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Introduction
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● 1943 - Pitts and McCulloch created a computer model 
based on the neural networks of the human brain

● 1960s - Back-propagation model basics
● 1970s - AI winter: promises that couldn’t be kept
● 1980s - Convolution emerges, LeNet performs Digit 

Recognition
● 1988-90s - Second AI winter: the “immediate” potential 

of AI was exaggerated.  AI = pseudoscience status
● 2000-2010 - Big data introduction, first big datasets 

(ImageNet)
● 2010-2020 - Computational power, GAN appears
● Present - DL boom. AI is pervasive and influences the 

creation of new business modelsA gentleman otter in a 19th century portrait
Image generated with Stable Diffusion

https://www.dataversity.net/artificial-neural-networks-overview/


Factors that led to DL explosion
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Since 2012 investment in AI has grow 
exponentially global startup funding:

● $670 million in 2011
● $36 billion U.S. dollars in 2020
● $77 billion in 2021

Three main factors:

● Enormously increased data (5G, 
IoT)

● Significantly improved algorithms 
and models

● Higher computing power

AI systems have been around 
since the 1950s, so why are we 
suddenly seeing breakthroughs in 
so many diverse areas?

https://venturebeat.com/ai/report-ai-investments-see-largest-year-over-year-growth-in-20-years/


Modern Deep Learning Issues (1/2)
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● Von Neumann vs Neural Network (NN) 
architecture

○ The main source of latency and power 
consumption comes from data 
movement even in very optimized 
architectures

○ Computing units and memory 
elements are physically separate chips 
in computers



Modern Deep Learning Issues (2/2)
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● Core speeds have stopped to 
grow because of physical limits in 
power dissipation

OpenAI part “AI and Compute” 
https://openai.com/blog/ai-and-compute/



Possible solutions
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SOFTWARE

Goal: reduce the size of the model

● Pruning
● Knowledge distillation
● Quantization

HARDWARE

Goal: change the underlying hardware

● Specialized digital electronic architecture (e.g., tensor core)
● Analog electronic circuits
● Photonic hardware



Quantization
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Def. It is the process of constraining an input from a continuous or otherwise large set of values 
(such as the real numbers) to a discrete set (such as the integers) (Wikipedia)

Our case

Computation in Neural Networks (NNs) use Floating Point numbers (32 bits)

Goal: performing computations and storing tensors at lower bitwidths

Floating Point (32 bits) Lower bitwidths 

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer


Why Quantization in NNs? (1/4)
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Artificial Neuron



Why Quantization in NNs? (2/4)
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● Reducing the number of bits for representing the neural network’s 
parameters results in less memory storage

● Using the lower-bit quantized data requires less data movement, 
which reduces memory bandwidth and saves significant energy

● Lower-precision mathematical operations, such as an 8-bit integer 
multiply versus a 32-bit floating point multiply, consume less energy 
and increase compute efficiency, thus reducing power consumption



Why Quantization in NNs? (3/4)
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● Three components that can be quantized in a NN
○ Weights
○ Activations
○ Gradients

● By quantizing weights and activations, we can achieve smaller model 
size

● Quantization of gradients can be used for example where the training 
environment is distributed to save communication cost

● Generally it is more difficult to quantize the gradients than quantizing 
weights and activations since high-precision gradients are needed to 
perform backpropagation



Why Quantization in NNs? (4/4)
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● Quantization converts floating-point arithmetic of neural networks into low precision arithmetic 
and makes real time inference possible on mobile phones as well as benefits cloud applications



Quantization drawbacks
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● Direct quantization of NNs architectures results in a severe loss of accuracy 
(see later in lab session)

● Quantization is an approximation
○ The closer the approximation, the less performance decay one can expect 
○ Quantize everything to float16: cut the memory in half, probably no accuracy 

loss
○ But won't really gain speedup
○ Quantizing with int8 can result in much faster inference
○ But the performance will probably be worse. Extreme scenario: it won't 

even work 



Quantization in practice
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● How to quantize NN models and reduce accuracy loss?
● Avoid Direct Quantization!

Post-Training Quantization (PTQ)

How: train the model using float32, then 
quantize it

● It can result in accuracy loss

Quantization-Aware Training (QAT)

How: quantize model during training, trying to 
compensate for the quantization-related errors 

● Best accuracy results



Post-Training Quantization
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● Fastest and easiest way to get a quantized model
● It can lead to significant accuracy deviation in some cases
● Several PTQ options:

○ Dynamic range quantization
■ 4x smaller, 2x-3x speedup 

○ Full integer quantization
■ 4x smaller, 3x+ speedup 

○ Float16 quantization
■ 2x smaller, GPU acceleration
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PTQ - Dynamic Range Quantization

● It provides reduced memory usage and faster computation without having 
to provide a representative dataset for calibration

● Statically quantize the weights from floating point to 8-bits of precision and 
dynamically quantize the activations at inference

● Activations are always stored in float 32
● But they are converted to 8-bit integers while processing and back to 

floating point after the processing is done
● Provides latencies close to fully fixed-point inferences
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PTQ - Full Integer Quantization
● Further latency improvements, reductions in peak memory usage, and 

compatibility with integer-only hardware devices or accelerators by making 
sure all model math is integer quantized

● Statically quantize all weights and activations of the model to 8 bit integers
● Need to calibrate or estimate the range, i.e, (min, max) of all floating-point 

tensors in the model
○ Constant tensors: weights, biases
○ Variable tensors: model input, activations (outputs of intermediate 

layers) and model output
● Cannot be calibrated unless a representative 

dataset is used to estimate the range
● Dataset can be a subset of training/test
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● Reduce the size of a floating point model by quantizing the weights to 
float16

● Reduce model size by up to half
● Cause minimal loss in accuracy
● Supports some hardware which can operate directly on float16 data, 

resulting in faster execution than float32 computations
● Disadvantages

○ Does not reduce latency as much as a quantization to fixed point math
○ By default, a float16 quantized model will "dequantize" the weights 

values to float32 when run on the CPU
■ CPUs upscale float16 back to float32 before processing

PTQ - Float16 quantization



Post-Training Quantization
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Quantization-Aware Training
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● Quantization during training: take the effect of quantization loss into account 
during training

● Typically provides higher accuracies as compared to PTQ
● QAT is achieved by adding fake quantization nodes
● Simulates low precision behavior in the forward pass, while the backward 

pass remains in float32



Quantization-Aware Training
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● Quantizer: defines the way of transforming a full precision input to a 
quantized output

● All the weight adjustments during training are made while “aware” of the 
fact that the model will ultimately be quantized



PTQ vs QAT
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XNOR-Net
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● Both weights and input activations of convolutional layers are binarized



DoReFa-Net
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● Further extends the method of binarized neural networks to create a NN that 
has arbitrary bitwidths for weights and activations



● Method to efficiently convert any pre-trained full-precision NN into a 
low-precision version whose weights are constrained to be either powers of 
two or zero

● Three operations
○ Weight partitioning
○ Group-wise quantization
○ Re-training

Incremental Network Quantization
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● Weights in the first group are quantized to be either powers of two or zero by a variable-length 
encoding method, forming a low-precision base for the original model 

● Weights in the second group are re-trained while keeping the weights in the first group fixed, in 
order to compensate the accuracy loss resulted from the quantization

● These operations are repeated on the weights of the second group in an iterative manner until 
all the weights are quantized

Incremental Network Quantization
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● Loss landscape of a ResNet56
● The independent variables represent the 

weights of the model, while the the dependent 
variable is the loss

● Changing the weights just a bit, the differences 
in loss can be enormous

There is no guarantee that it won't totally mess up 
the model

Dangers of quantization
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 Visualizing the Loss Landscape of Neural Nets, Hao Li et al



Hands-on
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https://github.com/emiliopaolini/ICTP_2022

https://github.com/emiliopaolini/ICTP_2022

