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Introduction

A gentleman otter in a 19th century portrait

Image generated with Stable Diffusion
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1943 - Pitts and McCulloch created a computer model
based on the neural networks of the human brain
1960s - Back-propagation model basics

1970s - Al winter: promises that couldn’t be kept
1980s - Convolution emerges, LeNet performs Digit
Recognition

1988-90s - Second Al winter: the “immediate” potential
of Al was exaggerated. Al = pseudoscience status
2000-2010 - Big data introduction, first big datasets
(ImageNet)

2010-2020 - Computational power, GAN appears
Present - DL boom. Al is pervasive and influences the
creation of new business models
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https://www.dataversity.net/artificial-neural-networks-overview/

Factors that led to DL explosion

Since 2012 investment in Al has grow
exponentially global startup funding:

o $670 millionin2011 Al systems have been around
e $36 billion U.S. dollars in 2020 since the 1950s, so why are we

e $77billionin 2021 suddenly seeing breakthroughs in
so many diverse areas?

Three main factors:

e Enormously increased data (5G,

|OT) I r&l

e Significantly improved algorithms

O
and models =] E [5 %5
e Higher computing power c\%

=——\
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https://venturebeat.com/ai/report-ai-investments-see-largest-year-over-year-growth-in-20-years/

Modern Deep Learning Issues (1/2)

e Von Neumann vs Neural Network (NN)
architecture

o The main source of latency and power
consumption comes from data
movement even in very optimized
architectures

o Computing units and memory
elements are physically separate chips
in computers
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Modern Deep Learning Issues (2/2)

Two Distinct Eras of Compute Usage in Training AI Systems

AlphaGoZero

Neural Machine
Translation

TI7 Dota 1vl

VGG
ResNets

AlexNet

e Core speeds have stopped to ,

Deep Belief Nets and
layer-wise pretraining

grow because of physical limits in iy
power dissipation |

BiLSTM for Speech
LeNet-5

NETtalk RNN for Speech
ALVINN

2-year doubling (Moore's Law)

Perceptron ¢ First Era  Modern Era >

1970 198( 1990 20 2010

OpenAl part “Al and Compute”
== https://openai.com/blog/ai-and-compute/
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Possible solutions

HARDWARE

Goal: change the underlying hardware

e Specialized digital electronic architecture (e.g., tensor core)
e Analog electronic circuits
e Photonic hardware

SOFTWARE
Goal: reduce the size of the model

e Pruning
e Knowledge distillation
e Quantization
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Quantization

Def. It is the process of constraining an input from a continuous or otherwise large set of values
(such as the real numbers) to a discrete set (such as the integers) (Wikipedia)

Our case
Computation in Neural Networks (NNs) use Floating Point numbers (32 bits)

Goal: performing computations and storing tensors at lower bitwidths

Floating Point (32 bits) | ¢ >| Lower bitwidths
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https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer

Why Quantization in NNs? (1/4)

: Network Model size (MB) GFLOPS
Inputs Weights The sum éActivation functiong Outputs AloxNot® 233 0.7
VGG-16* 528 15:5
VGG-19* 548 196
ResNet-50* 98 3.9
ResNet-101* 170 7.6
y ResNet-152* 230 19,3
GoogleNet' 27 1.6
InceptionV3# 89 6
MobileNet” 38 0.58
SequeezeNet" 30 0.84

*: Characterization and Benchmarking of Deep Learning, Natalia Vassilieva
#: https://github.com/albanie/convnet-burden

Artificial Neuron
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Why Quantization in NNs? (2/4)

e Reducing the number of bits for representing the neural network’s
parameters results in less memory storage

e Using the lower-bit quantized data requires less data movement,
which reduces memory bandwidth and saves significant energy

e Lower-precision mathematical operations, such as an 8-bit integer
multiply versus a 32-bit floating point multiply, consume less energy
and increase compute efficiency, thus reducing power consumption



Why Quantization in NNs? (3/4)

Three components that can be quantized ina NN

o Weights

o Activations

o Gradients
By quantizing weights and activations, we can achieve smaller model
Size
Quantization of gradients can be used for example where the training
environment is distributed to save communication cost
Generally it is more difficult to quantize the gradients than quantizing
weights and activations since high-precision gradients are needed to
perform backpropagation
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Why Quantization in NNs? (4/4)

e Quantization converts floating-point arithmetic of neural networks into low precision arithmetic
and makes real time inference possible on mobile phones as well as benefits cloud applications

Model Size Comparison

Model Size (MB)

Original

Optimized

MobileNet_v1

3.9x smaller

ResNet_v2_101
4.0x smaller

Network

(¢ ) Sant’Anna
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Inception_v3

4.0x smaller
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Latency Comparison

5000 Original

Optimized

Latency (ms)

ResN

Ix faster

nce

oDlleNet_Vv eption_v
1.2x faster ix faster

Network
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Quantization drawbacks

® Direct quantization of NNs architectures results in a severe loss of accuracy

(see later in lab session)
e Quantizationis an approximation

O

O

The closer the approximation, the less performance decay one can expect
Quantize everything to floatl6: cut the memory in half, probably no accuracy
loss

But won't really gain speedup

Quantizing with int8 can result in much faster inference

But the performance will probably be worse. Extreme scenario: it won't

even work
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Quantization in practice

® How to quantize NN models and reduce accuracy loss?
e Avoid Direct Quantization!

Post-Training Quantization (PTQ) Quantization-Aware Training (QAT)
How: train the model using float32, then How: quantize model during training, trying to
quantize it compensate for the quantization-related errors
e |tcanresultinaccuracy loss e Bestaccuracy results
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Post-Training Quantization

® Fastest and easiest way to get a quantized model

e |t canleadto significant accuracy deviation in some cases
e Several PTQ options:
o Dynamic range quantization
m  4xsmaller, 2x-3x speedup
o Full integer quantization
m 4xsmaller, 3x+ speedup
o Floatl6 quantization
m 2xsmaller, GPU acceleration
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PTQ - Dynamic Range Quantization

e [t provides reduced memory usage and faster computation without having
to provide a representative dataset for calibration

e Statically quantize the weights from floating point to 8-bits of precision and
dynamically quantize the activations at inference

e Activations are always stored in float 32

e But they are converted to 8-bit integers while processing and back to
floating point after the processing is done

e Provides latencies close to fully fixed-point inferences
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PTQ - Full Integer Quantization

Further latency improvements, reductions in peak memory usage, and
compatibility with integer-only hardware devices or accelerators by making
sure all model math is integer quantized

Statically quantize all weights and activations of the model to 8 bit integers
Need to calibrate or estimate the range, i.e, (min, max) of all floating-point
tensors in the model

o Constant tensors: weights, biases
o Variable tensors: model input, activations (outputs of intermediate

layers) and model output %

e Cannot be calibrated unless a representative
dataset is used to estimate the range
e Dataset can be a subset of training/test

17



PTQ - Floatl6 quantization

Reduce the size of a floating point model by quantizing the weights to
floatl6
Reduce model size by up to half
Cause minimal loss in accuracy
Supports some hardware which can operate directly on floatl6 data,
resulting in faster execution than float32 computations
Disadvantages
o Does not reduce latency as much as a quantization to fixed point math
o By default, a floatl6 quantized model will "dequantize” the weights
values to float32 when run on the CPU
m CPUs upscale floatl6 back to float32 before processing
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ost-Training Quantization

Optimize model?

Limit to float16 supported Convert to float TFLite
types (i.e. GPU)? models.

Parameters are quantized to

Have

float16. Model executes with RepresentativeDataset?

float32 operations.

Parameters are quantized to integers. Model
executes with operations that mix integer and
float computation when available; otherwise
falls back to float32 operation.

Limit to Int8 ops?

Parameters and activations are Parameters and activations are
quantized to integers. Model quantized to integers. Model executes
executes with integer operations with integer operations when available;
only. Conversion fails if the model otherwise falls back to float32
has unsupported operation. operation.

9
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Quantization-Aware Training

® (Quantization during training: take the effect of quantization loss into account
during training

® Typically provides higher accuracies as compared to PTQ

® QAT is achieved by adding fake quantization nodes

® Simulates low precision behavior in the forward pass, while the backward
pass remains in float32
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Quantization-Aware Training

Latent Weights KERNEL ]
(32 bit) QUANTIZER

' INPUT 5| | AYER OPERATION —————> Layer N+1

L N-1 ;
e INPUT| ~ |\ QUANTIZER] OUTPUT

LAYER N

® (Quantizer: defines the way of transforming a full precision input to a
quantized output

® Allthe weight adjustments during training are made while “aware” of the
fact that the model will ultimately be quantized
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PTQvs QAT

Model Floating-point QAT model Delta Post-training full
baseline integer quantized
model model
MobileNet v11.0 71.03% 71.06% 0.04% 69.57%
224
MobileNet v2 1.0 70.77% 70.01% -1.07% 70.2%
224
ResNet v1 50 76.3% 76.1% -0.26% 75.95%
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XNOR-Net

® Both weights and input activations of convolutional layers are binarized

Input ,
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Standard
Convolution

. Binary Weight

BinaryWeight
Binary Input
(XNOR-Net)

Network Variations

Real-Value Inputs

0.11-021 .. -0.34"]
-0.25061 ... 0.52"

Real-Value Inputs

0.11-0.21 . -0.34"
-0.25061.. 052°

Binary Inputs

1109
Ay
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Operations | Memory Computation
used in Saving Saving
Convolution | (Inference) | (Inference)
Real-Value Weights
012 12. 041" l *,—,X 1x 1x
0205 ..068"
Binary Weights
[ s P ~32x e2X
3 3.3 P
Binary Weights XNOR
i ’ ~32x ~58x
bitcount
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Accuracy on
ImageNet
(AlexNet)

%56.7

%56.8

%44.2
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DoReFa-Net

® Further extends the method of binarized neural networks to create a NN that
has arbitrary bitwidths for weights and activations

W A G Training Inference Storage AlexNet Accuracy

Complexity Complexity Relative

Size

1 1 32 - 1 1 0.279 (BNN)
1 1 32 - 1 1 0.442 (XNOR-Net)
1 1 32 - 1 1 0.436
1 2 4 6 2 1 0.471
1 2 6 2 1 0.507 (initialized)
1 2 10 2 1 0.456
1 2 32 - 2 1 0.498 (initialized)
1 4 32 - 4 1 0.530 (initialized)
32 32 32 - - 32 0.559
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Incremental Network Quantization

e Method to efficiently convert any pre-trained full-precision NN into a
low-precision version whose weights are constrained to be either powers of

two or zero

e Three operations
o Weight partitioning
o Group-wise quantization
o Re-training
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Incremental Network Quantization

® Weights in the first group are quantized to be either powers of two or zero by a variable-length
encoding method, forming a low-precision base for the original model

® \Weights in the second group are re-trained while keeping the weights in the first group fixed, in
order to compensate the accuracy loss resulted from the quantization

® These operations are repeated on the weights of the second group in an iterative manner until
all the weights are quantized

75% . ... 100%
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Dangers of quantization

® Losslandscape of a ResNet56

® Theindependent variables represent the
weights of the model, while the the dependent
variable is the loss

e Changing the weights just a bit, the differences
in loss can be enormous

There is no guarantee that it won't totally mess up
the model
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Hands-on

https://github.com/emiliopaolini/ICTP 2022
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