# Bayesian Modeling Introduction





### Alexandre Andorra

- Principal DS & Co-founder of <u>PyMC Labs</u>
- <u>PyMC</u> & <u>ArviZ</u> author
- Host & Creator of the "<u>Learning Bayesian</u>
   <u>Statistics</u>" podcast
- Teacher in the <u>Intuitive Bayes</u> galaxy



And of course, a football prodigy, since 1990



### Thomas Wiecki

- PhD on computational psychiatry, Brown University
- Bayesian modeler & PyMC co-creator
- CEO & Founder of PyMC Labs
- Twitter: @twiecki





### **PyMC Labs – The Bayesian Consultancy**





**Inventors of <u>PyMC</u>**, the leading platform for statistical data science



Decades of experience building Bayesian models



Alex Andorra



Ben Vincent



Bill Engels



Thomas Wiecki



World-class Industry Expertise



Luciano Paz



Maxim Kochurov



Ricardo Vieira



Tomi Capretto



Team of

PhDs

**Mathematicians** 

**Neuroscientists** 

**Computer Scientists** 

**Industry Experts** 

### Example: Estimating Treatment Effect

- Assume we have a new crop type and run a field trial
- Observe: Yield
- Question: How effective is our new crop?



### How does it work in theory?

### Updating beliefs

- 1. Starting belief: **Prior**
- 2. Observe data: Likelihood
- 3. Update belief: Posterior



### Demo

Go to: <a href="https://rpsychologist.com/d3/bayes/">https://rpsychologist.com/d3/bayes/</a>

### How does it work in practice?

Normalization constant is (usually) impossible to compute analytically.

Instead: Use approximation method called **Markov Chain Monte Carlo** (MCMC) that *draws samples from the posterior*.

AKA... The Magic Machine 🔀

Offers great flexibility in model creation





### How can we build this magic machine??





### Sampling to Get Our Posterior Belief





## When statistics becomes counting

### Probability of positive treatment effect?



→ Probability of positive treatment effect is 98%.



## Que piola.



## But it gets better, che.

### Pre-packaged vs Composable



Frequentist statistics & Machine Learning VS



Bayesian

### Blackbox Machine Learning



- Only prediction not inference
- Blackbox: Not good at conveying what was learned
- Down-side of automation: Purely data-driven, cannot incorporate pre-existing knowledge about problem

### Frequentist Statistics



- Gray box implicit assumptions (e.g. normality)
- Only use pre-packaged tests, or derive new estimator
- Assumes data has randomness, parameters are fixed
- p-values are not the probability we care about

### Bayesian Modeling



- Transparent: Open box models
- Composable: Can tailor model to specific problem
- Causal: Incorporate domain knowledge
- Probabilistic: Assumes data is fixed, parameters have randomness
- Code-friendly: Build custom model in code, not math.

### Priors & the Illusion of Objectivity

- A frequent concern about Bayesian modelling is that the scientist or analyst has to represent their **beliefs of the effect** they're studying into the prior
- However: it can be argued this is actually a positive effort to explicit underlying assumptions
- Many subjective decisions go into an experiment and its analysis:
  - Experimental design
  - Metrics
  - Model
  - Decision rules (what is a hit?)

### PyMC: Code powerful models in Python

**Modern:** MCMC (NUTS) and variational inference (ADVI).

**User friendly**: Friendly Python syntax.

Fast: Compiles to C, supports GPU.

**Batteries included**: Distributions, Gaussian Processes

**Community focused**: Discourse, MeetUps, Twitter

## When does Bayesian modeling work best?



## When does Bayesian modeling work best?



Not a simple prediction problem



Gain insight into your data



Structured data (hierarchical, time series...)



Integrate domain knowledge in models



Uncertainty plays an important role



Make decisions with real-world consequences



Sparse, noisy, unbalanced, or missing data





### **Our Clients**





#### **Build state-of-the-art MMM**

- Beats FB Robyn and Uber's OKR in hold-out
- Used to optimize total international marketing budget



We work

with

Develop state-of-the-art model for estimating differences in rat development

- Rats are monitored in cages over several months
- Model increases sensitivity and specificity over previous approach
- Upcoming Nature Methods submission



### **Automate MMM pipeline**

- Before: Hundreds of analysts built custom MMM pipelines
- Now: Handful of analysts run automated pipelines that determine best MMM configuration



Estimating effects of different crop-types on agricultural fields

- Reliable estimation of treatment effects with spatial confounders
- Directly informs which crops are being marketed and sold



### Improve AB testing

- Before: Used inflexible and limited frequentist framework
- Now: Uses modern Bayesian AB testing framework that scales to Twitch-size data
- Allows to make more accurate product-decisions faster



### Cognitive training for kids with ADHD

- Estimation of cognitive processes based on performance on cognitive training game
- Only model to reveal training effects with real-world carry-over



Data Science Teams



Marketing Analytics



Finance Teams



**Growth Teams** 



Pharma



**Biotech** 



Health Care



### **Examples from our client work**



### Linear regression





### Robust linear regression

Normal likelihood

Student-T likelihood





### Hierarchical models for nested data

Single subject model

Hierarchical model





Useful specifically when you have multiple subjects.

You can model differences and similarities.



### Bayesian Estimation Supersedes the T-Test









### Mixture Models







### Gaussian Processes





## Survival Analysis

### Bayesian survival model





### Bayesian Time Series







## Wait. Did you say Gaussian Process?

#### What do these have in common?

#### All special cases of Gaussian processes

Linear Regression
Polynomial Regression
Spline Regression

Time series (AR/ARMA)

Neural Networks

#### GPs can flexibly fit data



Using GP's to forecast Supernova la lightcurves,

by Andy Tzanidakis

## Geospatial Modeling





#### Show me the data



# Seasoning



#### Modeling

The prior on  $CO_2$  as a function of time is,

$$f(t) \sim \mathcal{GP}_{slow}(0, k_1(t, t')) + \mathcal{GP}_{med}(0, k_2(t, t')) + \mathcal{GP}_{per}(0, k_3(t, t')) + \mathcal{GP}_{noise}(0, k_4(t, t'))$$

```
# long term trend

η_trend = pm.HalfCauchy("η_trend", beta=2, testval=2.0)

ℓ_trend = pm.Gamma("ℓ_trend", alpha=4, beta=0.1)

cov_trend = η_trend**2 * pm.gp.cov.ExpQuad(1, ℓ_trend)

gp_trend = pm.gp.Marginal(cov_func=cov_trend)
```

```
# small/medium term irregularities

η_med = pm.HalfCauchy("η_med", beta=0.5, testval=0.1)

ℓ_med = pm.Gamma("ℓ_med", alpha=2, beta=0.75)

α = pm.Gamma("α", alpha=5, beta=2)

cov_medium = η_med**2 * pm.gp.cov.RatQuad(1, ℓ_med, α)

gp_medium = pm.gp.Marginal(cov_func=cov_medium)
```

```
# yearly periodic component x long term trend

n_per = pm.HalfCauchy("n_per", beta=2, testval=1.0)

e_pdecay = pm.Gamma("e_pdecay", alpha=10, beta=0.075)

period = pm.Normal("period", mu=1, sigma=0.05)

e_psmooth = pm.Gamma("e_psmooth ", alpha=4, beta=3)

cov_seasonal = (
    n_per**2 * pm.gp.cov.Periodic(1, period, e_psmooth) * pm.gp.cov.Matern52(1, e_pdecay)

gp_seasonal = pm.gp.Marginal(cov_func=cov_seasonal)
```

```
# noise model

η_noise = pm.HalfNormal("η_noise", sigma=0.5, testval=0.05)

ℓ_noise = pm.Gamma("ℓ_noise", alpha=2, beta=4)

σ = pm.HalfNormal("σ", sigma=0.25, testval=0.05)

cov_noise = η_noise**2 * pm.gp.cov.Matern32(1, ℓ_noise) + pm.gp.cov.WhiteNoise(σ)
```

```
# The Gaussian process is a sum of these three components
gp = gp_seasonal + gp_medium + gp_trend

# Since the normal noise model and the GP are conjugates, we
y_ = gp.marginal_likelihood("y", X=t, y=y, noise=cov_noise)
```

#### Show me the results!



## Predicting the future



# Decomposing the GP's elements





# Statisticians just wanna leeeeeaaarn!





Intuitive Bayes
Introductory Course



'Learn Bayes Stats' podcast







PyMC Discourse





#### Gaussian Processes



Bill EngelsRavin Kumar

## Introductory Course



Ravin KumarAlex AndorraThomas Wiecki

www.intuitivebayes.com

#### Advanced Regression



Alex AndorraTomas CaprettoRavin Kumar



4 y 5 de agosto de 2023 - Santiago del Estero, Argentina

El Congreso Bayesiano Plurinacional tiene por objetivo reunir a estudiantes, docentes, investigadores, practicantes y expertos que utilicen, desarrollen o implementen métodos Bayesianos, en la academia o industria.

http://bayesdelsur.com.ar/

# Need custom solutions to your most challenging data science problems?

Contact us @

alex.andorra@pymc-labs.io



Further info about PyMC



More details about what we do



The Bayesian super power in audio format