

 $Unary functions: B \longrightarrow B$

Unary function $0: \quad \forall x \in B, \quad x \mapsto 0$

Unary function $1: \quad \forall x \in B, \quad x \mapsto 1$

Unary function *Identity* : $\forall x \in B$, $x \mapsto x$

Unary function Not :

-

Not(x) is denoted \bar{x}

Pirouz Bazargan Sabet

Digital Design

November 2022

 $0 \mapsto 1$

 $1 \mapsto 0$

$$V \in B^n, V = (v_1, \cdots, v_i, \cdots, v_n)$$
$$U \in B^n, U = (u_1, \cdots, u_i, \cdots, u_n)$$

The number of Boolean variables that are different between V and U is called the Hamming Distance (V, U)

Example :

 $HD\left((0,0,0,1),(1,0,1,0)\right) = 3$

Pirouz Bazargan Sabet

Digital Design

- Let $B = \{0, 1\}$ B is the Boolean set 0 and 1 are the Boolean constants

 - Let $x \in B$ x is a Boolean variable
 - Let $V \in B^n$ V is a Boolean vector
 - Let $f: B^n \to B$ f is a Boolean function (dimension n)
 - Let \mathcal{B}_n the set of Boolean functions of dimension n

Card
$$(\mathcal{B}_n) = 2^{2^n}$$

Pirouz Bazargan Sabet

5

Digital Design

$\bigcirc Card (B^n) \text{ is finite}$

A Boolean function f may be defined by its Truth Table :

for each Boolean vector V give the value f(V)

x	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Pirouz Bazargan Sabet

Digital Design

X	у	Z	<i>f</i> = <i>y</i>
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Pirouz Bazargan Sabet

Digital Design

A Boolean function *f* may be defined by giving a Boolean expression

$$f = \bar{x} \cdot y \cdot z + x \cdot \bar{y} \cdot \bar{z} + x \cdot z$$
$$f = x \cdot \bar{y} + y \cdot z$$

X	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

The expression is not unique

Pirouz Bazargan Sabet

 $\overline{6}$

Digital Design

Example :

 $\overline{6}$

$$f = x \cdot (\bar{y} + z) + \bar{x} \cdot (yz)$$

Shannon decomposition of *f* regarding *x*

X	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

normal form (given an order of variables)

Pirouz Bazargan Sabet

Digital Design

Pirouz Bazargan Sabet

Digital Design

