Photonics and the brain: hybrid integrated intelligence

Lorenzo Pavesi University of Trento

European Research Council Established by the European Commission

Trento, Italy

Nanoscience Laboratory

http://nanolab.physics.unitn.it/

Quantum Photonics Non-Hermitian Photonics Neuromorphic Photonics

REVIEV published: 06 December 202 doi: 10.3389/fphy.2021.78602

Thirty Years in Silicon Photonics: A Personal View

Lorenzo Pavesi*

Laboratory Nanoscience, Department of Physics, University of Trento, Povo (Trento), Italy

Silicon Photonics, the technology where optical devices are fabricated by the mainstream microelectronic processing technology, was proposed almost 30 years ago. I joined this research field at its start. Initially, I concentrated on the main issue of the lack of a silicon laser. Room temperature visible emission from porous silicon first, and from silicon nanocrystals then, showed that optical gain is possible in low-dimensional silicon, but it is severely counterbalanced by nonlinear losses due to free carriers. Then, most of my research focus was on systems where photons show novel features such as <u>Zener</u> tunneling or <u>Andrenso</u> logilization. Line, the carrier was to province with the dielectric

https://www.frontiersin.org/articles/10.3389/fphy.2021.786028/full NanoScience Laboratory

Nanoscience Laboratory

prof

researcher

Post-doc

PhD

Master students

Photonics and the brain: hybrid integrated intelligence

Lorenzo Pavesi University of Trento

European Research Council Established by the European Commission

BACKUP project

The vision

BIOLOGICAL COLTURE

PHOTONIC INTEGRATED CIRCUIT

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the optical neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

The vision

PHOTONIC INTEGRATED CIRCUIT

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

Photonics neural networks

BIO-INSPIRED OPTICAL NEURAL NETWORKS: BRAIN MEETS PHOTONIC CIRCUITS

Artificial Neural Networks

Brain is a model for power efficiency and performance

Power efficiency

Always on

Image from https://syncedreview.com/2017/04/08/the-future-of-computing-neuromorphic/

Artificial Neural Netowrks

DI TRENTO

Photonics-based ANN

Light is fast! Power efficient (no Joule effect) Parallelism (WDM)

Biological neuron timescale ms $(10^{-3} s)$ Optical neurons timescale ps $(10^{-12} s)$

Factor of 10⁹!!

The basic building blocks of photonics

$$\Delta \phi = L \frac{2\pi}{\lambda} \frac{dn}{dT} dT \qquad n = n_0$$

The basic building blocks

$$m\lambda = 2\pi n_{eff} R$$

TOE: Thermo-optic effect $\Delta n > 0$ Red shift FCD: Free carrier dispersion $\Delta n < 0$ Blue shift

$$n(P) = n_0 + \frac{dn}{dT}\Delta T - \frac{dn}{dN}\Delta N$$

DI TRENTO

 $\tau_{fc} \sim 4 ns$

 $\tau_{TO} \sim 100 \ ns$

NanoScience Laboratory

M. Borghi, et al. Optics Express 29, 4363-4377 (2021).

Neurons

⁸Let's start with one neuron: the perceptron

The optical neuron, aka the optical

perceptron

We sum fields, i.e. complex quantities

Delayed complex perceptron

Delayed complex perceptron

The role of the delay lines

Delayed complex perceptron

Propagation-related distortions

NanoScience Laboratory

Data processing

Results

Trained perceptron

With perceptrons we can make a network

8

Feed Forward Network

Feed forward network as a universal function approximator

NanoScience Laboratory

Simple deep learning network

DI TRENTO

Input layer

Input layer

Hidden layer

Input layer

Hidden layer

Input layer

Hidden layer

Output layer

A feed-forward neural network

A feed-forward neural network

Example a 6x6 pixel square shape

P(5) are our base for the square shape

Execution time = 25 min

A feed-forward neural network:

other tasks

"Z" shape

Mean(Δ) = 0.034±0.02

UNIVERSITÀ DI TRENTO

"L" shape

Mean(Δ) = 0.045±0.01

"C" shape

Mean(Δ) = 0.021±0.02

A feed-forward neural network:

other tasks

6 x 6 Hole shape

Execution time = 30 min

NanoScience Laboratory

Recurrent Neural Network

Reservoir computing

Reservoir computing based on a silicon microring and time multiplexing for binary

and analog operations

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)

Pump and probe technique

Inter-node coupling and fading

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)

Experiment: digital inputs

UNIVERSITÀ DI TRENTO

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)

Experiment: 1 bit delayed XOR

1

0

UNIVERSIT. DI TRENTO

1 0

1 1

Speed limited by free carrier lifetime

Free carrier lifetime $\sim 45 \ ns$ Decay rate: 22 *MHz*

Free carrier dynamics activation @ $\sim 0~dBm$

Analog input: Iris species recognition

Experiment: Iris species recognition

 99.3 ± 0.2 accuracy

Massimo Borghi et al, Scientific Reports 11, 15642 (2021)

NanoScience Laboratory

0

Single node reservoir with longer

memory

Silicon microring resonator coupled to an external feedback :

- $\eta_F \rightarrow$ echo light strength
- $\phi_F \rightarrow$ echo light phase

Echo state network

NanoScience Laboratory

Experimental implementation

Single node reservoir with longer

memory

- Consistency
- Separation property
- Approximation property
- Fading memory

NanoScience Laboratory

Time delay Reservoir Computing

Digital tasks

Time series forecasting

Narma 10 benchmark task

Time series forecasting

Narma 10 benchmark task

- MRR in linear regime and strong feedback allow the largest linear memory capacity
- Memory exploited: optical (feedback).
- Nonlinearity exploited: photodetection square law.

The vision

PHOTONIC INTEGRATED CIRCUIT

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

NanoScience Laboratory

The vision

BIOLOGICAL COLTURE

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

NanoScience Laborato

The experimental platform

NanoScience Laboratory

The experimental platform

Beatrice Vignoli

Clara Zaccaria

Francesca Pischedda

Ilya Auslender

Asiye Malkoc

Yasaman Heydari

Paolo Brunelli

Exploring Neuronal Circuits

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

NanoScience Laborator

Neuronal communication

Plasma me

Neuronal communication

How do we influence neuron activity

Optogenetics

Karl Desseiroth, Stanford University, 2005

https://www.hhmi.org/scientists/karl-deisseroth

LIGHT CAN ACTIVATE NEURONS

Optogenetics

- Inhibitory Halorhodopsin channel (NpHR) when exposed to the 590nm light, facilitates Cl⁻ inward flow in neurons,
- Inhibitory Archaerhodopsin (Arch) in presence of 565nm light pumps out H⁺ from neurons.

Matthew C. Walker et.al., Neuropharmacology (2020)

Optogenetic excitation of neurons

6

Optogenetic excitation of neurons

6

8

Writing a neuronal circuit

Patterned illumination activates a group of interconnected neurons

Writing a neuronal circuit :

patterned illumination

16 mW/mm2

Digital Light Processing (DLP)

Writing a neuronal circuit : patterned illumination

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

What is memory?

Richard Semon 1904

Donald O. Hebb 1949

Poo et al. BMC Biology 4(2016)1:40 DOI 10.1186/s12915-016-0261-6

potentiation

Strenghtening of synapses between neurons that were simultaneously excited. Engram: ensemble of cells activated, molecularly or structurally modified by an experience.

Simultaneous complex of excitations that induce changes in the brain.

Hebb Theory "Neurons that fire together wire together"

Digital Light Projector (DLP): are we

able to potentiate neurons?

LTP temporal pattern: 10 trains of 13 pulses at 100 Hz, repeated at 0.5 Hz + Doxycycline

Digital Light Projector (DLP): are we able to detect potentiation in neurons?

Potentiated spine = strengthened connection

Analysis and results

Immuno Cytochemistry

TOMATO \rightarrow transfection Synactive green (not amplified) \rightarrow ChR2-YFP Anti-HA \rightarrow HA protein

Analysis and results

UNIVERSITÀ : DI TRENTO

NanoScience Laboratory

7

7

Analysis and results

Potentiation of spines of simultaneously excited neurons \rightarrow we created the engram.

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

What is the action potential?

Multi-Electrode Arrays (MEA)

- An extracellular electrophysiological assessment.
- A conventional MEA has a square recording area ranging in length from 700 µm to 5 mm.
- 60 electrodes are arranged in an 8 x 8 grid with interelectrode intervals of 100, 200, or 500 m in this area.
- Planar TiN (titanium nitride) electrodes are available in sizes of 10, 20, and 30 μm

NanoScience Laboratory

Measurements of response to a

stimulus

So, what we want to do?

We want to use light to influence neuronal activity and then record the neuronal activity via MEA

Light stimulation patterns

Test stimulus: low frequency. Used to measure the response of the cultures

Tetanic stimulus: High frequency. Used to induce a change in the synaptic connections (e.g., LTP)

Long-term potentiation: Experimental

protocol

DI TRENTO

VANOIC

Memory writing and reading

Network modeling

From MEA signals to a macro-network model

Objective:

Simplify the complicated neuronal network into a macro-scale network consisting of nodes corresponding to the measurement domain (electrodes).

ANN architecture

$$\mathbf{x}[n] = \boldsymbol{f}_{NL}(\mathbf{W}_{in}\mathbf{y}[n] + \mathbf{W}_{res}\mathbf{x}[n-1])$$

$$\mathbf{y}[n+1] = \mathbf{W}_{\text{out}}\mathbf{x}[n]$$

Network modeling

UNIVERSITÀ 🔳 DI TRENTO

Marie Skłodowska-Curie Actions

Network modeling

Network modeling

Outline

- Photonics for artificial neural networks
 - The optical neuron
 - How to add memory to the neuron
 - Few neuronal networks at work
- Photonics to form biological networks
 - Light to sculpt neuronal circuits
 - Light to induce memories
 - Software emulation of neuronal circuits
- Hybrid artificial networks
 - The first steps

The vision

BIOLOGICAL COLTURE

PHOTONIC INTEGRATED CIRCUIT

HYBRID ARTIFICIAL-BIOLOGICAL NETWORK

Writing a neuronal circuit

Bottom illumination → photonic chip

UNIVERSITÀ DI TRENTO

Photonic chip

- Design of the structures in the visible range of the spectrum
- Design of scattering structures
- Respect biological constrains: 10 $\frac{\text{mW}}{mm^2}$ on 10 um diameter body

14

erc

10 um

Neurons on the photonic chip

Neurons can grow on the surface of the chip

UNIVERSITÀ DI TRENTO

The final system

Conclusions

- Photonics neural networks are effective in computing
- Biological neural networks can record memories
- Optical signals can be used to connect photonics and biological networks

• We are on the way to achieve the vision

Acknowledgements

https://r1.unitn.it/back-up/

