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The vision

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

BIOLOGICAL COLTURE PHOTONIC INTEGRATED CIRCUIT



NanoScience Laboratory

Outline

• Photonics for artificial neural networks
– The optical neuron

– How to add memory to the neuron

– Few neuronal networks at work

• Photonics to form biological networks
– Light to sculpt neuronal circuits

– Light to induce memories

– Software emulation of neuronal circuits

• Hybrid artificial networks
– The first steps
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The vision
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Artificial Neural Networks

Image from https://syncedreview.com/2017/04/08/the-future-of-computing-neuromorphic/
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Artificial Neural Netowrks

VERY 
COMPLEX!!!

 Gain insight on behaviour
 Imitate brain through ANN

https://biorender.com/
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Photonics-based ANN

Light is fast!

Power efficient (no Joule effect)

Parallelism (WDM)

15 yearsBrain learning process Artificial optical brain 0.5 seconds

Factor of 109!!

Biological neuron timescale ms (10-3   s)
Optical neurons timescale ps (10-12 s)

14
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The basic building blocks of photonics 
ANN

Thermal phase shifter

𝑛 = 𝑛0 +
𝑑𝑛

𝑑𝑇
∆𝑇

i

𝑒𝑖 ∆∅

L
i
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The basic building blocks

Microring resonator

TOE: Thermo-optic effect Δ𝑛 > 0 Red shift

FCD: Free carrier dispersion Δ𝑛 < 0 Blue shift

TPA

FCA FCD

thermalization

NIR light

defects

𝑛(𝑃) = 𝑛0 +
𝑑𝑛

𝑑𝑇
∆𝑇 −

𝑑𝑛

𝑑𝑁
∆𝑁

𝑚𝜆 = 2𝜋 𝑛𝑒𝑓𝑓 𝑅

𝜏𝑓𝑐~ 4 𝑛𝑠 𝜏𝑇𝑂~ 100 𝑛𝑠

M. Borghi, et al.  Optics Express 29, 4363-4377 (2021).
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Neurons
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Let’s start with one neuron: the perceptron

McCulloch, W., Pitts, W., Bulletin of Math. Biophys. 5:115-133 (1943).

 Easily trained (ML)
 Can do classification tasks

– It has no memory

𝑤1

𝑤2

𝑤3

𝑖3

𝑖2

𝑖1

𝑓

O
U
T
P
U
T

𝑏

𝑓 Ԧ𝑖 ⋅ 𝑤 + 𝑏Ԧ𝑖 ⋅ 𝑤 +𝑏𝑦 =

18

https://biorender.com/
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The optical neuron, aka the optical 
perceptron

Optical coupler Photodetector

We sum fields, i.e. complex quantities
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Delayed complex perceptron

Detection

Current driven phase shifters
Delay lines
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Delayed complex perceptron

Detection

Current driven phase shifters

Mattia Mancinelli et al., Scientific Reports (2022) - arXiv:2106.11050

Delay lines

100 ps

Pseudo-
random (0,1)
Input signal 
@ 10 GHz

Δt = 150 ps

Δt = 100 ps

Δt = 50 ps

Δt = 0 ps

The role of the delay lines
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Delayed complex perceptron

Σ
out

· 2
𝑤1

𝑤2

𝑤𝑘

𝑤𝑘 = 𝑒𝑗𝜙𝑘

Detection

Dk=50 ps

Current driven phase shifters

Mattia Mancinelli et al., Scientific Reports (2022) - arXiv:2106.11050
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Propagation-related distortions

Optical 
input

Distorted 
signal

Fiber 
span

Intersymbol interference

Chromatic dispersion: frequency 
dependence of the refractive index 𝑛 𝜔

𝑛 𝜔 induces 𝑛𝑔 𝜔 (group index)

𝑛𝑔(𝜔) =
𝑐

𝑣𝑔(𝜔)

Pulse broadening:

Δ𝑇 =
𝑑𝑇

𝑑𝜔
Δ𝜔 =

𝑑

𝑑𝜔

𝐿

𝑣𝑔
Δ𝜔 = 𝐿𝛽2Δ𝜔

Effect 
on 
single 
bit

Effect on a 
sequence 
of bits
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Data processing

1)

3)

Signal acquisition and target construction Set expected values for each output bit

Histogram of the distributions of expected 0s and 1s

2)
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Results
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Trained perceptron
10 Gbps, 100 km NRZ

40 Gbps, PAM-4

40 Gbps, NRZ
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With perceptrons we can make a network

A

C D

B

28



NanoScience Laboratory

Feed Forward Network

Input layer Hidden layers Output layer

𝑥1

𝑥2

𝑥𝑁

𝑜1

𝑜2
Input samples Outputs

𝒙
𝒐 = 𝒇𝑁𝐿(𝒘, 𝒙)

Trainable synapses 𝐶 𝒘 =෍

𝑘

𝒐 𝒘, 𝒙 𝑘 − ෥𝒐𝑘
2

Min 𝐶(𝒘)
𝒘

Target outputs
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Feed forward network as a 
universal function

approximator

arXiv:2101.01664
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Feed Forward Neural Network

∆∅ = 𝐿
2𝜋

λ

𝑑𝑛

𝑑𝑇
𝑑𝑇 ∆𝜃 = 𝐿

2𝜋

λ

𝑑𝑛

𝑑𝑇
𝑑𝑇

1

2
𝐴 1 + 𝑒𝑖 ∆∅ 𝑒𝑖∆𝜃 𝑒−𝑖𝜔𝑡

MZI Phase shifter

Nonlinearity by microring resonator

Optical neuron
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Feed Forward Neural Network

2 input neurons 1 output neuron2 neurons in the
hidden layer

Simple deep learning network 

f

fΣ

Σ

fΣ
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Feed Forward Neural Network

FFNN:

f

fΣ

Σ

fΣ

Input layer
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Feed Forward Neural Network

FFNN:

f

fΣ

Σ

fΣ

Σ

Input layer Hidden layer
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Feed Forward Neural Network

FFNN:

f

fΣ

Σ

fΣ

ΣΣ f

Input layer Hidden layer
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Feed Forward Neural Network

FFNN:

f

fΣ

Σ

fΣ

ΣΣ fΣ f

Σ f

Input layer Hidden layer Output layer
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A feed-forward neural network

Free parameters for the 
training process:

3 rings

9 heater for the phases

12

x

x
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A feed-forward neural network

Example a 6x6 pixel square shape 

P(5) are our base for the square shape Execution time = 25 min 
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A feed-forward neural network: 
other tasks

“Z”  shape

Mean(Δ) = 0.045±0.01Mean(Δ) = 0.034±0.02 Mean(Δ) = 0.021±0.02

“L” shape “C” shape
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A feed-forward neural network: 
other tasks

6 x 6 Hole shape 

Execution time = 30 min 
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Recurrent Neural Network

– Harder to train

 It has memory!!! 

41



NanoScience Laboratory

Reservoir computing

NONLINEAR COMPLEX SYSTEM

Has sparse connectivity

Has fading memory

Is highly sensitive to intial conditions

Is Untrained

Input nodes Output nodes 𝒚

𝑜𝑘 =෍

𝑗=1

𝑁

𝑤𝑘𝑗𝑦𝑗 +𝑤𝑘0

𝐶 𝒘 =෍

𝑘

𝒐 𝒘, 𝒙 𝑘 − ෥𝒐𝑘
2
+ 𝜆 𝒘 2

Min 𝐶(𝒘)
𝒘

TRAINING THE OUTPUT LAYER

Linear combination + Ridge regression
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Reservoir computing based 
on a silicon microring and 

time multiplexing for binary
and analog operations

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Input pump

wavelength

valence band

conduction band
Free carrier generation

by
Two Photon Absorption

𝑛 → 𝑛 + 𝛿𝑛(𝑃2) Free Carrier Dispersion

wavelength
probe

Pump and probe technique

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Inter-node coupling and fading 
memory

Probe power at the drop

Quadratic in the pump power
TPA provides nonlinearityFading memory on a time scale of the FC lifetime

Non linear coupling between virtual nodesAdjacent nodes couping strength

Output depends on the past

Recursive 
virtual
node
relation

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Experiment: digital inputs

Pump in

Pump out

Probe out

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Experiment: 1 bit delayed XOR 

Free carrier lifetime ∼ 45 𝑛𝑠
Decay rate: 22 𝑀𝐻𝑧

Speed limited by free carrier lifetime Free carrier dynamics activation @ ∼ 𝟎 𝒅𝑩𝒎

𝑥(𝑡)𝑥(𝑡 − 1)

𝑜(𝑡)

TASK

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Analog input: Iris species recognition

Not
linearly
separable
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Experiment: Iris species recognition

∼ 380000 flower classified per second

99.3 ± 0.2 accuracy 

Free carrier 

Thermal

Chaos

2 dBm 9 dBm

Optimal
performance
(maximum input
separability)

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)
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Single node reservoir with longer 
memory

Silicon microring resonator coupled to an external feedback :

Light
signal 

• 𝜂𝐹  echo light strength
• 𝜙𝐹 echo light phase

input output

50

Echo state network
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Experimental implementation

Hybrid approach: 
microring resonator on chip

+
External optical feedback

51



NanoScience Laboratory

Single node reservoir with longer 
memory

52

• Consistency
• Separation property
• Approximation property
• Fading memory
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Time delay Reservoir Computing
53
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Digital tasks

ACTUAL BIT (Xi) DELAYED BIT(Xi-j)
MC
(Yi)

AND
(Yi)

XOR
(Yi)

OR
(Yi)

NAND
(Yi)

0 0 0 0 0 0 1

0 1 1 0 1 1 1

1 0 0 0 1 1 1

1 1 1 1 0 1 0

TASKS (target)

0

1
Not 
linearly 
separable 
!

XO
R

Input 1 Input 2

Xi

Xi-1
Xi-2

Offline PC 
processing

0 1

54
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Narma 10 benchmark task

𝑥𝑖: input series, uniformely distributed in [0,0.5]

𝑟𝑖+1 = 0.3𝑟𝑖 + 0.05𝑟𝑖(෍

𝑗=0

𝑦𝑖−𝑗) + 1.5𝑥𝑖𝑥𝑖−𝟗 + 0.1

9

Target
:

This task needs 10 bit of memory to be solved.
𝑥𝑖

𝑟𝑖+1

Time series forecasting
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Narma 10 benchmark task

Time series forecasting

LINEAR

• MRR in linear regime 
and strong feedback 
allow the largest linear 
memory capacity

• Memory exploited: 
optical (feedback).

• Nonlinearity exploited: 
photodetection square 
law.
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The vision

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

PHOTONIC INTEGRATED CIRCUIT
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The vision

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

BIOLOGICAL COLTURE
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Outline

• Photonics for artificial neural networks
– The optical neuron

– How to add memory to the neuron

– Few neuronal networks at work

• Photonics to form biological networks
– Light to sculpt neuronal circuits

– Light to induce memories

– Software emulation of neuronal circuits

• Hybrid artificial networks
– The first steps
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The experimental platform
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Beatrice Vignoli Clara Zaccaria Ilya Auslender

Asiye Malkoc Yasaman Heydari

Exploring Neuronal Circuits

Francesca Pischedda

Paolo Brunelli

The experimental platform
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Action potential

Ionic
channel

Neuronal communication
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Action potential

Ionic
channel

Neuronal communication
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1

Optogenetics

https://www.hhmi.org/scientists/karl-deisseroth

Karl Desseiroth, Stanford University, 2005

LIGHT CAN ACTIVATE NEURONS

Chlamydomonas reinhardtii

How do we influence neuron activity
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Optogenetics 

• Excitatory Channelrhodopsin2 (ChR2)

depolarizes neurons through activation of the

inward Na+ and Ca2+ ion currents and K+

outward current.

• Inhibitory Halorhodopsin channel (NpHR)

when exposed to the 590nm light, facilitates

Cl- inward flow in neurons,

• Inhibitory Archaerhodopsin (Arch) in presence

of 565nm light pumps out H+ from neurons.

Viral vector 

Neuronal culture

Matthew C. Walker et.al., Neuropharmacology (2020) 
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Optogenetic excitation of neurons
6
7

Cortical and hippocampal
neuronal cultures from
wild type mice (C57Bl6)
embryos at E17.5 days

pAAV-Syn-ChR2(H134R)-YFP 
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Optogenetic excitation of neurons
6
8

Cortical and hippocampal
neuronal cultures from
wild type mice (C57Bl6)
embryos at E17.5 days

pAAV-Syn-ChR2(H134R)-YFP 

X-Rhod-1AM X-Rhod-1AM

X-Rhod-1AM calcium indicator

𝐶𝑎2+

+
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Writing a neuronal circuit

Patterned illumination activates a group of 
interconnected neurons
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Writing a neuronal circuit :
patterned illumination

16 mW/mm2

Digital Light Processing (DLP)
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Writing a neuronal circuit :
patterned illumination
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Outline

• Photonics for artificial neural networks
– The optical neuron

– How to add memory to the neuron

– Few neuronal networks at work

• Photonics to form biological networks
– Light to sculpt neuronal circuits

– Light to induce memories

– Software emulation of neuronal circuits

• Hybrid artificial networks
– The first steps
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What is memory?

Richard Semon 1904 Donald O. Hebb 1949

Poo et al. BMC Biology 4(2016)1:40 DOI 10.1186/s12915-016-0261-6 

Simultaneous complex of excitations that induce changes in the brain. 

Strenghtening of synapses between neurons that were simultaneously excited. 

Engram: ensemble of cells activated, molecularly or structurally modified by an 
experience.

Hebb Theory “Neurons that fire together wire together”

potentiation
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LTP temporal pattern: 10 trains of 13 
pulses at 100 Hz, repeated at 0.5 Hz 

+ Doxycycline

Digital Light Projector (DLP): are we 
able to potentiate neurons?
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HA protein

LTP temporal pattern: 10 trains of 13 
pulses at 100 Hz, repeated at 0.5 Hz 

+ Doxycycline
Potentiated spine = strengthened
connection  

Digital Light Projector (DLP): are we able 
to detect potentiation in neurons?
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©Shutterstock

TOMATO  transfection Synactive

green (not amplified)  ChR2-YFP

Anti-HA  HA protein

SA Tomato ChR2 - YFP HA

Analysis and results
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WHOLE FIELD ILLUMINATION

HA+

Analysis and results

7
7
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Light spot 1

Light spot 2
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LTP-like pattern
10 trains of 13 pulses at 100 Hz, repeated at 0,5 Hz

Analysis and results

Potentiation of spines of simultaneously excited neurons  we created the engram.
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Outline
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What is the action potential?
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Multi-Electrode Arrays (MEA)
• An extracellular electrophysiological assessment.

• A conventional MEA has a square recording area ranging in length from 700 µm to 5

mm.

• 60 electrodes are arranged in an 8 x 8 grid with interelectrode intervals of 100, 200, or

500 m in this area.

• Planar TiN (titanium nitride) electrodes are available in sizes of 10, 20, and 30 μm
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Measurements of response to a 
stimulus

𝑃𝑆𝑇𝐻 𝑡, 𝑐ℎ =
1

Δ𝑡𝑁𝑠𝑡𝑖𝑚
෍

𝑖=1

𝑁𝑠𝑡𝑖𝑚

𝑁𝑖 𝑡, 𝑐ℎ

𝐴 𝑐ℎ = න
𝑇𝑃𝑆

𝑃𝑆𝑇𝐻 𝑡, 𝑐ℎ 𝑑𝑡

Spike count in [t, t+Δτ] time binNumber of stimulation periods

Area under the PSTH curve: quantifies the overall response of 
each channel to the stimulation.

t= 0 : start of stimulus

PSTH: Post-stimulus time histogram
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So, what we want to do?

We want to use light to influence neuronal 
activity and then record the neuronal activity via 

MEA
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Light stimulation patterns

20ms

Test stimulus: low frequency. Used 

to measure the response of the cultures

@ 0.5Hz

Tetanic stimulus: High frequency. Used to induce a 

change in the synaptic connections (e.g., LTP)

Train of N pulses of 
5ms on @50Hz

0.5Hz
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Long-term potentiation: Experimental 
protocol

Test stimulus
Tetanus stimulus

(for LTP) Test stimulus

Measure PSTH
Measure PSTH +

Efficacy at
Different times after tetanus. 

Analysis on the responsive 
channels

Pre-LTP (Baseline) Post-LTP (Recalling)

10 minutes – 300 stimuli

Spot
/WF Spot

Learning

Repeat 
Pre-LTP 

stim.

Test w/o tetanus

Control

Test with a different 
pattern

Control
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Memory writing and reading

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 -0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Control Instant 20 min 40 min 60 min
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
ff

ic
a
c
y

36-83

36-78

36-13

Tetanus around electrode 36; wide field test
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Network modeling

Objective:
Simplify the complicated neuronal network into a 
macro-scale network consisting of nodes 
corresponding to the measurement domain 
(electrodes).

From MEA signals to a macro-network model
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ANN architecture

𝐱 𝑛 = 𝒇𝑁𝐿 𝐖in𝐲 𝑛 +𝐖res𝐱 𝑛 − 1

𝐲 𝑛 + 1 = 𝐖out𝐱 𝑛

𝐱 𝑛 + 1𝐱 𝑛
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Network modeling

MEA recording
(Raw Data)

Spike trains

Bursts

Network 
bursts

Model training

ANN model

Validation with 
the initial 

recorded dataset

Validation with 
experimental 

patterned stimulus

Connectivity Map

Network simulation
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Network modeling
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Network modeling
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Outline

• Photonics for artificial neural networks
– The optical neuron

– How to add memory to the neuron

– Few neuronal networks at work

• Photonics to form biological networks
– Light to sculpt neuronal circuits

– Light to induce memories

– Software emulation of neuronal circuits

• Hybrid artificial networks
– The first steps
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The vision

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

BIOLOGICAL COLTURE PHOTONIC INTEGRATED CIRCUIT
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Writing a neuronal circuit

Bottom illumination  photonic chip

Top illumination  DLP

Light in the fiber
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SiO2

SiN
Visible 
light in

Grating 
based*

Reflector 
based

10 µm

Optical waveguide
Silica

Culture medium

Polylysine

• Design of the structures in the visible range of the
spectrum

• Design of scattering structures

• Respect biological constrains: 10 
mW
𝑚𝑚2 on 10 um diameter body

* Clara Zaccaria et. al., «Transfer matrix for grating design»

ChR2 
transfected

neurons

Photonic chip
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Scattering grating
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10 um

500 um
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Neurons can grow on 
the surface of the chip

Neurons on the photonic chip
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The final system
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Conclusions

• Photonics neural networks are effective in 
computing

• Biological neural networks can record 
memories

• Optical signals can be used to connect
photonics and biological networks

• We are on the way to achieve the vision
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