Introduction to Digital Design

Pirouz Bazargan Sabet

Paris - Sorbonne University - LIP6

Pirouz.Bazargan-Sabet@lip6.fr

Outline

\square Digital CMOS design
$\begin{array}{ll}-\bigcirc & \text { Boolean algebra } \\ -\bigcirc & \text { Basic digital CMOS gates }\end{array}$

- Combinational and sequential circuits
- Coding - Representation of numbers

Boolean Algebra

(3) English mathematician 1815-1864

1854 : An Investigation of the Laws of Thought

Boolean Algebra

Cet $B=\{0,1\} \quad B$ is the Boolean set
0 and 1 are the Boolean constants
Q Let $x \in B \quad x$ is a Boolean variable

Boolean Algebra

(Unary functions : $B \rightarrow B$
Unary function $0: \quad \forall x \in B, \quad x \mapsto 0$
Unary function 1: $\quad \forall x \in B, \quad x \mapsto 1$
Unary function Identity: $\forall x \in B, \quad x \mapsto x$
Unary function Not: $\quad 0 \mapsto 1$
$1 \mapsto 0$

$\operatorname{Not}(x)$ is denoted \bar{x}

Boolean Algebra

(Binary functions: $B^{2} \rightarrow B$
function And:
$\forall x, y \in B, \operatorname{And}(x, y)=1$ if and only if $x=1$ and $y=1$ And is also called Min and denoted $x \cdot y$
function $O r$:
$\forall x, y \in B, \operatorname{Or}(x, y)=0 \quad$ if and only if $x=0$ and $y=0$
Or is also called Max and denoted $x+y$

Boolean Algebra

Other binary functions can be defined combining And, Or and Not
function $\operatorname{Nand}: \quad \operatorname{Nand}(x, y)=\operatorname{Not}(\operatorname{And}(x, y))$
function $\operatorname{Nor}: \quad \operatorname{Nor}(x, y)=\operatorname{Not}(\operatorname{Or}(x, y))$
function Xor: $\quad \operatorname{Xor}(x, y)=\operatorname{Not}(x) \cdot y+x \cdot \operatorname{Not}(y)$

$$
\operatorname{Xor}(x, y) \text { is denoted } x \oplus y
$$

Boolean Algebra

Soticeable properties
$\operatorname{Not}(\operatorname{Not}(x))=x \quad \overline{\bar{x}}=x$

$$
\begin{array}{lll}
x \cdot x=x & x+x=x & x \oplus x=0 \\
x \cdot \bar{x}=0 & x+\bar{x}=1 & x \oplus \bar{x}=1 \\
x \cdot 0=0 & x+0=x & x \oplus 0=x \\
x \cdot 1=x & x+1=1 & x \oplus 1=\bar{x}
\end{array}
$$

Boolean Algebra

Noticeable properties

Commutativity

$$
\begin{gathered}
x \cdot y=y \cdot x \\
x+y=y+x \\
x \oplus y=y \oplus x
\end{gathered}
$$

Associativity $\quad x \cdot(y \cdot z)=(x \cdot y) \cdot z$

$$
x+(y+z)=(x+y)+z
$$

$$
x \oplus(y \oplus z)=(x \oplus y) \oplus z
$$

Boolean Algebra

Noticeable properties
Distributivity

$$
\begin{aligned}
x \cdot(y+z) & =(x \cdot y)+(x \cdot z) \\
x \cdot(y \oplus z) & =(x \cdot y) \oplus(x \cdot z) \\
x+(y \cdot z) & =(x+y) \cdot(x+z)
\end{aligned}
$$

De Morgan

$$
\begin{aligned}
\overline{x \cdot y} & =\bar{x}+\bar{y} \\
\overline{x+y} & =\bar{x} \cdot \bar{y}
\end{aligned}
$$

Absorption

$$
x+(\bar{x} \cdot y)=x+y
$$

Boolean Algebra

Let $B=\{0,1\} \quad B$ is the Boolean set
0 and 1 are the Boolean constants
(3) Let $x \in B \quad x$ is a Boolean variable

Cet $\mathrm{V} \in B^{n} \quad V$ is a Boolean vector

Boolean Algebra

($V \in B^{n}, V=\left(v_{1}, \cdots, v_{i}, \cdots, v_{n}\right)$
$U \in B^{n}, U=\left(u_{1}, \cdots, u_{i}, \cdots, u_{n}\right)$
The number of Boolean variables that are different between V and U is called the Hamming Distance (V, U)

Example :

$$
H D((0,0,0,1),(1,0,1,0))=3
$$

Boolean Algebra

To vectors are said adjacent when their Hamming distance $=1$

Example :

$$
H D((0,0,0,1),(1,0,0,1))=1
$$

Boolean Algebra

Let $B=\{0,1\} \quad B$ is the Boolean set
0 and 1 are the Boolean constants
(C) Let $x \in B \quad x$ is a Boolean variable
(3) Let $\mathrm{V} \in B^{n} \quad V$ is a Boolean vector
(3) Let $f: B^{n} \rightarrow B \quad f$ is a Boolean function (dimension n)
(3) Let \mathcal{B}_{n} the set of Boolean functions of dimension n

$$
\operatorname{Card}\left(\mathcal{B}_{n}\right)=2^{2^{n}}
$$

Boolean Algebra

Card $\left(B^{n}\right)$ is finite

A Boolean function f may be defined by its Truth Table :
for each Boolean vector V give the value $f(V)$

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Boolean Algebra

(3) Unary functions: $\quad \mathcal{B}_{n} \rightarrow \mathcal{B}_{n}$
function Not: $\quad(\operatorname{Not}(f))(V)=\operatorname{Not}(f(V))$
\bigcirc
Binary functions: $\quad \mathcal{B}_{n}{ }^{2} \rightarrow \mathcal{B}_{n}$
function And: $\quad(\operatorname{And}(f, g))(V)=\operatorname{And}(f(V), g(V))$
function $O r$:
$(\operatorname{Or}(f, g))(V)=\operatorname{Or}(f(V), g(V))$

Boolean Algebra

(3) Let $V \in B^{n}, V=\left(v_{1}, \cdots, v_{i}, \cdots, v_{n}\right)$

The Boolean function
$f \in \mathcal{B}_{n} / f(V)=v_{i}$
is denoted v_{i}

x	y	z	$f=y$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Boolean Algebra

(A Boolean function f may be defined by giving a Boolean expression
$f=\bar{x} \cdot y \cdot z+x \cdot \bar{y} \cdot \bar{z}+x \cdot z$
$f=x \cdot \bar{y}+y \cdot z$

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

The expression is not unique

Boolean Algebra

Let $f \in \mathcal{B}_{n}$

$$
f=\bar{x} y z+x \bar{y} \bar{z}+x \bar{y} z+x y z
$$

min-term

$$
f=\Sigma\left(\alpha_{j}\left(\Pi\left(\widetilde{v_{i}}\right)\right)\right.
$$

$$
\alpha_{j}= \begin{cases}0 & \widetilde{v_{i}}=\left\{\begin{array}{l}
v_{i} \\
\overline{v_{i}}
\end{array}\right.\end{cases}
$$

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

disjunctive normal form (DNF)

Boolean Algebra

Cet $f \in \mathcal{B}_{n}$

$$
\begin{aligned}
f= & (x+y+z) \cdot(x+y+\bar{z}) . \\
& (x+\bar{y}+z) \cdot(\bar{x}+\bar{y}+\bar{z})
\end{aligned}
$$

$$
f=\Pi\left(\beta_{j}+\sum\left(\widetilde{v_{i}}\right)\right)
$$

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

conjunctive normal form (CNF)

Boolean Algebra

Cet $f \in \mathcal{B}_{n}$
f is independent from the variable v_{i} iff :

$$
\begin{aligned}
& \forall V \in B^{n}, V=\left(v_{1}, \cdots, v_{i}, \cdots, v_{n}\right) \\
& f\left(\left(v_{1}, \cdots, v_{i}, \cdots, v_{n}\right)\right)=f\left(\left(v_{1}, \cdots, \bar{v}_{i}, \cdots, v_{n}\right)\right)
\end{aligned}
$$

Boolean Algebra

Cet $f \in \mathcal{B}_{n}$
$\exists!f_{i 0}, f_{i 0}$ independent from the variable $v_{i} /$

$$
f=v_{i} \cdot f_{i 1}+\bar{v}_{i} \cdot f_{i 0}
$$

Shannon decomposition

Boolean Algebra

() Let $f \in \mathcal{B}_{n}$

$$
f=v_{i} \cdot f_{i 1}+\bar{v}_{i} \cdot f_{i 0}
$$

Example :
$f=x \cdot(\bar{y}+z)+\bar{x} \cdot(y z)$
Shannon decomposition of f regarding x

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

normal form (given an order of variables)

Boolean Algebra

$$
\left.\begin{array}{rl}
f= & \bar{x} y z+x \bar{y} \bar{z}+x \bar{y} z+x y z \\
f= & (x+y+z) \cdot(x+y+\bar{z}) \cdot \\
& (x+\bar{y}+z) \cdot(\bar{x}+\bar{y}+\bar{z})
\end{array}\right\} \text { list of terms }
$$

$$
f=x \cdot(\bar{y}+z)+\bar{x} \cdot(y z)
$$

binary tree

binary decision diagram (BDD)

Boolean Algebra

Let $f=v_{i} \cdot f_{i 1}+\overline{v_{i}} \cdot f_{i 0}$
f is independent from the variable v_{i} iff :

$$
\begin{aligned}
& f=f_{i 1}=f_{i 0} \\
& f_{i 1} \oplus f_{i 0}=0
\end{aligned}
$$

$f_{i 1} \oplus f_{i 0}=0 \quad: f$ is insensitive to v_{i} notion of derivative

Boolean Algebra

Let $f=v_{i} \cdot f_{i 1}+\overline{v_{i}} \cdot f_{i 0}$

$$
\frac{\partial f}{\partial v_{i}}=f_{i 1} \oplus f_{i 0}
$$

Boolean Algebra

Let $f=v_{i} \cdot f_{i 1}+\overline{v_{i}} \cdot f_{i 0}$

$$
\frac{\partial f}{\partial v_{i}}=f_{i 1} \oplus f_{i 0}=f_{i 1} \cdot \overline{f_{i 0}}+f_{i 0} \cdot \overline{f_{i 1}}
$$

$f_{i 1} \cdot \overline{f_{i 0}}$ and $f_{i 0} \cdot \overline{f_{i 1}}$ cannot be 1 for the same vector

$$
\text { if } f_{i 1} \oplus f_{i 0} \neq 0
$$

f may be sensitive to v_{i} in two ways

Boolean Algebra

Let $f=v_{i} \cdot f_{i 1}+\overline{v_{i}} \cdot f_{i 0}$

$$
\frac{\partial f}{\partial v_{i}}=f_{i 1} \oplus f_{i 0}=f_{i 1} \cdot \overline{f_{i 0}}+f_{i 0} \cdot \overline{f_{i 1}}
$$

Let $f_{i 1}(V)=1$ and $f_{i 0}(V)=0$ then $f=v_{i} \cdot 1+\overline{v_{i}} \cdot 0$

Let $f_{i 1}(V)=0$ and $f_{i 0}(V)=1$ then $f=v_{i} \cdot 0+\bar{v}_{i} \cdot 1$

Boolean Algebra

Let $f=v_{i} \cdot f_{i 1}+\overline{v_{i}} \cdot f_{i 0} \quad \frac{\partial f}{\partial v_{i}}=f_{i 1} \cdot \overline{f_{i 0}}+f_{i 0} \cdot \overline{f_{i 1}}$
if $\left(f_{i 1} \overline{f_{i 0}}\right)(V)=1, \quad f$ varies in direct way with v_{i}
f is a positive function of v_{i}
if $\left(f_{i 0} \overline{f_{i 1}}\right)(V)=1, \quad f$ varies in opposite way with v_{i} f is a negative function of v_{i}

$$
\frac{\partial f^{+}}{\partial v_{i}}=f_{i 1} \cdot \overline{f_{i 0}}
$$

$$
\frac{\partial f^{-}}{\partial v_{i}}=f_{i 0} \cdot \overline{f_{i 1}}
$$

Boolean Algebra

- $\frac{\partial f^{+}}{\partial v_{i}}=f_{i 1} \cdot \overline{i_{i 0}}$

$$
\frac{\partial f^{-}}{\partial v_{i}}=f_{i 0} \cdot \overline{F_{i 1}}
$$

Pirouz Bazargan Sabet

Boolean Algebra

Example :

$$
\begin{gathered}
f=y \cdot(z)+\bar{y} \cdot(x) \\
\frac{\partial f}{\partial y}=(z) \oplus(x) \\
\frac{\partial f^{+}}{\partial y}=z \bar{x} \\
\frac{\partial f^{-}}{\partial y}=\bar{z} x
\end{gathered}
$$

4

