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Example: Estimating Treatment Effect

e Assume we have a new crop
type and run a field trial
e Observe:VYield

e Question: How effective Is our
new crop?




How does it work in theory?

Likelihood Prior

Posterior \ /
/ p(data | 0) - p(f)
Updating beliefs p(0 | data) = p(data)

-l. Stal’tlﬂg be||ef Prior Normalization
2. Observe data: Likelihood
3. Update belief: Posterior
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Demo

Go to: https:/rosychologist.com/d3/baves/




How does it work In practice?

Normalization constant is (usually) e Likelihood Prior
Impossible to compute analytically. / \ /
_ p(data | 6) - p(6)
| N p(0 | data) =
Instead: Use approximation method epbdatal
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How can we build this magic machine??




Bayesian o P 64/3) =P(8a _)_fi (4)

statistics?
REALLY?
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https /Mww.elmhurst edu/blog/thomas-baves/




Sampling to Get Our Posterior Belief
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When statistics becomes counting




Probability of positive treatment effect?
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> Probability of positive treatment effect is 98%.



Que piola.




But it gets better, che.




Pre-packaged vs Composable

Frequentist
statistics & Machine Bayesian
Learning



Blackbox Machine Learning

Data 4 Classifier — Predictions

e Only prediction - not inference
e Blackbox: Not good at conveying what was learned

e Down-side of automation: Purely data-driven, cannot incorporate
pre-existing knowledge about problem



Frequentist Statistics

Hypothesis
Test

Data > p-value

e GCray box - implicit assumptions (e.g. normality)
e Only use pre-packaged tests, or derive new estimator
e Assumes data has randomness, parameters are fixed

e p-valuesare notthe probability we care about




Bayesian Modeling

Custom

Data »[  Bayesian > Probabilities
Model

e Transparent. Open box models

e Composable: Can tailor model to specific problem

e Causal: Incorporate domain knowledge

e Probabilistic: Assumes data is fixed, parameters have randomness

e Code-friendly: Build custom model in code, not math.



Priors & the lllusion of Olbjectivity

e A frequent concern about Bayesian modelling is that the scientist or

analyst has to represent their beliefs of the effect they're studying
into the prior

e However: it can be argued this is actually a positive effort to explicit
underlying assumptions

e Many subjective decisions go into an experiment and its analysis:
Experimental design

Metrics

Model

Decision rules (what is a hit?)

o O O O



PyMC: Code powertful models in Python

Modern: MCMC (NUTS) and
variational inference (ADVI).

User friendly: Friendly Python
syntax. T T

pm.Normal("effect", mu
pm.HalfNormal( "noise")

Fast. Compilesto C, supports GPU.

obs = pm.Normal("obs", mu=effect,

rved=|[

Batteries included: Distributions,

) pm.sample( )
Gaussian Processes

Community focused: Discourse,
MeetUps, Twitter




When does

Bayesian modeling
work best?




When does Bayesian modeling work best?

= K

Not a simple prediction Gain insight into your Structured data Integrate domain
problem data (hierarchical, time series...) knowledge in models

i a

Uncertainty plays an Make decisions with Sparse, noisy, unbalanced,
important role real-world consequences or missing data







Our Clients (&

Y SAIN Ewiteh

Build state-of-the-art MMM Automate MMM pipeline Improve AB testing
A A AN
» Beats FB Robyn and Uber's OKR in = Before: Hundreds of analysts built custom MMM = Before: Used inflexible and limited frequentist
hold-out pipelines framework
»  Used to optimize total international marketing = Now: Handful of analysts run *  Now: Uses modern Bayesian AB testing
budget automated pipelines that determine best MMM framework that scales to Twitch-size data
configuration = Allows to make more accurate product-decisions
faster
°
indigo AKIL)
Develop state-of-the-art model for estimating Estimating effects of different crop-types on
differences in rat development agricultural fields Cognitive training for kids with ADHD
AN AN AN
= Rats are monitored in cages over * Reliable estimation of treatment effects with = Estimation of cognitive processes
several months spatial confounders based on performance on cognitive training
» Model increases sensitivity and specificity over = Directly informs which crops are being marketed game
previous approach and sold = Only model to reveal training effects with
*  Upcoming Nature Methods submission real-world carry-over
Data Science Marketing Finance Growth Teams Pharma Biotech Health
Teams Analytics Teams Care
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Examples from our client work (@

Expected Future Revenue per Customer? r What is the spatial distribution of my data?

Z
Y
M

1.0 — model fit
- counterfactual
= treatment threshold

M' PyMC Labs model
|

!
Wy

0.5

Log number of users

Fai

-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100
x

How big is the causal impact of my marketing
campaign?

How many new users?
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Linear regression

import pymc3 as pm

X, y = linear training data()
with pm.Model() as linear model:
weights = pm.Normal("weights", mu=0, sigma=1)
noise = pm.Gamma( "noise", alpha=2, beta=1)
y_observed = pm.Normal (
"y observed",
mu=X € weights,
sigma=noise,
observed=y,

>
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Robust linear regression

Normal likelinood

Posterior predictive

» data
posterior predictive regression lines
= true regression line

Probability density

—— Normal
—— StudentT

Student-T likelihooad

Posterior predictive

posterior predictive regression lines
e trUE regression line




Single subject model

parameters 0 1 0 2 e 0 k

Lo i

observations Y1 Ys Ye

Useful specifically when you have multiple subjects.

lerarchical models for nested data

Hierarchical model

model

parameters

|

observations y 1

You can model differences and similarities.
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Mixture Models

0.30 Posterior predictive x_obs
—— Observed x_obs
=== Posterior predictive mean x_obs
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Gaussian Processes
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Survival Analysis

Cumulative hazard AfL)

25

Bayesian survival model

—— Had not metastized

— Metastized

Survival function 5(t)

T T T T T T T T
75 100 125 150 175 200 225 o ) &0 = 100 125 150 175 200 225
Months since mastectomy Months since mastectomy



Bayesian Time Series
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Wait.

Did you say Gaussian Process?




What do these have In common??

All special cases of Gaussian processes

Time series

Linear Regression (AR/ARMA)
Polynomial Regression

Spline Regression Neural
Networks




GPs can flexibly fit data
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Geospatial Modeling
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Susiluoto et. al., 2020. Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
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Show me the data

CO>, Measurements over time
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Seasoning

Several years of the seasonal component

A CO2 [ppm]
o




Modeling

The prior on CO, as a function of time is,

f(t) ~ GPs1ow (0, k1 (2, t’)) + GPred (0, ka(t, t’)) + gpper(os ki (t, t,)) + GProise (0, ka(t, t’))



PyMCing — Part 1

# long term trend

n_trend = pm.HalfCauchy("n_trend", beta=2, testval=2.0)
¢_trend = pm.Gamma("#_trend", alpha=4, beta=0.1)
cov_trend = n_trend*x2 *x pm.gp.cov.ExpQuad(1l, #_trend)

gp_trend = pm.gp.Marginal(cov_func=cov_trend)



PyMCing — Part 2

# small/medium term irreqularities

n_med = pm.HalfCauchy('"n_med", beta=0.5, testval=0.1)
Z_med = pm.Gamma("#_med", alpha=2, beta=0.75)

a = pm.Gamma("a", alpha=5, beta=2)

cov_medium = n_med**2 * pm.gp.cov.RatQuad(1l, #Z_med, a)
gp_medium = pm.gp.Marginal(cov_func=cov_medium)



PyMCing — Part 3

# yearly periodic component x long term trend

n_per = pm.HalfCauchy("n_per", beta=2, testval=1.0)
¢_pdecay = pm.Gamma("/_pdecay", alpha=10, beta=0.075)
period = pm.Normal("period", mu=1, sigma=0.05)
Z_psmooth = pm.Gamma("#_psmooth ", alpha=4, beta=3)
cov_seasonal = (

n_perxkx2 *x pm.gp.cov.Periodic(1, period, #_psmooth) * pm.gp.cov.Matern52(1, #_pdecay)
)

gp_seasonal = pm.gp.Marginal(cov_func=cov_seasonal)



PyMCing — Part 4

# noise model

n_noise = pm.HalfNormal('"n_noise", sigma=0.5, testval=0.05)

Z_noise = pm.Gamma("#_noise", alpha=2, beta=4)

o = pm.HalfNormal("o", sigma=0.25, testval=0.05)

cov_noise = n_noisex*2 % pm.gp.cov.Matern32(1, Z_noise) + pm.gp.cov.WhiteNoise(o)



PyMCing — Part 5

# The Gaussian process 1is a sum of these three components
gp = gp_seasonal + gp_medium + gp_trend

# Since the normal noise model and the GP are conjugates, we
y_ = gp.marginal_likelihood("y", X=t, y=y, noise=cov_noise)



Show me the results!

eta_trend

94% HDI
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Predicting the future
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Decomposing the GP’s elements
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Statisticians just wanna leeeeeaaarn!

©

INntuitive Bayes ‘Learn Bayes Stats’
Introductory Course podcast
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Congreso
Bayesiano
Plurinacional

4y 5 de agosto de 2023 - Santiago del Estero, Argentina

El Congreso Bayesiano Plurinacional tiene por objetivo reunir a estudiantes, docentes, investigadores, practicantes y expertos
que utilicen, desarrollen o implementen métodos Bayesianos, en la academia o industria.



Need custom solutions to your most
challenging data science problems?

Contact us @

alex.andorra@pymc-labs.io

§ &) @

Further info about More details about The Bayesian super
PyMC what we do power in audio format




