resolution investigations over the African region
- EIA occurrence is reduced during the June solstice, and the anomaly

A Neural Network-Based Ionospheric Model Over Africa From Constellation Observing System for Meteorology, Ionosphere, and Climate and Ground Global Positioning System Observations

Daniel Okoh^{1,2}, Gopi Seemala², Babatunde Rabiu¹, John Bosco Habarulema^{3,4}, Shuanggen Jin^{5,6}, Kazuo Shiokawa⁷, Yuichi Otsuka⁷, Malini Aggarwal², Jean Uwamahoro⁸, Patrick Mungufeni⁹, Bolaji Segun¹⁰, Aderonke Obafaye¹, Nada Ellahony¹¹, Chinelo Okonkwo¹², Mpho Tshisaphungo³, and Dadaso Shetti¹³

Space Weather

RESEARCH ARTICLE 10.1029/2020SW002525

Key Points:

- First report on storm-time modeling of TEC across the entire African region is presented
- Inclusion of time history of geomagnetic activity indicators improved TEC modeling by about

Storm-Time Modeling of the African Regional Ionospheric Total Electron Content Using Artificial Neural Networks

Daniel Okoh^{1,2,3} (D), John Bosco Habarulema^{2,4} (D), Babatunde Rabiu^{1,3} (D), Gopi Seemala⁵, Joshua Benjamin Wisdom⁶ (D), Joseph Olwendo⁷ (D), Olivier Obrou⁸, and Tshimangadzo Merline Matamba² (D)

The explosion in number of GNSS receivers, and their rapidly growing applications, triggered the interest to develop the model.

The ionosphere is the major source of error for GNSS systems.

GNSS radio signals are delayed when they propagate through the ionosphere.

The delay translates to a quantity known as TEC (Total Electron Content), which in turn can be applied to correct the errors introduced by the ionosphere, especially for single frequency receivers.

TEC is the total number of electrons in a column of unit cross sectional area, measured from top to bottom of the ionosphere.

 $1 \text{ TECU} = 10^{16} \text{ electrons/m}^2$

Data used in this work include:

• GNSS data from ground based receivers

• GNSS data from satellite based receivers (COSMIC Radio Occultation (RO))

Indices for solar and geomagnetic activities

• Data from other ionospheric models (IRI-Plas, NeQuick, and GIM (Global Ionospheric Maps))

Ground based GNSS Data used in this work was obtained from the following sources:

- The African Geodetic Reference Frame (AFREF, http://afrefdata.org)
- The Nigeria GNSS Reference Network (NIGNET, <u>www.nignet.net</u>)
- The South African network of continuously operating GNSS base stations (TRIGNET, http://www.trignet.co.za)
- The University of California, San Diego, SOPAC & CSRC GARNER GPS Archive (ftp://garner.ucsd.edu)
- The National Aeronautics and Space Administration's CDDIS Archive of GNSS products (ftp://cddis.gsfc.nasa.gov)
- The Global Data Center of the International GNSS Service (ftp://igs.ensg.ign.fr)
- The UNAVCO Archive of GNSS Data (ftp://data-out.unavco.org)
- The Geodetic Data Archiving Facility (ftp://geodaf.mt.asi.it)

Map of Africa showing locations of ground based GNSS receivers used in this work.

Stations marked in triangles (and labeled using the 4-digit station codes) were used for testing the spatial performance of the networks.

The green background lines show $1^{\circ} \times 1^{\circ}$ grids of longitude and latitude used to bin the final observations.

Configuration for storm time model:

Red dots: Ground based GNSS receivers.

Blue dots: COSMIC data footprints (locations of maximum electron densities in various RO events) during the storm period of 7-9 March 2012.

Calibration of COSMIC Data:

This was necessary considering the disparity between the datasets, especially with regards to the upper integration limit.

GPS: ~20,200 km COSMIC: ~800 km

An illustration of how the calibrated and uncalibrated COSMIC-TECs compare with ground GPS-TEC at the 1° × 1° grid cell of NKLG station

•Total number of GNSS receiver stations: 269

•Years: 2000 to 2018

•Gopi GPS-TEC analysis application software used for RINEX to TEC Processing

Hourly averaging

• 30° elevation cut-off for multipath error minimization

•SSN data was obtained from the WDC-SILSO, Royal Observatory of Belgium, Brussels (website: http://www.sidc.be/silso/datafiles).

•F10.7 data was obtained from the National Oceanic and Atmospheric Administration, NOAA (ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/noontime-flux/penticton/penticton observed/listings/).

•Solar UV flux data was obtained from the University of South California Dornsife (https://dornsifecms.usc.edu/space-sciences-center/download-sem-data).

•Dst and Kp indices were obtained from NASA's OMNIWeb (https://omniweb.sci.gsfc.nasa.gov/form/dx1.html).

For quiet model: |Dst|<=20 nT For storm model: |Dst|>=50 nT or Kp>=4

Computer neural networks were used

• They are a system of information processing techniques inspired by the manner in which the human brain works; they can learn trends and patterns in data and consequently be able to predict future trends in the data. For this reason, they are hugely applied in predictive modeling.

Strengths and advantages: Ability to represent both linear and non-linear relationships directly from the data being modeled.
Previous regional efforts: Habarulema et al., 2009; Habarulema, 2010; Okoh et. al, 2016

$$H_m = \tanh(I_{wm} \times I_m + B_1)$$
$$O_m = \tanh(H_{wm} \times H_m + B_2)$$

The hyperbolic tangent function is intentionally used as transfer function between the hidden and output layer so as to provide a boundary for the TEC output which should not be negative by physical definition. I_m , H_m , and O_m are respectively variable matrices for the input, hidden, and output layers. I_{wm} and H_{wm} are respectively weight matrices for the input and hidden layers. B_1 and B_2 are the bias vectors.

With reference to GPS-TEC (2009);

AfriTEC RMSE = 3.76 TECU NeQuick = 6.65 TECU IRI-Plas = 10.44 TECU

Separation between crests increase with increasing level of solar activityMaximum during December solstice

Table 1 Latitudinal Locations of the Eq.	uatorial Anomaly Crest	s and Troughs Mo	easured Along the Meric	lian of Longitude 20°E
Season/Year	Latitude of northern crest ($\pm 0.5^{\circ}$)	Latitude of trough (±0.5°)	Latitude of southern crest ($\pm 0.5^{\circ}$)	Latitudinal separation between crests $(\pm 1.0^{\circ})$
Classification by seasons of yea	ar 2012			
March equinox $(F10.7 = 101)$	13.5	7.0	0.5	13.0
September equinox $(F10.7 = 125)$	15.0	6.5	1.0	14.0
December solstice (F10.7 = 111)	13.5	5.5	-2.5	16.0
Classification by years of varyi	ng solar activity during	March equinoxe	S	
2009 (F10.7 = 68)	12.0	6.0	0.5	11.5
2012 (F10.7 = 101)	13.5	7.0	0.5	13.0
2014 (F10.7 = 150)	15.5	7.5	0.5	15.0

AfriTEC is for real-world applications:

Centre for Atmospheric Research (http://carnasrda.com/tec_models)

MATLAB Central website

(https://www.mathworks.com/matlabcentral/fileexch ange/69257-african-gnss-tec-afritecmodel?s_tid=prof_contriblnk)

SANSA Space Weather Centre South African National Space Agency, Hermanus

User Interface

For user friendliness, a graphical user interface is developed.

Detailed information on how to use the AfriTEC model is given on the model web pages

				_	×
Afric	an G	NSS TEC	(AfriTEC)	Mode	I
Oiurnal P	rofile	For Entire	e Year		
○ Spatial N	lap ove	r Africa			
Year	2020	2000-2022			
Day of Year	260	1-366 Olpr	efer to enter Month a	nd Day of I	Month
Hour of Day	7.9886	0-24 UT	Month	09	1-12
Longitude	7.38	-20 to 60	Day of Month	16	1-31
Latitude	8.99	-40 to 40			
Station ID	SERL	4-digit station ic	lentifier O Adv	anced se	ettings
🗹 UT			Time resolution for diurr	(in Hours) nal profiles	1
		L	ongitude resolution (in for s	Degrees) spatial map	1
	RUN		Latitude resolution (in for s	Deorees) spatial map	1
Si	upported b	y CV Raman, C/	AR-NASRDA, IIG, SAI	NSA	

AfriTEC Prediction for Today: 10 Nov. 2022

"The product, called AfriTEC, was defined as a priority for development within the domain of navigation applications impacted by space weather, and has now been completed. It will be included in the range of products and services offered as part of the 24-hour Regional Space Weather Centre. AfriTEC will allow clients to estimate the delay on GPS satellites and will serve as a basis for estimating frequencies for HF communications"

Independent Evaluations/Validations

Performance Analysis of Ionospheric TECmodelsoverthe Africanregion during the geomagnetic storm of March 2015

de Dieu Nibigira Jean University of Alberta Faculty of Education VENKATA RATNAM DEVANABOYINA (Santana rational.com) KL University https://orcid.org/0000-0002-2389-4196 sivakrishna kondaveeti Malla Reddy University

"AfriTEC, which is a regional model, recorded lowest RMSE values over all the stations. The prediction results show that the regional model performance is better than the global ionospheric models (IRI-2016 and Nequick-G models) especially over EIA latitudes of African region".

S.No.	IGS	Geographic/	Geographic/	GNSS
	Station Code	Geomagnetic latitude (degree)	Geomagnetic longitude (degree)	constellations
1	NOT1	36.876N/39.24N	14.990E/80.01E	GPS+GLO+GAL+BDS+ SBAS
2	SFER	36.464N/38.50N	6.206W/79.81E	GPS + GLO + GAL + SBAS
3	MAS1	27.764N/29.83N	5.633W/77.73E	GPS + GLO + GAL + BDS + SBAS
4	CPVG	16.732N/18.91N	2.935W/75.57E	GPS+GLO+GAL+BDS+ SBAS
5	BJCO	6.385N/9.18N	2.450E/73.88E	GPS + GLO
6	NKLG	0.354N/3.39N	9.672E/72.93E	GPS+GLO+GAL+BDS+ SBAS+IRNSS
7	MBAR	0.601 S /2.97 N	30.738E/72.86E	GPS + GLO + GAL + BDS + IRNSS
8	MAYG	12.782S/10.39S	45.258E/70.67E	GPS + GLO + GAL + BDS + SBAS + IRNSS
9	HARB	25.887S/22.96S	27.707E/68.43E	GPS+GLO+GAL+BDS+ SBAS+IRNSS
10	SBOK	29.669S/26.51S	17.879E/67.72E	GPS

Independent Evaluations/Validations

Space Weather[®]

RESEARCH ARTICLE 10.1029/2021SW003013

Key Points:

- Maps of Total Electron Content, spatial and temporal gradients over the South African Region
- Root mean squared error (RMSE) and quality factors introduced to confirm the validity of maps
- Analysis of RMSE, quality factors and receiver biases for 6 month period

Correspondence to:

T. M. Matamba, mtshimangadzo@sansa.org.za

Citation:

Matamba, T. M., & Danskin, D. W.

Development and Evaluation of Near-Real Time TEC and Ancillary Products for SANSA Space Weather

Tshimangadzo M. Matamba¹ D and Donald W. Danskin¹

1South African National Space Agency (SANSA), Hermanus, South Africa

Abstract In this paper, the second version of SANSA's Total Electron Content (TEC) maps is presented with its associated methodology and assumptions. The method is based on Ma and Maruyama (2003, https://doi.org/10.5194/angeo-21-2083-2003) determination of receiver bias and hence TEC for individual receivers. By combining values of slant TEC from 20 South African Trignet stations, maps of TEC, spatial gradient of TEC and temporal gradient of TEC can be determined. Quality factors and error of fit are determined for each map and are analyzed to identify the level of validity for TEC maps. In addition, the first operational estimation of TEC gradients both temporal and spatial are presented and discussed for the 4–5 November 2021 negative ionospheric storm. The TEC from the maps shows good agreement with the ionosonde TEC and AfriTEC model.

"The TEC from the maps shows good agreement with the ionosonde TEC and AfriTEC model".

3-D Global Electron Density Model (3DNN) -Reference paper

Journal of Atmospheric and Solar-Terrestrial Physics 221 (2021) 105702

Contents lists available at ScienceDirect

Journal of Atmospheric and Solar–Terrestrial Physics

journal homepage: www.elsevier.com/locate/jastp

Research paper

A global 3-D electron density reconstruction model based on radio occultation data and neural networks

John Bosco Habarulema ^{a,b,*}, Daniel Okoh^{c,d}, Dalia Burešová^e, Babatunde Rabiu^{c,d}, Mpho Tshisaphungo^a, Michael Kosch^a, Ingemar Häggström^f, Philip J. Erickson^g, Marco A. Milla^h

3DNN - Intro

In our context, the 3-D ionospheric model involves representation of the ionosphere (electron densities) in 3 space dimensions of Longitude, Latitude, and Altitude.

 Global radio Occultation electron density profiles from COSMIC mission [Second level (ionPrf) data]

• Ionosode electron density measurements

• ISR electron density measurements

• SWARM LP in-situ electron density measurements

Data cleaning

For the purpose of quality control of the data, we did the following: removed negative electron density measurements (ii) removed the entire profiles if they have negative electron densities at altitudes greater than or equal to 100 km, (iii) eliminated entire profiles in which the heights of peak electron densities (hmF2) are outside the range 200-550 km

The global dataset is too large (about 2 billion data points)

We therefore split the globe into 864 cells. The size of each cell is 5° × 15° degrees (Latitude and Longitude)

Inputs for the neural network training:

$$\begin{split} DOY_s &= \sin\left(\frac{2\pi \times DOY}{365.25}\right) \qquad DOY_c &= \cos\left(\frac{2\pi \times DOY}{365.25}\right), \\ HH_s &= \sin\left(\frac{2\pi \times HH}{24}\right) \qquad HH_c &= \cos\left(\frac{2\pi \times HH}{24}\right), \end{split}$$

Hour of the Day in	ННс
UT (HH)	HHs
Day of the Year	DOYc
(DOY)	DOYs
Spatial components	LATITUDE
	LONGITUDE
	ALTITUDE
Solar and magnetic	F10.7
activity indicators	Кр

Model Validation with GIM

(min) and

Model Validation with Ionosonde data and IRI model

FR 20	16 mod	ol : c
0.10	16.20	2.4
	8 12	8 12 16 20

Grahamstown (33.3 °S, 26.5° E), South Africa

Investigating the distance between anomaly crests

At various altitudes, and Longitudinal sectors of the globe

Equatorial ionization Anomaly descriptions (Position of crests)

Sample American Sector (Longitude -60°) December solstice (21 Dec. 2012) Local midday (16:00 UT) 300 km

Equatorial ionization Anomaly descriptions (Position of crests)

Sample African Sector (Longitude 15°) March equinox (20 March 2012) Local midday (11:00 UT) 300 km

Equatorial ionization Anomaly descriptions (Position of crests)

Sample Asian Sector (Longitude 105°)September equinox (22 September 2012)Local midday (05:00 UT)300 km

Thank you