Joint ICTP-IAEA School on
FPGA-based SoC andits CTP

Applications to Nuclear and
Scientific Instrumentation

SoPC Architecture
&

Design Methodology

Cristian Sisterna

Universidad Nacional San Juan

Argentina

7-Series FPGA Architecture

FPGA ~ Lego Bricks

ICTP- MLAB

77 O9CTTICTO MTUTIILT U LUIr T LUt imnrmuti

Elements

= Common elements enable easy IP reuse for quick
design portability across all 7-series families

o Design scalability from low-cost to high-performance

W W W W M W om

LA L L L L L L L]

MmETmwEmWWE -
1 1 T)

Artix-7 FP

AL LLLLLLLLL] o CTTTITTITTILL
| >

o Quickest time to market e '
T
F ’ v
T 5
B8 El
r . v
P .
Logic Fabric Precise, Low Jitter Clocking : : :
LUT6 CLB MMCMs — —
intex-7 FPGA
f R R R RN
On-Chip Memory Enhanced Connectivity [l B EFE'R B B B RER 0 B
36Kbit/1 8Kbit Block RAM PCle® Interface Blocks ' S8 RiE R B BB BIEEE
F R ETE R R R NRTE R
SR RIE R R R RN
P RE'E R R REE RN
DSP Engines Hi-perf. Parallel /O Connectivity R e R e S
DSP48E1 Slices SelectlO™ Technology B ECE R RN RNEN
SRR R R RRRNR RN
AREHERRERH AR
Hi-performance Serial I//O Connectivity l B EE R R R RENRDN
Transceiver Technology R deiatetet detetatades
0 BCE R B RN ONER B ED
Virtex-7 FPGA

SoC Architecture & Design Methodology ICTP-MLAB

Example of 7-Series Architecture: Artix-7

[}HFOLomc

> BUFG
‘l'li DSP
>y

BUFIO & BUFR
>

>
>
>
0 wmer

SoC Architecture & Design Methodology ICTP-MLAB

Logic Resources - CLB

Fabric

Each CLB contains two slices: Routing Coyr Eon

= Primary resource for design
o Combinatorial functions

o Flip-flops

= Connected to switch matrix for
routing to other FPGA resources

o Carry chain runs vertically in a column
from one slice to the one above

Fabric
Routing CIN CIN

SoC Architecture & Design Methodology ICTP-MLAB ()

cout

D>y [=D
DI2 CLK WE I
D6:D1 > A6:A1 [o] D Q OUTMUX
t-{wae:WA1 Os| —ce Frs L]
B, 1
o {1~ DMUX
AR
0 DPRAM cYo SR —
0 DPRAM32
0 SPRAMGA :D‘ — D ope QE=>0DA
0 SPRAM32 CE g LATCH
DSAL16 ol —— CKoAND2L
osAwsz VAR OOR2L
1 O SRINITO
MC3 OSRINITI
—— FFMUX | SR
L] L]
. L CI>] [G
DI2 CLK WE =
:C1 > AG:A1 O T Q
° WAGWAT OS] 2 L OUTMUX
oLt t+ck FF5 C5Q
SRom on |:—< OSRINITO o 4 oMUX
kl cYo OSRINITT A Mt
0 DPRAM64 ’D— SR s
0 DPRAM32 DIMUX I {os
0 SPRAM64 T —1
0 SPRAMS2 FF
0 SRL >
osRLz2 WAS[— v Deorr @ 4
WA7[— OR CEQLATCH
MC31 X CKoAND2L
CLKINV 05 OOR2L
x> L] oSRINITO
OSRINITY
CLK FFMUX o
WE D—FD
CEC>
SR>
BIC>] [P! =21
DI2 CLK WE
B6:B1 > AGA1 O D Q OUMUX
t-{WAG:WA1 Os| CE Les
au ok THES) cy BMUX
0 RA! [| OSRINITO -
oRrom DIt i1 OR
DPRAM64 l K‘ cxe S ; FF
o SR > |
G DPRAMS? DIMUX])
0 SPRAM64 | — D grr QH=BQ
o SeRANa2) CE g LATCH
o SR CK o AND2L
0 SRL32 w:g 1l OR a (A)RZL
OSRINITO
MC31 05 OSRINITY
BX > FFMUX ot
AD>——F— [
DI2 CLK WE
A6:AT > A6AL 99 2 a
WAGWA1 05 HT{CE Frs
oLt - cK
0 RAM L OSRINITO
oROM DI OSRINIT
0 DPRAM64 D— SR
0 DPRAM32
0 SPRAMG4 — D gpr QFE>AQ
0 SPRAM32 Y | CEoLATCH
0SRL16 \yag|) 1 — CK o AND2L
o SRL32 | DOR2L.
WA7 e OSRINITO
MC31 s OSRINITY
PRECYINIT EEMUX SR
T T
6 1
AX>

oC Architecture & Design Methodology

CIN

ug384_03_042309

7-Series FPGA - Inputs/Outputs

= Wide range of voltages = Digitally controlled impedance
o 1.2V to 3.3V operation

= Many different I/O standards
o Single ended and differential
o Referenced inputs
o 3-state support

= Low power

= Very high performance
o Up to 1600 Mbps LVDS
o Up to 1866 Mbps single-ended for DDR3

= Easy interfacing to standard
memories
o Hardware support for QDRI+ and DDR3

SoC Architecture & Design Methodology ICTP-MLAB

Most Common |/Os Standards Available

3.3 na

LVTTL Single ended
LVCMOS25, -18, -15 2.5,1.8,1.5 na General Purpose
LVDS33, 25, 18 3.3,2.5,1.8 na Low Voltage Differential
PCl 33/66 MHz, 3.3V 3.3 na PCl Bus

GTL / GTL+ na 0.80 Back-Plane

HSTL-1, HSTL-III 1.5 0.75 SRAM

SSTL3-I, -1, SSTL2-I 3.3 0.90,1.5 SDRAM

SoC Architecture & Design Methodology ICTP-MLAB

7-Series Block RAM and FIFO

= All members of the 7-series families have
the same Block RAM/FIFO

= Fully synchronous operation

o All operations are synchronous; all outputs are
latched

= QOptional internal pipeline register for higher
frequency operation

= Two independent ports access common data
o Individual address, clock, write enable, clock enable
o Independent data widths for each port

= Multiple configuration options
o True dual-port, simple dual-port, single-port

= Integrated control for fast and efficient FIFOs

SoC Architecture & Design Methodology ICTP-MLAB

7- Series DSP48E1 S|

ce

T

SoC Architecture & Design Methodology

ICTP-MLAB

- Lol = § = — =
=245
3 3 ER 3
m| < Sl == o
N 18/ < 9 =
o @
48 A:B
Dual B 7 <
Register 18, 6 4 N
4 CARRY
ouT
Register
With 25, P
Pre-adder
! PATTERN
c 48, AN T
T sz DETECT
>»17
i [O]
=
5 ¢ 7 L 4) 48 ﬁ
w ® S E
S B £ = = =<
= 2 B = &
= c & | £
= o o & <
P
s
5 % cn|D g =
=~ << |29 o
QO=E®m o

XADC and Analog Mixed Signals (AMS)

= XADC is a high quality and flexible analog interface new to the 7-series

o Dual 12-bit 1Msps ADCs, on-chip sensors, 17 flexible analog inputs, and track & holds
with programmable signal conditioning s o

o 1V input range (unipolar, bipolar and differential)

o 12-bit resolution conversion

o Built in digital gain and offset calibration
o On-chip thermal and Voltage sensors

o Sample rate of 1 MSPS

= Analog Mixed Signal (AMS) o

o Using the FPGA programmable logic to customize the XADC and replace other
external analog functions; for example, linearization, calibration, filtering, and DC
balancing to improve data conversion resolution

On-Chip Ref
1.25V

64 x 16 bits 64 x 16 bits
Read/Write Read Only

ADCB

https://henryomd.blogspot.com/2015/06/bare-metal-code-to-read-adc-on-zyng.html

SoC Architecture & Design Methodology ICTP-MLAB 12

https://henryomd.blogspot.com/2015/06/bare-metal-code-to-read-adc-on-zynq.html

7-Series FPGA Families

Maximum Capability

Logic Cells
Block RAM
DSP Slices
Peak DSP Perf.

Transceivers

Transceiver
Performance

Memory
Performance

1/0O Pins

I/0O Voltages

SoC Architecture & Design Methodology

ZYNQ"

Lowest Power Industry’s Best Industry’s Highest Extensible
and Cost Price/Performance |System Performance | Processing Platform

504 GMACS 1080 GMAGS

4 16

e
6.6Gbps and 12.5Gbps, 6.6Gbps and
3.75Gbps 12.5Gbps 13.1Gbps and 28Gbps 12.5Gbps
1066Mbps 1866Mbps 1866Mbps 1333Mbps

450 372

3.3V and below 3.3V and below 3.3V and below 3.3V and below
1.8V and below 1.8V and below 1.8V and below

ICTP-MLAB

2ynq-SoPC Architecture

Zyng-/000 Main Features

* Complete ARM®-based processing system
o Application Processor Unit (APU)
o Dual ARM Cortex™-A9 processors

o Caches and support blocks
o Fully integrated memory controllers

o |I/O peripherals]]]
= Tightly integrated programmable logic

o Used to extend the processing system
o Scalable density and performance

= Flexible array of 1/0O

o Wide range of external multi-standard 1/0
o High-performance integrated serial transceivers
o Analog-to-digital converter inputs

SoC Architecture & Design Methodology ICTP-MLAB

Zyng SoPC Block Diagram

!

Dynamic Memory Controller Programmable
~ DDR3, DDR2, LPDDR2 Logic:

System Gates,
DSP,RAM

S_AXI_HPO
S_AXI_HP1

S_AXI_HP2
S_AXI_HP3
S_AXI_ACP

dcessing System

Emo | xaoc S_AXLGPO/l M_AXI_GPO/ _ PCle

SoC Architecture & Design Methodology ICTP-MLAB 16

PS Main Components

= Application processing unit (APU)

1/O peripherals (IOP)
oMultiplexed 1/0 (MIO), extended multiplexed /0 (EMIO)

= Memory interfaces

PS interconnect
= DMA

= Timers
o Public and private

= General interrupt controller (GIC)
* On-chip memory (OCM): RAM
= Debug controller: CoreSight

SoC Architecture & Design Methodology ICTP-MLAB

PL Main Components

= Configurable logic blocks (CLB)
o 6-input look-up tables (LUTs)
o Memory capability within the LUT
o Register and shift register functionality

= 36 Kb BRAM

= DSP48E1 Slice — ,
72010, 72015, 72020 Artix

= Clock management 72030, 72035, 72045, 72100 Kintex

= Configurable I/Os
= High Speed Serial Transceivers
= |ntegrated interface for PCl Express

SoC Architecture & Design Methodology ICTP-MLAB

PS-PL Interface

= AXI high-performance slave ports (HPO-HP3)
o Configurable 32-bit or 64-bit data width
o Access to OCM and DDR only
o Conversion to processing system clock domain
o AXI FIFO Interface (AFl) are FIFOs (1KB) to smooth large data transfers

= AXI general-purpose ports (GP0-GP1)

o Two masters from PS to PL

o Two slaves from PL to PS

o 32-bit data width

o Conversion and sync to processing system clock domain

SoC Architecture & Design Methodology ICTP-MLAB

PS-PL Interface

= One 64-bit accelerator coherence port (ACP) AXI slave interface to CPU
memory

= DMA, interrupts, events signals
o Processor event bus for signaling event information to the CPU

o PL peripheral IP interrupts to the PS general interrupt controller (GIC)
o Four DMA channel RDY/ACK signals

= Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL
logic and device 1/0O pins

= Clock and resets
o Four PS clock outputs to the PL with enable control
o Four PS reset outputs to the PL

= Configuration and miscellaneous

SoC Architecture & Design Methodology ICTP-MLAB

Zynqg Architecture

DDR3 DRAM
Controller

AXI
Master

Snoop Control

AXI) @ DMA Unit (SCU)

NEVES Contro
ller

AX] Interconect

Masters

SPI, CAN, SD, Ethernet, USB, UART,...

SoC Architecture & Design Methodology ICTP-MLAB

PS-PL Interface

PS Power Pins
|
DDR Memory | AXI Idle,
DDR Arb,
NAND, SRAM Int
NOR/SRAM -
5 DMA Reg/Ack User SelectlO
Ps_CLK, = e
POR_RST_N, FCLKs XADC
SROLN Processin - Mult Gigabit
Quad-SPI | - T2 e i
i System FTMT Trigs = i
-y ransceivers
usB (PS) IRQ, Event, (MGSX)*
| Ps signals Standby PL Signals ||~
lland Intefaces{ === | Misc
1 ; Il PL
MIO Pins, EMIO Signals, JTAG | | o
MIO | || Signals
GigE, SDIO, SPI, |]
Boot Pins 12C, CAN, UART, I
GPIO, TTC, SWDT || | 2x M_AXI_GP
il | 2x S_AXI_GP
JTAG |= EMIO 4x S_AXI_HP PL Power Pins
1x S_AXI_ACP
AXl Interfaces
Programmable Logic (PL)

*Zynq 72030, 7x045 & 7z100 only

SoC Architecture & Design Methodology ICTP-MLAB 22

PS-PL AX| Interfaces
mm

M_AXI_GPO
General Purpose (AXI_GP)
M_AXI_GP1 PS PL

SoC Architecture & Design Methodology ICTP-MLAB

PS-PL Interface Performance

| Method | Benefits | Drawbacks | ___Usage | Performance_

PL AXI-HP DMA

PL AXI-ACP DMA

PL AXI-GP DMA

CPU .
Programmed |/O

SoC Architecture & Design Methodology

Highest throughput
Multiple interfaces
Command/Data FIFO

- Highest throughput
Lowest latency
Optional cache
coherency

Medium throughput

Simple Sw
Least PL resources
Simple PL Slave

OC/DDR access only
Complex PL Master
design

Large burst might cause
cache trashing

Shares CPU
interconnect bandwidth
Complex PL Master
design

More complex PL
Master design

Lowest throughput

ICTP-MLAB

HP DMA for large
datasets

HP DMA for smaller
coherent datasets

Medium granularity
CPU offload

PL to PS control

functions
PS I/O Peripheral
access

Control functions

1.200 MB/s
(per interface)

1.200 MB/s

600 MB/s

< 25 MB/s

24

PS-PL Miscellaneous Signals

= PL Clocks and Resets

= PL Interrupts to PS

= |OP Interrupts to/from the PL

= Events

= |dle AXI, DDR, ARB, SRAM Interrupt
= DMA Controller

= EMIO Signals

ICTP-MLAB

PS Peripherals and
Connections

Multiplexed 1/O — Internal / External

<Multiplexed input/output (MIO)
“»Multiplexed output of peripheral and static memories
“Two I/O banks; each selectable: 1.8V, 2.5V, or 3.3V
+»Configured using configuration

*»Dedicated pins are used
“*User constraints (LOC) should not be present
» The BitGen process will throw errors if LOC constraints are |

+Extended MIO

“*Enables use of the SelectlO™ interface with PS peripheral

“*User constraints must be present for the signals brought ol
to the SelectlO pins

“*The BitGen process will throw errors if LOC constraints
are not present

SoC Architecture & Design Methodology ICTP-MLAB

2x GPIO

e

2x USB w/DMA

[

2x SDIO w/DMA

EMIO

2x GigE w/DMA

|

PL

PS Available Peripherals

SoC Architecture & Design Methodology

m Serial Peripheral Interface, either master or slave mode.

12C (x2) I2C bus. Supports master and slave modes.

CAN (x2) Controller Area Network. CAN 2.0A and CAN 2.0B.

Universal Asynchronous Receiver Transmitter. One UART
is used for terminal connections to a host PC.

General purpose Input/Output. There are four GPIO
banks, each of 32 bits.

m_ SD card memory controller

m Universal Serial Bus. Host or OTG (in-the-go) modes.
Gigabit Ethernet MAC peripheral, supports 10Mbps,
100MBps and 1Gbps.

ICTP-MLAB 28

UART (x2)

Extended Multiplexed 1/0 (EMIO)

Zynq Block Design
— 110 Peripherals
Extended interface to PL I/O peripheral ports AL R—
O eco
< EMIO: Peripheral port to PL (159) .
% Alternative to using MIO E%'o 3
o :
%+ Mandatory for some peripheral ports L Solt
- SD 1 2
% Facilitates —
< Connection to peripheral in programmable logic g Ee:;?
< Use of general I/O pins to supplement MIO pin usage (s316) e e
+» Allows additional signals for many of the peripherals 1 s
\ QUADSPI ¥
+ Alleviates competition for MIO pin usage uG Tmng
—=T 1=
ol 2 DEBE)
LBE) e,

SoC Architecture & Design Methodology ICTP-MLAB

Multiplexed 1/O (MIO)

ZYNQ7 Processing System (5.3) —
(7] ion &5 Presets [IP Location 3 Import XPS Settings
Page Navigator g i i Summary Report
Zynq Block Design 4| search: ‘Qv |
PS-PLC — Bank 0 |LVCMOS 3.3V~ | | Bank 1 [LVCMOS 1.8V~ |
l - I % Periphearals D e s e S o | s |) | i 2 13 il i e i 0 200 2 220 2 2 200 20 e 2 2 20 3 2 B3 3 300 20 BT 3B 35
e (] Quad SPI Flash -
i (- [] SRAM/NOR Flash
Clock Configuration - — | | | | | | |
&[] NAND Flash S
DDR Configuration EMIO
[[V] Ethernet 0
SMC Timing Calculation Enett EMIO
(5[] Ethernet 1 i
Interruj
rE ~[V]usBo
usB1
SDO SDO EMIO
[[V]sp o e et | | | | |
sD1 l sD1 | sD1 EMIO
— — —
e @ spo I ‘ SPO. ‘mos| ‘ I SPO ‘mos| I ‘ SPO. ‘mos|
SP1 SP1 SP1 SP1 EMIO
@ [Csp1
& ‘z‘ UART 0 UARTO UARTO UARTO UARTO UARTO UARTO UARTO UARTO UARTO UARTO EMIO
& UART 1 UART1 UART1 UART1 UART1 UART1 UART1 UART1 UART1 UART1 UART1 UART1 EMIO
& @ DCoO 12co 12co 12co 12co 12co 12co 12co 12co 12co 12co EMIO
& pet 12¢c1 12c1 12¢c1 12c1 12¢c1 12c1 12c1 12c1 12c1 12c1 12¢c1
e CANO CANO ‘CANO CANO ‘CANO CANO ‘CANO CANO ‘CANO CANO ‘CANO CANO
CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1 CAN1
@ TTco TTCO TTCO TTCO
TT1C1 TTC1 TT1C1 EMIO
TIEL
SWD SWD SWD. SWD SWD EMIO
PJTAG PJTAG PJTAG PJTAG EMIO
T T EMIO
(- || Test and Debug Trace Keed i
1(2]13]4[5 11 (1213 |14 [15|16 | 17 [18
[+ [V] GPIO MIO
GPIO EMIO

SoC Architecture & Design Methodology ICTP-MLAB

MIO Port Configuration

ZYNQ7 Processing System (5.5)

[ffd Documentation £ Presets ([IP Location #4} Import XPS Settings

4

Page Navigator
Zynq Block Design

PS-PL Configuration

Peripheral I/O Pins

«

MIO Configuration

Summary Report

[MIO Configuration

Clock Configuration
DDR Configuration
SMC Timing Calculation

Interrupts

4= Bark01/OVoltage| LVCMOS 3.3~ |
Search: lOc l

e
24

3 eripheral 10
B_E J- Memory Interfaces
J- 1fO Peripherals

Bank 11/0 Voltage | LVCMOS 1.8V >

Signal 10 Type Speed

0 - ENET 0 EMIO

ENET 1
USB 0
USB 1
SDO

D1 \MIOZZ..27

UART 0

R
EEEEEEO

{1}

7] UART 1 ’MIO48..49

Modem signals
- UART 1 MIO 48

Pullup

tx LVCMOS 1.8V~ || slow

disabled ¥

disabled v

SPI1 EMIO

Dir... Polarity
-~
out

SoC Architecture & Design Methodology

ICTP-MLAB

31

GPO/1 Ports Configuration for PS-PL Interface

LF Re-costomize P =
o Click on the menu or
green GP Blocks to

ZY¥YNQ7 Processing System (5.2)

@ Documentation [IP Location ﬂfp Presets

Page Mavigator & lZ‘_vnq Block Design

configure —
lZynq Block Design DO FeparaR Genral |
£ Settings. Application Processor Unit (APU)
—— e | 21 Ea—
7 OICIQuraion (15:0) uc | ARM Cortox “ha ARM Cortex"A9
m : > System Lavel cru
Peripheral 1/O Pins UART S P o
wlll T —= ||
- MIO Configuration oy 500 ¥ b % Coe e
| PS-PL Configuration g N R o1] '—bl o I L 5 l 512 KB L2 Cache and Controlier Ports
!
b Search: \ Q- Clock Configuration vanl L, I ' | |
Q : TR Central it
51 | Name Select Description DDR Configuration |) FLASH Memory +
(<) ml 153:16) Intarfaces +— | DaP ‘
o | [#- General Memory
| DMA Controller SMC Timing Calculatior W ——| orve | Programemsble N
[+ GP Master AXI Interface R AA ey p:
- ; Interrupts I MM"'“"' L 3 2
- Enables General purpose axi master interface 0 | e Lo —
‘MAXIGPlinterface [T] Enables General purpose axi master interface 1 | :I Glock e Processing System(PS)
H Resets v Bl F
[=1- GP Slave AXI Interface -
z il Ll L ETE B 320GP o || s WA | High Parformamee XADC
S AXI GPO interface Enables General purpose 32-bit AXI Slave interface 0 :6- mi'-:n O.;?:‘-a‘ AX & f‘:?:' m%m Q
S AXIGPlinterface [| Enables General purpose 32-bit AXI Slave interface 1 o e
[HP Slave AXI Interface
[+ ACP Slave AXI Interface et

[ok

][Cancel]

ok][cancel]

SoC Architecture & Design Methodology

ICTP-MLAB

32

GP 0/1 Ports

o By default, GP Slave and Master ports are disabled

U1

3I2bGP 32b GP
AXI AXI
Master Slave

o Enable GP Master and/or Slave ports depending on

h th I t . h I . . t |PS-PL Configuration
whether a slave or a master peripheral is going to ¢ o
be added in PL OZEName Select Description
raq | [General

~ DMA Controller

o axi_interconnect block is required to connect IP to @ |- & aer seaioe
L i Fieface | E1_fnaes Genera ppose i strrroce)
port with different protocols |

[+-M AXI GP1 interface [] Enables General purpose axi master interface 1
- " Shisnaras |G|
o Automatically convert Protocols ~

B GP Slave AXI Interface
“5 AXIGP1 interface [Enables General purpose 32-bit AXI Slave interface 1
[+ HP Slave AXI Interface

o Can be automatically added when using Block 5 4CP Save i Inroce
Automation in Vivado IP o (o]

SoC Architecture & Design Methodology ICTP-MLAB 33

/yng — Internal Device View

SoC Architecture & Design Methodology

[Package X & Device X O > X

ICTP-MLAB

34

Zynqg — Package View

i [l Package X @ Device X

=

11 12 13 14 15 16 17 18 19 20 21 22

Ay 1

P ®
- I
I &0 m m ©O N @ X

"
[

x
Ll
=

K &

k3

SoC Architecture & Design Methodology

SoPC Design Methodology

[Requirements I

SoPC Design Flow

A 4

[Specifications]

v

,T IP Cores]

Software
Modules | !

|

| | I
' ‘ ' Software |
I |) Development & I
| | Simulation |
| | ' I
| | ' I
! _ ! | —
\ [Placement &Timing]] Operating |,
d Constraints P Systems

________ - — e o o mm mm = = P

~
Vivado IP Integrator Software Development Vitis

VIVADO'’ VITIS

SoC Architecture & Design Methodology 37

Embedded System Design — Vivado Flow

&onstramts '

OPTIOHGI

Eonstramts '

Elaborate

VIVADO

SoC Architecture & Design Methodology ICTP-MLAB

Embedded System Designh — Vivado-Vitis Design Flow

VIVADO?

Open VIVADO

Create Board Support Package

Create New Project Create New ‘C’ Application

Create New Block Design Write ‘C’ Code
Add PS7
Configure PS7
Run Block Automation
Add and Configure other IPs
Run Connection Automation
Validate Design

Build the Application

Configure FPGA

Run on Hardware (Debug)

Create HDL Wrapper
Generate Output Files

Generate Bitstream

Export Hardware to SDK

SoC Architecture & Design Methodology ICTP-MLAB 39

Design Specification

v Written specifications for the design to be done

v Spec can specify:

v" Functionality
v Timing
v Interfaces

v Power

SoC Architecture & Design Methodology ICTP-MLAB

Design Partition

v Divide and conquer strategy |_IP Cores |

v" Complex design is progressively partitioned into smaller and |
. HDL
simpler functional units. This is known as

v Top-Down Design or Hierarchical Design

v" Behavioral model for each functional unit are
written

VIt has its own synthesis results

VIt has it own functional test bench %

v'Some cases it has its own place and route and timing
constraints

SoC Architecture & Design Methodology ICTP-MLAB

HDL Design

= Behavioral modeling describes the functionality of a component
design), that is, what the component will do
(design) p o |

o A behavioral prototype of a component can be quicly created
o Its functionlatiy verified

o Synthezised, optimized and mapped, to a specific technology

= Structural Modeling connect components to create a specific
functionality.

o Architectural partitioning forms a structural model, but the functional components are
modeled behaviorally

SoC Architecture & Design Methodology ICTP-MLAB

Functional Verification — Block Level

= In general, a design should be partitioned along functional
lines into smaller functional units, each having a common

clock domain, and each of which is to be verified
separately.

v The verification process is threefold:

v Development of a test plan

v Development of test-benches

v" Execution of the simulations

ICTP-MLAB

SoC Architecture & Design Methodology

FUncuonar verircation = olOCK/ 3YSLEITT LEvVE

(1)

v" Development of a test plan: Specify what functional features are to be tested
and how they are to be tested

v'For example, the test plan might specify that an exhaustive simulation of its behavior
will verify the instruction set of an ALU.

v'Test plans for sequential machines must be more elaborate to ensure a high level of
confidence in the design.

v'A test plan identifies the stimulus generators, response monitors, and the "gold"
response against which the model will be tested.

v'Your grade, and your company's future, will depend on the care that you take in
developing and executing your test plan.

SoC Architecture & Design Methodology ICTP-MLAB

FUncuonar verircation = olOCK/ 3YSLEITT LEvVE

(2)

v Test bench development

v" A Test Bench is a VHDL module in which the Unit Under Test (UUT) has to bee
instantiated together with pattern generators that are to be applied to the inputs of
the component during simulation.

v'Note: If a design is formed as an architecture of multiple modules, each must be verified
separately, beginning with the lowest level of the design hierarchy, then the integrated
design must be tested to verify that the modules interact correctly

v" Test Bench execution

v The test bench is exercised according to the test plan, and the response is verified
against the original specification for the design

SoC Architecture & Design Methodology ICTP-MLAB

Design Integration — System Level Verification

v After each of the functional sub components has been verified to have
correct functionality, the architecture must be integrated and verified to
have the correct overall functionality

v A separate test plan for the system is developed at the beginning of this step.

v This requires development of a separate testbench whose stimulus generators
exercise the input/output functionality of the top-level module, monitor port and
bus activity across module boundaries, and observe state activity in any embedded
state machines.

v" This step in the design flow is crucial and must be executed thoroughly to ensure
that the design that is being signed off for synthesis is correct.

SoC Architecture & Design Methodology ICTP-MLAB

DYHIHESIS =constaraimets — I"OSI-DVHIHESIS
Simulation

l Synthesis l*&onstraints '

v A synthesis tool is used to go from ‘software’ to logic gates, flip-flops,
memory, etc.

v A synthesis tool removes redundant logic and seeks to satisfy the
requirements regarding the area of the logic needed to implement the
functionality and the performance (speed) specifications

v Post-Synthesis simulation is, in general, optional, but it is advisable in
case of using specific synthesis attributes.

ICTP-MLAB

Place & Route

l Place & Route l——&onstraints '

v The logic generated by the synthesis tool is a netlist, commonly known as

EDIF netlist, that is take by the Place and Route tool to scatter the logic in
the FPGA’s resources.

v" P&R tool has different effort levels, which can be used in case the final
result does not meet the needed requirements.

v In complex design:
v P&R could take several hours to accomplish its task.

v Some floorplanning may be needed (constraints).

SoC Architecture & Design Methodology ICTP-MLAB

Post Place & Route Simulation

L Timing] } Optional
Verification

v This simulation tests the not only the logical functionality but also the
timing of the whole system:

v Routing and logic delay are taking into consideration when executing this simulation
v Each delay is well know after the P&R

v Hold-time and Set-up time violations can be find out in this simulation as well as any
glitch

SoC Architecture & Design Methodology ICTP-MLAB

Vitis Flow Design

SoC Architecture & Design Methodology

Create Board Support Package

Create New ‘C’ Application
Write ‘C’ Code
Build the Application
Configure FPGA

Run on Hardware (Debug)

€7 Technology ©

ICTP-MLAB

50

Vitis Design Flow

= Vitis provides a development environment identical for stand-alone (bare
metal) and Linux based developments.

= The Vivado hardware is exported to Vitis:
o Detailed the different hardware components.
o Specify the memory locations assigned to the different components of the system.
o Links to peripheral datasheets.

= Vitis generate Board Support Package (BSP): provides specific support
code for a given system
o Describes what libraries are used, how stdin/stdout are mapped, etc.
o Provides device drivers for the generated hardware
o Abstract Hardware from Software.
oMore than one BSP can exist per hardware system generated in Vivado.

SoC Architecture & Design Methodology ICTP-MLAB

Vitis Design Flow — C/Linux Application

v The application maybe a:
v Stand alone ‘C’ code (bare metal)
v Operating System based:
v' Petalinux
v FreeRTOS

v An application is always based on a BSP:
v Multiple applications may use a single BSP

v" Build, program, debug

SoC Architecture & Design Methodology ICTP-MLAB

Vitis Design Flow - .elf .bit Download

v" First of all, configure the PL part of the Zynq, using the .bit file
v" Download the .elf file to the PS (processor) part of the Zyng.
v Execute the C/Linux application

v Check the result into either:
v Terminal
v Console
v" 3rd party terminal emulator

ICTP-MLAB

Basics of TCL in Vivado

Tool Command Language

TCL, is an interpreted programming language with variables,
procedures, and control structures, to interface to a variety of design

tools and to design data.

It has been an industry standard language since early 90s’

Xilinx adopted TCL for the Vivado Design Suite

SoC Architecture & Design Methodology ICTP-MLAB

Tool Command Language (cont)

TCL in Vivado enables the designer to:

= Create a project " Run synthesis

= Target a SoPC device/board " Run implementation
= Create a block design = Modify P&R options
" Include IP Cores = Customize reports

= Configure PS, IP Cores, etc. = Program SoPC

ICTP-MLAB

Tool Command Language (cont)

The Vivado tools write a journal file called vivado.jou into the directory

from which Vivado was launched. The journal is a record of the Tcl

commands run during the session.

Thus, they can be used as a starting point to create a new Tcl script.

SoC Architecture & Design Methodology ICTP-MLAB

Tool Command Language (cont

Vivado v2018.3.1 (€4-bit)

SW Build 2489853 on Tue Mar 26 04:18:30 MDT 2015
IP Build 2486929 on Tue Mar 26 06:44:21 MDT 2019
Start of session at: Wed May 22 20:07:21 2019
Process ID: 19219

Current directory: /cris_projects

Command line: vivado

Log file: /cris_projects/vivado.log

Journal file: /cris projects/vivado.jou

otk otk ek otk o o ok ek ok R

start_gui

create_project project_1l /cris_projects/zZedBoard/borrar/hw -part
xc7z020clg484-1

set_property board part em.avnet.com:zed:part0:1.4
[current_project]

set_property target_language VHDL [current_project]

create_bd design "design 1"

update_compile order —-fileset sources_1

startgroup

create_bd cell -type ip -vlnv
xilinx.com:ip:processing_system7:5.5 processing_system7_0
endgroup

apply bd automation -rule
xilinx.com:bd_rule:processing_system7 -config {make_external
"FIXED IO, DDR" apply board preset "1" Master "Disable" Slave
"Disable" } [get_bd cells processing system7_0]
generate_target all [get_files
/cris_projects/ZedBoard/borrar/hw/project_l.srcs/sources_

1/bd/design_1/design_1.bd]
SoC Architecture & Design Methodology startgroup 58

How to run a provided .tcl script

1 Methot 1: Through Vivado TCL console
1 Method 2: Through Command Line

Method 1: Run .tcl in Vivado TCL Console

. Start Vivado Design Suite. You can see a tcl console on the left bottom of
Vivado Design Suite

. Click on the title 'type a tcl command here’ (button left of the screen)

3. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

. Once the directory has been changed, you can use the /s’ command to list
the files in the current directory. Check that the .tcl is in there.

Run the .tcl script by using the following command: source <filename>.tcl

. The processes defined in the .tcl file will be executed. It could take

sometimes to execute a .tcl file (depending on the defined processes)

ICTP-MLAB

Vivado TCL Console

Y= CPY- I

Eile Flow Tools Window Help]Q’QUickAccess

VIVADO?

HLx Editions

Quick Start

Create Project >

Open Project >

Open Example Project >

& XILINX.

Recent Projects

Py_Qt_TS
feris_projects/pyqt/Py_Qt_TS

lab_gpio_in_out
feris_projects/ictp_labs/lab_gpio_inout/lab_gpio_in_out

project_registers_dma
Jeris_projects/tcl/test/project_registers_dma

project_registers_dma
feris_projects/axi_dma_test/project_registers_dma/proj...

project_registers_dma
/home/cristian/project_registers_dma

project_registers_dma
feris_projects/axi_dma_test/project_registers_dma

project_2

Tcl Console

Q = 2 Il B B @

SoC Architecture & Design Methodology

-0OoX

Vivado TCL Option in the GUI

SoC Architecture & Design Methodology

File Edit Flow
=

A

Flow Navigator

v PROJECT MANAGE
£F Settings
Add Sources
Language Temp

¥ IP Catalog

v |P INTEGRATOR
Create Block De

Open Block Desi

Generate Block

Tools

- W)

Reports Window Layout

Help

Create and Package New IP...
Create Interface Definition...
Enable Partial Reconfiguration...
Run Tcl Script... s}

Property Editor

Associate ELF Files...

Generate Memory Configuration File...

Compile Simulation Libraries...

Download Latest Boards...
Xilinx Tcl Store...
Custom Commands

Language Templates

Settings...

Ctrl+)

ari

ICTP-MLAB

62

Method 2: Run .tcl through Command Line

In W10 you can start the Vivado TCL Shell by doing Start-> All apps->Vivado
20xx.x Tcl Shell.

. A small command line window should come up

. Go to the folder location where the tcl script resides (use ‘cd’, ‘pwd’)

. Once the directory has been changed, you can use the dir command to list
the files in the current directory. Check that the .tcl is in there.

Run the .tcl script by using the following command:

source <filename>.tcl

. The processes defined in the .tcl file will be executed. It could take some
times to execute a .tcl file (depending on the defined processes)

ICTP-MLAB

Run .tcl in Linux

1. Make sure TCL interpreter is installed:
o Swhereis tclsh
o tclsh: /usr/bin/tclsh /usr/bin/tclsh8.4 /usr/share/man/manl/tclsh.1.gz

2. In case you don’t have the tcl interpreter installed, do the following:
o Ssudo apt-get install tcl8.4

Note: if you have installed Vivado, the Tcl interpreter should be installed

3. Execute TCL script: You can either execute using “tclsh helloworld.tcl” or
“ [helloworld.tcl”.

o S tclsh helloworld.tcl

o > Hello World!

(or)

o S chmod u+x helloworld.tcl
o S./helloworld.tcl

o > Hello World!l.

SoC Architecture & Design Methodology ICTP-MLAB

Is there any Need to Learn TCL ?

It is purely based on your objectives.

If you want to automate some basic processes in creating design , it is the

best choice as we can export a tcl script to another computer and create

an exact replica of the project with same configurations, ip integrations in
just a single execution.

SoC Architecture & Design Methodology ICTP-MLAB

Xilinx TCL Docs

Vivado Design Suite TCL Command Reference Guide

Vivado Design Suite User Guide - Using TCL Scripting

TCL Tutorial (up to Chapter 14 for Vivado appl)

SoC Architecture & Design Methodology ICTP-MLAB

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug894-vivado-tcl-scripting.pdf
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Apendix

PS 1/O Peripherals

12C

12C bus specification version 2

Programmable to use normal (7-bit) or extended (10-bit) addressing

Programmable rates: fast mode (400 kbit/s) , standard (10 Okbits/s), and low (10 kbits/s)
o Rates higher than 400 kbits/sec are not supported

= Programmable as either a master or slave interface
= Capable of clock synchronization and bus arbitration
= Fully programmable slave response address

= Reversible FIFO operation supported

= 16-byte buffer size

= Slave monitor mode when set up as master

= |2C bus hold for slow host service

= Slave timeout detection with programmable period

= Transfer status interrupts and flags

SoC Architecture & Design Methodology ICTP-MLAB 69

CAN

= Upto24-MHz CAN_REF clock as system clock

" 64 message-deep receiver and transmitter buffer
= Full CAN 2.0B compliant; conforms to ISO 11898-1
= Maximum baud rate of 1 Mb/s

= Four message filters required for buffer mode

= Listen-only mode for test and debug
= External PHY I/O

= “Wake-on-message”

= Time-stamping for receive messages
= TXand RX FIFO watermarking

= Exception: no power-down mode

SoC Architecture & Design Methodology ICTP-MLAB

SD-SDIO

Support for version 2.0 of SD Specification

Full-speed (4 MB/s) and low-speed (2 MB/s) support
o Low-speed clock (400 KHz) used until bandwidth negotiated

= 1-bit and 4-bit data interface support

= Host mode support only

= Built-in DMA controller

= Full-speed clock (0-50 MHz) with maximum throughput at 25 MB/s
= 1 KB data FIFO interface

= Support for MMC 3.31 card at 52 MHz

= Support for memory, 1/O, and combo cards

= Support for power control modes and interrupts

SoC Architecture & Design Methodology ICTP-MLAB

SP]

= Master or slave SPI mode

= Four wire bus: MOSI, MISO, SCK, nSS

= Supports up to three slave select lines

= Supports multi-master environment

= |dentifies an error condition if more than one master detected
= Software can poll for status or function as interrupt-driven device
= Programmable interrupt generation

= 50-MHz maximum external SPI clock rate

= Selectable master clock reference

= |ntegrated 128-byte deep read and write FIFOs

= Full-duplex operation offers simultaneous receive and transmit

SoC Architecture & Design Methodology ICTP-MLAB 72

UART

= Two UARTs

= Programmable baud rate generator

"= 64-byte receive and transmit FIFOs

= 6,7,0or8databitsand 1, 1.5, or 2 stop bits

= (0dd, even, space, mark, or no parity with parity, framing, and overrun error
detection

= "Line break" generation and detection
= Normal, automatic echo, local loopback, and remote loopback channel modes
= Interrupts generation

= Support 8 Mb/s maximum baud rate with additional reference clock or up to 1.5
Mb/F;, with a 100-MHz peripheral bus clock

= Modem control signals: CTS, RTS, DSR, DTR, RI, and DCD (through EMIO)
= Simple UART: only two pins (TX and RX through MIO)

SoC Architecture & Design Methodology ICTP-MLAB

USB

Two USB 2.0 hardened IP peripherals per Zynq device

o Each independently controlled and configured

Supported interfaces

o High-speed USB 2.0: 480 Mbit/s

o Full-speed USB 1.1: 12 Mbit/s

o Low-speed USB 1.0: 1.5 Mbit/s

o Communication starts at USB 2.0 speed and drops until sync is achieved

Each block can be configured as host, device, or on-the-go (OTG)
8-bit ULPI interface
All four transfer types supported: isochronous, interrupt, bulk, and control

= Supports up to 12 endpoints per USB block in the Zyng device

o Running in host mode

= Source-code drivers

SoC Architecture & Design Methodology ICTP-MLAB

USB 2.0 OTG

= Control and configuration registers for each USB block

= Software-ready with standalone and OS linux source-code delivered
drivers

= EHCI compliant host registers

= USB host controller registers and data structures compliant to Intel
EHCI specifications

= |nternal DMA
= Must use the MIO pins

SoC Architecture & Design Methodology ICTP-MLAB

USB 2.0 Usage Example

Usb0_ulpi_clk USB1_DM
CLKOUT DM f¢——» D-

A

Usb0_ulpi_data[7:0] usBs1_DP
DATA[7:0] DP|le—» D+

Usb0_ulpi_nxt UsBi1_ID

USB Controller ¢ DIR Dleae——— ID
Usb0_ulpi_ USB1
. sb0_ulpi_nxt NXT
UsbO_ulpi_stp
q Ll Host Mode I oTG
Zynq Device ULPI1 g Zyng| [PRY
Downstream Hub I
HNP
I SRP
Device Mode I Lo
zyng| [PHY|] "= Host or I Another OTG
Upstream Hub Device
HS, FS I

UGSBS_c15_30_030712

SoC Architecture & Design Methodology ICTP-MLAB 76

Gigabit Ethernet Controller

Tri-mode Ethernet MAC (10/100/1G) with native
GMIl interface

I[EEE1588 rev 2.0
o Time stamp support
o 1 usresolution

IEEE802.3

RGMII v2.0 (HSTL) interface to MIO pins
o Need MIO set at 1.8V to support RGMII speed
o Need to use large bank of MIO pins for two Ethernets

MIl/GMII/SGMII/RGMII verl.3 (LVCMOS) and ver2.0 (HSTL) interface available
through EMIO (programmable logic 1/0)

TX/RX checksum offload for TCP and UDP
Internal DMA and wake on LAN

SoC Architecture & Design Methodology ICTP-MLAB

Gigabit Ethernet Controller

|
|
|
|
ENET_RGMII_TX_CLK '
ENET_RGMII_TXDJ3:0) = _MDIOPIN
Ethernet RGMII ENET_RGMII_TX_CTL 5 :MDI 1PN :
Controller | o — o | - >
3 % ~ ENET_RGMII_RX_CLK _MDI2PIN
=30 I : - >
3 | ENET_RGMILRXD[3.0) = T
= | ENET_RGMII_RX_CTL - >
MD '
> ENET_MDC '
ENET_MDIO =
| Extornal "RJ-45 Conn.
Zynq Device | PHY Device

Boundary |

SoC Architecture & Design Methodology ICTP-MLAB 78

Application Processor
Unit (APU)

ARM Processor Architecture

= ARM Cortex-A9 processor implements the ARMv7-A architecture
o ARMvV7 is the ARM Instruction Set Architecture (ISA)
o Thumb instructions: 16 bits; Thumb-2 instructions: 32 bits
o NEON: ARM'’s Single Instruction Multiple Data (SIMD) instructions
o ARMv7-A: Application set that includes support for a Memory Management Unit (MMU)
o ARMv7-R: Real-time set that includes support for a Memory Protection Unit (MPU)
o ARMv7-M: Microcontroller set that is the smallest set

= ARM Advanced Microcontroller Bus Architecture (AMBA®) protocol
o AXI3: Third-generation ARM interface
o AXI4: Adding to the existing AXI definition (extended bursts, subsets)

= Cortex is the new family of processors

o ARM family is older generation; Cortex is current; MMUs in Cortex processors and MPUs
in ARM

SoC Architecture & Design Methodology ICTP-MLAB

Cacheable and Non-

Cafheable
Non- cacheable Accesses to DDR,
cagheable PL, Peripherals, and PS

Ageesses registers

SoC Architecture & Design Methodology ICTP-MLAB

APU Components

= Dual ARM® Cortex™-A9 MPCore
with NEON extensions
o Up to 800-MHz operation
o 2.5 DMIPS/MHz per core

o Separate 32KB instruction and data
caches

= Snoop Control Unit (SCU)
o L1 cache snoop control
o Accelerator coherency port

= |Level 2 cache and controller
o Shared 512 KB cache with parity

SoC Architecture & Design Methodology ICTP-MLAB

APU Sub-Components

= General interrupt controller (GIC)

= On-chip memory (OCM): RAM and boot ROM

= Central DMA (eight channels)

= Device configuration (DEVCFG)

= Private watchdog timer and timer for each CPU

= System watchdog and triple timer counters shared between CPUs
= ARM CoreSight debug technology

ICTP-MLAB

APU Address Map

= All registers for both CPUs are grouped into two contiguous 4KB
pages

o Accessed through a dedicated internal bus

= Fixed at OxF8FO_0000 with a register block size of 8 KB

o Each CPU uses an offset into this base address

0x0000-0x00FC SCU registers

0x0100-0x01FF Interrupt controller interface
0x0200-0x02FF Global timer

0x0600-0x06FF Private timers and watchdog timers

0x1000-0Ox1FFF Interrupt distributor

SoC Architecture & Design Methodology ICTP-MLAB 84

NEON Main Features

= NEON is the ARM codename for the vector processing unit
o Provides multimedia and signal processing support

= FPU is the floating-point unit extension to NEON
o Both NEON and FPU share a single set of registers

= NEON technology is a wide single instruction, multiple data (SIMD)

parallel and co-processing architecture
o 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide)
o Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, or 32-bit float

SoC Architecture & Design Methodology ICTP-MLAB

L1 Cache Features

= Separate instruction and data caches for each processor
= Caches are four-way, set associative and are write-back
= Non-lockable

= Eight words cache length

= On acache miss, critical word first filling of the cache is performed
followed by the next word in sequence

SoC Architecture & Design Methodology ICTP-MLAB

L2 Cache Features

= 512K bytes of RAM built into the SCU
o Latency of 25 CPU cycles
o Unified instruction and data cache

= Fixed, 256-bit (32 words) cache line size
= Support for per-master way lockdown between multiple CPUs
= Eight-way, set associative

= Two AXl interfaces
o One to DDR controller
o One to programmable logic master (to peripherals)

SoC Architecture & Design Methodology ICTP-MLAB

On-Chip Memory (OCM)

= The on-chip memory (OCM) module contains 256 KB of RAM and 128
KB of ROM (BootROM).

= |t supports two 64-bit AXI slave interface ports, one dedicated for
CPU/ACP access via the APU snoop control unit (SCU), and the other

shared by all other bus masters within the processing system (PS) and
programmable logic (PL).

= The BootROM memory is used exclusively by the boot process and is
not visible to the user.

ICTP-MLAB

Snoop Control Unit (SCU)

= Shares and arbitrates functions between the two processor cores
o Data cache coherency between the processors

Initiates L2 AXlI memory access

Arbitrates between the processors requesting L2 accesses

Manages ACP accesses
A second master port with programmable address filtering between OCM and
L2 memory support

O O O O

ICTP-MLAB

SoC Architecture & Design Methodology

Cache Coherency Using SCU

= High-performance, cache-to-cache transfers

= Snoop each CPU and cache each interface
independently

= Coherency protocol is MESI
M: Cache line has been modified

E: Cache line is held exclusively
S: Cache line is shared with another CPU
|: Cache line is invalidated

O
O
O
O

= Uses Accelerator Coherence Port (ACP) to allow Tolfrom PL

coherency to be extended to PL

SoC Architecture & Design Methodology ICTP-MLAB 90

System Level Control Register (SLCR)

= A set of special registers in the APU used to configure the PS
o Power and clock management
o Reset control

o MIO/EMIO management

= Accessible through software
o Standalone BSP support

System clock and reset control/status registers TrustZone control register

APU control registers SoC debug control registers
DMA initialization registers MIO/IOP control/status registers
DDR control registers Miscellaneous control registers

PL reset registers RAM and ROM control registers

SoC Architecture & Design Methodology ICTP-MLAB 91

/ynqg Clocks

SoC Architecture & Design Methodology ICTP-MLAB

System Clocks

| | PLLs |
PS_CLK 2 [— cpu_6x4x CPU, SCU,
| e { 6-bit Clock cpu_3x2x OCM
& | | > Mux Programmable [~| Gate Raio: | ———== Sync
| ! - I/0 PLL i ol Divider e Generator » CpU_2X AXI
| i I) = cpu_1x Interconnect
> lch-rree
: ™| DDRPLL H =
Boot Mode i:_en_ _____ : Programmable [~| Gate = ddr_3x
Pin PLL Divider Glitch-Free Async
Bypass
| 6-bit
g_, POR —| Programmable [~| Gate ddr_2x
Lot SYpass Divider Glitch-Free Async
: Control Glitch-Free
5 I/O Peripherals
| et H
| F i —= (0P
| Bypass Control Registers: | Mux Progr?mmable —=
| ARM_PLL_CTRL | Divider (s) s
I DDR_PLL_CTRL —| » Ethernet
I I0_PLL_CTRL — SDIO, SMC,
| ' —{ . SPI,QSPI, UART
I —™ CAN, I2C
: R e R =1
I I I
| = PL |
I —F= I
| PL Clocks |

UG585_c25_01_102414

SoC Architecture & Design Methodology ICTP-MLAB 93

CPU Clock

ARM_CLK_CTRL [24]
CLK_621_TRUE [0] 1 | }—{-»r _C_PJ_EXIX— _i
Glitch ARM_CLK_CTRL [25] : Closely Coupleq, :
[——————n FIrtece_ | Always 2:1 Ratio |
|| ARM PLL 21 4_(:) i i
| § 6-bit Clock
I Programmable Ratio
| | DDR PLL Divider Generator
: Glitch-Free | Agm_CLK_CTRL [26]
| 1oPLL B et .
l_ ______ 2:10r3:1 | i :
A ARM_CLK_CTRL [27] | Closely C_ouplefi |
[4] [5] [13:8] | Always 2:1 Ratio |
ARM_CLK_CTRL ARM_CLK_CTRL Ao CPU_1X |
CPU_6x4x 800 MHz 600 MHz CPU clock freq, SCU, OCM arbitrer,
(6 times faster than CPU_1x) (4 times faster than CPU_1x) NEON and L2 Cache
CPU_3x2x 400 MHz 300 MHz APU Timers
(3 times faster than CPU_1x) (2 times faster than CPU_1x)
CPU_2x 266MHz 300 MHz IOP, central interconnect, master
(2 times faster than CPU_1x) (2 times faster than CPU_1x) interconeect, slave interconnect and
OCM RAM

CPU_1x 133 MHz 150 MHz IOP, AHB and APB interface busses

PL Clocks

| |
10 PLL ' : :

I i L]0 6-bit 6-bit

: | — Programmable Programmable

| ARM PLL : =l 0 Free Divisor 0 Divisor 1

I : 1

| | Glitch- Glitch-Free Glitch-Free

| Free
| PORPLL [1, |
B e v e o aons o |
Four
PL FCLK Clock | Control Register | Mux Ctrl Field | Mux Ctrl Field | Divider 0 Ctrl Field | Divider 1 Ctrl Field Independent
PL Clocks

PLFCLKO | FPGAO CLK CTRL| SRCSEL, 4 SRCSEL, 5 DIVISORO, 138 | DIVISOR 1,2520 |—— = FCLKCLKO
PLFCLK1 | FPGA1 CLK CTRL| SRCSEL 4 SRCSEL, 5 DIVISORO, 138 | DIVISOR 1,2520 |—— = FCLKCLK1
PLFCLK2 | FPGA2 CLK CTRL| SRCSEL, 4 SRCSEL, 5 DIVISORO, 138 | DIVISOR 1,2520 |——» FCLKCLK2
PLFCLK3 | FPGA3 CLK CTRL| SRCSEL. 4 SRCSEL, 5 DIVISORO, 138 | DIVISOR 1,2520 |——+ FCLKCLK3

UGS585_c25_10_041612

SoC Architecture & Design Methodology ICTP-MLAB 95

