
School on FPGA-based SoC and its Applications to Nuclear and Scientific Instrumentation - 16/11/2022

Quantization in Neural Networks
Advantages and limitations

Emilio Paolini, PhD Student

Outline

● Introduction

● Post-training quantization

● Quantization-Aware training

● State-of-the-art

● Hands-on

2

Introduction

3

● 1943 - Pitts and McCulloch created a computer model
based on the neural networks of the human brain

● 1960s - Back-propagation model basics
● 1970s - AI winter: promises that couldn’t be kept
● 1980s - Convolution emerges, LeNet performs Digit

Recognition
● 1988-90s - Second AI winter: the “immediate” potential

of AI was exaggerated. AI = pseudoscience status
● 2000-2010 - Big data introduction, first big datasets

(ImageNet)
● 2010-2020 - Computational power, GAN appears
● Present - DL boom. AI is pervasive and influences the

creation of new business modelsA gentleman otter in a 19th century portrait
Image generated with Stable Diffusion

https://www.dataversity.net/artificial-neural-networks-overview/

Factors that led to DL explosion

4

Since 2012 investment in AI has grow
exponentially global startup funding:

● $670 million in 2011
● $36 billion U.S. dollars in 2020
● $77 billion in 2021

Three main factors:

● Enormously increased data (5G,
IoT)

● Significantly improved algorithms
and models

● Higher computing power

AI systems have been around
since the 1950s, so why are we
suddenly seeing breakthroughs in
so many diverse areas?

https://venturebeat.com/ai/report-ai-investments-see-largest-year-over-year-growth-in-20-years/

Modern Deep Learning Issues (1/2)

5

● Von Neumann vs Neural Network (NN)
architecture

○ The main source of latency and power
consumption comes from data
movement even in very optimized
architectures

○ Computing units and memory
elements are physically separate chips
in computers

Modern Deep Learning Issues (2/2)

6

● Core speeds have stopped to
grow because of physical limits in
power dissipation

OpenAI part “AI and Compute”
https://openai.com/blog/ai-and-compute/

Possible solutions

7

SOFTWARE

Goal: reduce the size of the model

● Pruning
● Knowledge distillation
● Quantization

HARDWARE

Goal: change the underlying hardware

● Specialized digital electronic architecture (e.g., tensor core)
● Analog electronic circuits
● Photonic hardware

Quantization

8

Def. It is the process of constraining an input from a continuous or otherwise large set of values
(such as the real numbers) to a discrete set (such as the integers) (Wikipedia)

Our case

Computation in Neural Networks (NNs) use Floating Point numbers (32 bits)

Goal: performing computations and storing tensors at lower bitwidths

Floating Point (32 bits) Lower bitwidths

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer

Why Quantization in NNs? (1/4)

9

Artificial Neuron

Why Quantization in NNs? (2/4)

10

● Reducing the number of bits for representing the neural network’s
parameters results in less memory storage

● Using the lower-bit quantized data requires less data movement,
which reduces memory bandwidth and saves significant energy

● Lower-precision mathematical operations, such as an 8-bit integer
multiply versus a 32-bit floating point multiply, consume less energy
and increase compute efficiency, thus reducing power consumption

Why Quantization in NNs? (3/4)

11

● Three components that can be quantized in a NN
○ Weights
○ Activations
○ Gradients

● By quantizing weights and activations, we can achieve smaller model
size

● Quantization of gradients can be used for example where the training
environment is distributed to save communication cost

● Generally it is more difficult to quantize the gradients than quantizing
weights and activations since high-precision gradients are needed to
perform backpropagation

Why Quantization in NNs? (4/4)

12

● Quantization converts floating-point arithmetic of neural networks into low precision arithmetic
and makes real time inference possible on mobile phones as well as benefits cloud applications

Quantization drawbacks

13

● Direct quantization of NNs architectures results in a severe loss of accuracy
(see later in lab session)

● Quantization is an approximation
○ The closer the approximation, the less performance decay one can expect
○ Quantize everything to float16: cut the memory in half, probably no accuracy

loss
○ But won't really gain speedup
○ Quantizing with int8 can result in much faster inference
○ But the performance will probably be worse. Extreme scenario: it won't

even work

Quantization in practice

14

● How to quantize NN models and reduce accuracy loss?
● Avoid Direct Quantization!

Post-Training Quantization (PTQ)

How: train the model using float32, then
quantize it

● It can result in accuracy loss

Quantization-Aware Training (QAT)

How: quantize model during training, trying to
compensate for the quantization-related errors

● Best accuracy results

Post-Training Quantization

15

● Fastest and easiest way to get a quantized model
● It can lead to significant accuracy deviation in some cases
● Several PTQ options:

○ Dynamic range quantization
■ 4x smaller, 2x-3x speedup

○ Full integer quantization
■ 4x smaller, 3x+ speedup

○ Float16 quantization
■ 2x smaller, GPU acceleration

16

PTQ - Dynamic Range Quantization

● It provides reduced memory usage and faster computation without having
to provide a representative dataset for calibration

● Statically quantize the weights from floating point to 8-bits of precision and
dynamically quantize the activations at inference

● Activations are always stored in float 32
● But they are converted to 8-bit integers while processing and back to

floating point after the processing is done
● Provides latencies close to fully fixed-point inferences

17

PTQ - Full Integer Quantization
● Further latency improvements, reductions in peak memory usage, and

compatibility with integer-only hardware devices or accelerators by making
sure all model math is integer quantized

● Statically quantize all weights and activations of the model to 8 bit integers
● Need to calibrate or estimate the range, i.e, (min, max) of all floating-point

tensors in the model
○ Constant tensors: weights, biases
○ Variable tensors: model input, activations (outputs of intermediate

layers) and model output
● Cannot be calibrated unless a representative

dataset is used to estimate the range
● Dataset can be a subset of training/test

18

● Reduce the size of a floating point model by quantizing the weights to
float16

● Reduce model size by up to half
● Cause minimal loss in accuracy
● Supports some hardware which can operate directly on float16 data,

resulting in faster execution than float32 computations
● Disadvantages

○ Does not reduce latency as much as a quantization to fixed point math
○ By default, a float16 quantized model will "dequantize" the weights

values to float32 when run on the CPU
■ CPUs upscale float16 back to float32 before processing

PTQ - Float16 quantization

Post-Training Quantization

19

Quantization-Aware Training

20

● Quantization during training: take the effect of quantization loss into account
during training

● Typically provides higher accuracies as compared to PTQ
● QAT is achieved by adding fake quantization nodes
● Simulates low precision behavior in the forward pass, while the backward

pass remains in float32

Quantization-Aware Training

21

● Quantizer: defines the way of transforming a full precision input to a
quantized output

● All the weight adjustments during training are made while “aware” of the
fact that the model will ultimately be quantized

PTQ vs QAT

22

XNOR-Net

23

● Both weights and input activations of convolutional layers are binarized

DoReFa-Net

24

● Further extends the method of binarized neural networks to create a NN that
has arbitrary bitwidths for weights and activations

● Method to efficiently convert any pre-trained full-precision NN into a
low-precision version whose weights are constrained to be either powers of
two or zero

● Three operations
○ Weight partitioning
○ Group-wise quantization
○ Re-training

Incremental Network Quantization

25

● Weights in the first group are quantized to be either powers of two or zero by a variable-length
encoding method, forming a low-precision base for the original model

● Weights in the second group are re-trained while keeping the weights in the first group fixed, in
order to compensate the accuracy loss resulted from the quantization

● These operations are repeated on the weights of the second group in an iterative manner until
all the weights are quantized

Incremental Network Quantization

26

● Loss landscape of a ResNet56
● The independent variables represent the

weights of the model, while the the dependent
variable is the loss

● Changing the weights just a bit, the differences
in loss can be enormous

There is no guarantee that it won't totally mess up
the model

Dangers of quantization

27

 Visualizing the Loss Landscape of Neural Nets, Hao Li et al

Hands-on

28

https://github.com/emiliopaolini/ICTP_2022

https://github.com/emiliopaolini/ICTP_2022

