
Embedded ‘C’ for Zynq
Crist ian Sisterna

Universidad Nacional San Juan
Argent ina

Embedded C ICTP 2

Embedded C

Embedded systems programming is different from developing applications on a
desktop computers. Key characteristics of an embedded system, when compared

to PCs, are as follows:
q Embedded devices have resource constraints(limited ROM, limited RAM, limited

stack space, less processing power)
q Components used in embedded system and PCs are different; embedded systems

typically uses smaller, less power consuming components
q Embedded systems are more tied to the hardware
q Two salient features of Embedded Programming are code speed and code size. Code

speed is governed by the processing power, timing constraints, whereas code size is
governed by available program memory and use of programming language.

Embedded C ICTP 3

Differences Between ‘C’ and ‘Embedded C’

Though C and Embedded C appear different and are used in different contexts, they
have more similarities than the differences. Most of the constructs are same; the

difference lies in their applications.

Embedded C ICTP 4

Difference Between C and Embedded C

C is used for desktop computers, while Embedded C is for microcontroller based
applications.

Compilers for C (ANSI C) typically generate OS dependent executables. Embedded C requires
compilers to create files to be downloaded to the microcontrollers/microprocessors where it

needs to run. Embedded compilers give access to all resources which is not provided in
compilers for desktop computer applications.

Embedded systems often have the real-time constraints, which is usually not there with
desktop computer applications.

Embedded systems often do not have a console, which is available in case of desktop
applications.

§ It is small and reasonably simpler to learn, understand, program and debug
§ C Compilers are available for almost all embedded devices in use today, and there is a

large pool of experienced C programmers
§ Unlike assembly, C has advantage of processor-independence and is not specific to

any particular microprocessor/ microcontroller or any system. This makes it
convenient for a user to develop programs that can run on most of the systems

§ As C combines functionality of assembly language and features of high level
languages, C is treated as a ‘middle-level computer language’ or ‘high level assembly
language’

§ It is fairly efficient
§ It supports access to I/O and provides ease of management of large embedded

projects
§Objected oriented language, C++ is not apt for developing efficient programs in

resource constrained environments like embedded devices.

Embedded C ICTP 5

Advantages of Using Embedded C

Reviewing Embedded
‘C’ Basic Concepts

Embedded C ICTP 6

Embedded C ICTP -IAEA 7

‘C’ Xilinx Basic Data Types
xbasic_types.h

xil_types.h

Variables in ‘C’ can be classified by their scope

Embedded C ICTP 8

Local vs Global Variables

Local Variables

Global Variables

Accessible by any part of
the program and are
allocated permanent

storage in RAM

Accessible only by the
function within which they

are declared and are
allocated storage on the

stack

Global and Local Variables Declarations
Global

Local

Embedded C ICTP 10

Local Variables

vLocal variables only occupy RAM while the function to which they belong is
running

vUsually the stack pointer addressing mode is used (This addressing mode
requires one extra byte and one extra cycle to access a variable compared to
the same instruction in indexed addressing mode)
vIf the code requires several consecutive accesses to local variables, the compiler will usually

transfer the stack pointer to the 16-bit index register and use indexed addressing instead

Embedded C ICTP 11

Global Variables
vGlobal variables are allocated permanent storage in memory at an absolute

address determined when the code is linked
v The memory occupied by a global variable cannot be reused by any other

variable
vGlobal variables are not protected in any way, so any part of the program can

access a global variable at any time
vThis means that the variable data could be corrupted if part of the variable is derived

from one value and the rest of the variable is derived from another value
vThe compiler will generally use the extended addressing mode to access global

variables or indexed addressing mode if they are accessed though a pointer

Embedded C ICTP 12

Use of the ‘static’ modifier

Embedded C

v The ‘static’ access modifier causes that the
local variable to be permanently allocated
storage in memory, like a global variable, so
the value is preserved between function calls
(but still is local)

vThe 'static' access modifier may also be used
with global variables
v This gives some degree of protection to

the variable as it restricts access to the
variable to those functions in the file in
which the variable is declared

The value of volatile variables may change from outside the program.

For example, you may wish to read an A/D converter or a port whose value is
changing.

Often your compiler may eliminate code to read the port as part of the compiler's
code optimization process if it does not realize that some outside process is

changing the port's value.

You can avoid this by declaring the variable volatile.

Embedded C ICTP 13

Volatile Variable

Embedded C ICTP 14

Volatile Variable

= 0;

A function data type defines the value that a subroutine can return

Embedded C ICTP 15

Functions Data Types

v A function of type int returns a signed integer value

v Without a specific return type, any function returns an int

v To avoid confusion, you should always declare main()with return type
void

Embedded C ICTP 16

Function Parameters Data Types
Indicate the values to be passed into the function and the memory to be

reserved for storing them

Embedded C ICTP 17

‘C’ Structures

Embedded C ICTP 18

Review of ‘C’ Pointer
In ‘C’, the pointer data type corresponds to a MEMORY ADDRESS

int x = 1, y = 5, z = 8, *ptr;

1

5

8

x

y

z

1

5

8

1

1

8

8

1

8

a
b
c
d

a b c d

ptr = ?? ptr = &x

ptr

y = *ptr *ptr = z

*ptr = z; // content pointed by ptr gets content of z

ptr = &x; // ptr gets (point to) address of x

y = *ptr; // content of y gets content pointed by ptr

ptr ptr

‘C’ Techniques for low-
level I/O Operations

Embedded C ICTP 19

Bitwise operators in ‘C’: ~ (not), & (and), | (or), ^ (xor)
which operate on one or two operands at bit levels

Embedded C ICTP 20

Bit Manipulation in ‘C’

u8 mask = 0x60; //0110_0000 mask bits 6 and 5
u8 data = 0xb3 //1011_0011 data
u8 d0, d1, d2, d3; //data to work with in the coming example
. . .

d0 = data & mask;

d1 = data & ~mask;

d2 = data | mask;

d3 = data ^ mask;

// 0010_0000; isolate bits 6 and 5 from data

// 1001_0011; clear bits 6 and 5 of data

// 1111_0011; set bits 6 and 5 of data

// 1101_0011; toggle bits 6 and 5 of data

Both operands of a bit shift operator must be integer values

The right shift operator shifts the data right by the specified number of positions.
Bits shifted out the right side disappear. With unsigned integer values, 0s are shifted
in at the high end, as necessary. For signed types, the values shifted in is
implementation-dependant. The binary number is shifted right by number bits.
x >> number;

Embedded C ICTP 21

Bit Shift Operators

The left shift operator shifts the data right by the specified number of positions. Bits
shifted out the left side disappear and new bits coming in are 0s. The binary number is
shifted left by number bits
x << number;

void led_knight_rider(XGpio *pLED_GPIO, int nNumberOfTimes)
{

int i=0; int j=0;
u8 uchLedStatus=0;

// Blink the LEDs back and forth nNumberOfTimes
for(i=0;i<nNumberOfTimes;i++)
{

for(j=0;j<8;j++) // Scroll the LEDs up
{

uchLedStatus = 1 << j;
XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);
delay(ABOUT_ONE_SECOND / 15);

}
for(j=0;j<8;j++) // Scroll the LEDs down
{

uchLedStatus = 8 >> j;
XGpio_DiscreteWrite(pLED_GPIO, 1, uchLedStatus);
delay(ABOUT_ONE_SECOND / 15);

}
}

}

Bit Shift Example

There are cases that in the same memory address different fields are stored

Embedded C ICTP 23

Unpacking Data

Example: let’s assume that a 32-bit memory address contains a 16-bit field for an integer data
and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

u32 io_rd_data;
int num;
char chl, ch0;

Unpacking

io_rd_data = my_iord(...);//my_io_read read a data

ch0 =

num =
chl =

(int) ((io_rd_data & 0xffff0000) >> 16);

(char)((io_rd_data & 0x0000ff00) >> 8);
(char)((io_rd_data & 0x000000ff));

io_rd_data

Embedded C ICTP 24

Packing Data

u32 wr_data;
int num = 5;
char chl, ch0;

Pa
ck

in
g

There are cases that in the same memory address different fields are written
Example: let’s assume that a 32-bit memory address will be written as a 16-bit field for an

integer data and two 8-bit fields for two characters

num ch1 ch0

31 . . . 16 15 . . . 8 7 . . . 0

io_wr_data

wr_data = (wr_data << 8) | (u32) ch0; //num[31:16],ch1[15:8]

wr_data = (u32)(num); //num[15:0]
wr_data = (wr_data << 8) | (u32) ch1; //num[23:8],ch1[7:0]

my_iowr(. . . , wr_data) ; //ch0[7:0]

Another Way ….

wr_data = (((u32)(num))<<16)|(((u32)ch1)<<8)|(u32)ch2;

u32 wr_data;
int num = 5;
char chl, ch0;

wr_data = (wr_data << 8) | (u32) ch0; //num[31:16],ch1[15:8]

wr_data = (u32)(num); //num[15:0]
wr_data = (wr_data << 8) | (u32) ch1; //num[23:8],ch1[7:0]

my_iowr(. . . , wr_data) ; //ch0[7:0]

Basic Embedded ‘C’
Program Template

Embedded C ICTP 26

Embedded C ICTP 27

Basic Embedded Program Architecture

#include “nnnnn.h”
#include <ppppp.h>
main()
{
sys_init();//
while(1){
task_1();
task_2();
. . .
task_n();

}
}

An embedded application consists of a collection tasks, implemented by
hardware accelerators, software routines, or both.

The flashing-LED system turns on and off two LEDs alternatively according to the interval
specified by the ten sliding switches

Embedded C ICTP 28

Basic Example

Tasks ????

1. reading the interval value from the switches

2. toggling the two LEDs after a specific amount of time

Embedded C ICTP 29

Basic Example

main()
{

while(1){
. . .
task_1();
task_2();
. . .
}

}

main()
{

int period;

while(1){
read_sw(SWITCH_S1_BASE, &period);
led_flash(LED_L1_BASE, period);

}
}

#include “nnnnn.h”
#include “aaaaa.h”

Embedded C ICTP 30

Basic Example - Reading
/**
* function: read_sw ()
* purpose: get flashing period from 10 switches
* argument:
* sw-base: base address of switch PIO
* period: pointer to period
* return:
* updated period
* note :
**/
void read_sw(u32 switch_base, int *period)
{

*period = my_iord(switch_base) & 0x000000ff; //read flashing period
// from switch

}

0x000003ff;

Embedded C ICTP 31

Basic Example - Writing
/**
* function: led.flash ()
* purpose: toggle 2 LEDs according to the given period
* argument:
* led-base: base address of discrete LED PIO
* period: flashing period in ms
* return : none
* note :
* — The delay is done by estimating execution time of a dummy for loop
* — Assumption: 400 ns per loop iteration (2500 iterations per ms)
* - 2 instruct. per loop iteration /10 clock cycles per instruction /20ns per clock cycle(50-MHz clock)
***/

void led_flash(u32 addr_led_base, int period)
{
static u8 led_pattern = 0x01; // initial pattern
unsigned long i, itr;

led_pattern ^= 0x03; // toggle 2 LEDs (2 LSBs)
my_iowr(addr_led_base, led_pattern); // write LEDs
itr = period * 2500;
for (i=0; i<itr; i++) {} // dummy loop for delay

}

Embedded C ICTP 32

Basic Example – Read / Write

int main()

{

int period;

while(1){
read_sw(SWITCH_S1_BASE, &period);

led_flash(LED_L1_BASE, period);

}

return 0;
}

void read_sw(u32 switch_base, int *period)
{
*period = my_iord(switch_base) & 0x000003ff;

}

void led_flash(u32 addr_led_base, int period)
{
static u8 led_pattern = 0x01;
unsigned long i, itr; //static?

led_pattern ^= 0x03;
my_iowr(addr_led_base, led_pattern);
itr = period * 2500;
for (i=0; i<itr; i++) {}

}

Read/Write From/To
GPIO Inputs and Outputs

1. Create a GPIO instance

2. Initialize the GPIO

3. Set data direction (optional)

4. Read the data

Embedded C ICTP 34

Steps for Reading from a GPIO

1. Create a GPIO instance

Embedded C ICTP 35

Steps for Reading from a GPIO – Step 1

#include “xparameters.h”
#include “xgpio.h”

int main (void)
{

XGpio switches;
XGpio leds;
. . .

2. Initialize the GPIO

Embedded C ICTP 36

Steps for Reading from a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance (already declared).

DeviceID: is the unique ID of the device controlled by this XGpio component (declared in the
xparameters.h file)

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not

xstatus.h

Embedded C ICTP 37

Steps for Reading from a GPIO – Step 2(cont’)
(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO switches initialization
XGpio_Initialize (&switches, XPAR_BOARD_SW_8B_DEVICE_ID);

// AXI GPIO leds initialization
XGpio_Initialize (&led, XPAR_BOARD_LEDS_8B_DEVICE_ID);

The xparameters.h file contains the address map for peripherals in the
created system.

This file is generated from the hardware platform created in Vivado

Embedded C ICTP 38

xparameters.h

xparameters.h file can be found underneath the
include folder in the ps7_cortexa9_0 folder of
the BSP main folder

Ctrl + Mouse Over

Embedded C ICTP 39

xparameters.h

Embedded C ICTP 40

xgpio.h – Outline Pane

Definitions (#define statemens)

Functions

Structures Declarations

Types Definitions

Includes (#include statemens)

3. Set data direction

Embedded C ICTP 41

Steps for Reading from a GPIO - Step 3

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

DirectionMask: is a bitmask specifying which bits are inputs and which are outputs.
Bits set to ‘0’ are output, bits set to ‘1’ are inputs.

Return: none

Embedded C ICTP 42

Steps for Reading from a GPIO - Step 3 (cont’)

void XGpio_SetDataDirection (XGpio *InstancePtr, unsigned Channel, u32 DirectionMask);

// AXI GPIO switches: bits direction configuration

XGpio_SetDataDirection(&board_sw_8b, 1, 0xffffffff);

4. Read the data

Embedded C ICTP 43

Steps for Reading from a GPIO – Step 4

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

InstancePtr: is a pointer to an XGpio instance to be working with.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: read data

Embedded C ICTP 44

Steps for Reading from a GPIO – Step 4
(cont’)

u32 XGpio_DiscreteRead (XGpio *InstancePtr, unsigned Channel);

// AXI GPIO: read data from the switches

sw_check = XGpio_DiscreteRead(&board_sw_8b, 1);

1. Create a GPIO instance

2. Initialize the GPIO

3. Set the data direction (optional)

4. Read the data

Embedded C ICTP 45

Steps for Writing to GPIO

1. Create a GPIO instance

Embedded C ICTP 46

Steps for Writing to a GPIO – Step 1

#include “xgpio.h”
int main (void)
{

XGpio switches;
XGpio leds;
. . .

2. Initialize the GPIO

Embedded C ICTP 47

Steps for Writing to a GPIO – Step 2

(int) XGpio_Initialize(XGpio *InstancePtr, u16 DeviceID);

InstancePtr: is a pointer to an XGpio instance.

DeviceID: is the unique id of the device controlled by this XGpio component

@return
- XST_SUCCESS if the initialization was successfull.
- XST_DEVICE_NOT_FOUND if the device configuration data was not xstatus.h

Embedded C ICTP 48

Steps for Writing to a GPIO – Step 2(cont’)
(int) XGpio_Initialize (XGpio *InstancePtr, u16 DeviceID);

// AXI GPIO LEDs initialization

XGpio_Initialize (&board_leds_8b, XPAR_BOARD_LEDS_8B_DEVICE_ID);

3. Write the data

Embedded C ICTP 49

Steps for Writing to a GPIO – Step 3

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

InstancePtr: is a pointer to an XGpio instance to be worked on.

Channel: contains the channel of the XGpio (1 o 2) to operate with.

Return: none

Data: Data is the value to be written to the discrete register

Embedded C ICTP 50

Steps for Writing to a GPIO – Step 3 (cont’)

// AXI GPIO: write data (sw_check) to the LEDs

XGpio_DiscreteWrite(& board_leds_8b, 1, sw_check);

void XGpio_DiscreteWrite (XGpio *InstancePtr, unsigned Channel, u32 Data);

‘C’ Drivers for IP Cores

Embedded C ICTP 51

ICTP 52

SPI IP Core - Example

Embedded C

Embedded C ICTP 53

SPI IP Core - Example

SPI IP Core - Example

‘C’ Drivers for Custom IP

Embedded C ICTP - 55

ICTP 56

Custom IP

Embedded C

Embedded C ICTP 57

My IP – Memory Address Range

§ The driver code are generated automatically when the IP template is
created.
§ The driver includes higher level functions which can be called from the
user application.
§ The driver will implement the low level functionality used to control your
peripheral.

Embedded C ICTP 58

Custom IP Drivers

led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src
led_ip.c

led_ip.h
LED_IP_mWriteReg(…)

LED_IP_mReadReg(…)

Embedded C ICTP 59

Custom IP Drivers: *.c
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.c

Embedded C ICTP 60

Custom IP Drivers: *.h
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 61

Custom IP Drivers: *.h (cont’ 1)
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 62

Custom IP Drivers: *.h (cont’ 2)
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 63

Custom IP Drivers: *.h (cont’ 3)
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 64

Custom IP Drivers: *.h (cont’ 4)
led_ip\ip_repo\led_ip_1.0\drivers\led_ip_v1_0\src\led_ip.h

Embedded C ICTP 65

‘C’ Code for Writing to My_IP

o For this driver, you can see the macros are aliases to the lower level functions
Xil_Out32() and Xil_In32()

o The macros in this file make up the higher level API of the led_ip driver.

o If you are writing your own driver for your own IP, you will need to use low level
functions like these to read and write from your IP as required. The low level hardware
access functions are wrapped in your driver making it easier to use your IP in an
Application project.

Embedded C ICTP 66

IP Drivers – Xil_Out32/Xil_In32

#define LED_IP_mWriteReg(BaseAddress, RegOffset, Data) Xil_Out32((BaseAddress) + (RegOffset), (Xuint32)(Data))

#define LED_IP_mReadReg(BaseAddress, RegOffset) Xil_In32((BaseAddress) + (RegOffset))

Embedded C ICTP 67

IP Drivers – Xil_In32 (xil_io.h/xil_io.c)
/***/
/**
* Performs an input operation for a 32-bit memory location by reading from the
* specified address and returning the Value read from that address.
*
* @param Addr contains the address to perform the input operation at.
*
* @return The Value read from the specified input address.
*
* @note None.
*
**/
u32 Xil_In32(INTPTR Addr)
{

return *(volatile u32 *) Addr;
}

Embedded C ICTP 68

IP Drivers – Xil_Out32 (xil_io.h/xil_io.c)
/***/
/**
* Performs an output operation for a 32-bit memory location by writing the
* specified Value to the the specified address.
*
* @param Addr contains the address to perform the output operation at.
* @param Value contains the Value to be output at the specified address.
*
* @return None.
*
* @note None.
**/
void Xil_Out32(INTPTR Addr, u32 Value)
{

u32 *LocalAddr = (u32 *)Addr;

*LocalAddr = Value;
}

o Select <project_name>_bsp in the project view pane. Right-click

o Select Board Support Package Settings

o Select Drivers on the Overview pane

o If the led_ip driver has not already been selected, select Generic under

the Driver Column for led_ip to access the dropdown menu. From the

dropdown menu, select led_ip, and click OK>

Embedded C ICTP 69

IP Drivers – SDK ‘Activation’

Embedded C ICTP 70

IP Drivers – SDK ‘Activation’ (cont’)

System Level Address Map

UNSL - UNSJ 71Embedded C

Embedded C ICTP 72

I/O Read Macro
Read from an Input

int switch_s1;
. . .

#define SWITCH_S1_BASE = 0x00011000;
. .

#define SWITCH_S1_BASE = 0x00011000;
#define my_iord(addr) (*(volatile int *)(addr))
. . .

switch_s1 = *(volatile int *)(0x00011000);

switch_s1 = *(volatile int *)(SWITCH_S1_BASE);

switch_s1 = my_iord(SWITCH_S1_BASE); //

Macro

Embedded C ICTP 73

I/O Write Macro
Write to an Output

char pattern = 0x01;
. . .

#define LED_L1_BASE = 0x11000110;
. . .

#define LED_L1_BASE = 0x11000110;
#define my_iowr(addr, data) (*(int *)(addr) = (data))
. . .

*(0x11000110) = pattern;

*(LED_L1_BASE) = pattern;

my_iowr(LED_L1_BASE, (int)pattern); //

Macro

‘C’ Statement: memcopy()

void *memcpy(void *dest, const void * src, size_t n)

Syntax

memcpy() is used to copy a block of memory from a location (src)
to another (dest). It is declared in string.h

Parameters
dest − This is pointer to the destination array where the content is to be copied, type-
casted to a pointer of type void*.

src − This is pointer to the source of data to be copied, type-casted to a pointer of
type void*.
n − This is the number of bytes to be copied.

‘C’ Statement: memcopy()

