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General-Purpose Processors and GPUs

The good arithmetic in a general-purpose processor is the most generally useful:
additions, multiplications, and then?

Should a processor include a divider and square root?

Should a processor include elementary functions (exp, log sine/cosine)

Should a processor include decimal hardware?

...
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Should a processor include a divider? (1)

How do you divide 25 by 5 in binary?

011001
?

1
=0001
-101 1
00101

1?11

-101
=1101

10?

00101

101

=0000
-101

101

000

101

Just like decimal, but simpler

find the next quotient digit

it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the remainder is positive,

keep it and proceed to next iteration

if the remainder is negative,

quotient digit should have been 0, undo the subtraction

start again, one digit to the right

Light iteration (one subtraction and one test), but one bit of the quotient per iteration:
(more than) 53 cycles for double-precision floating-point
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Should a processor include a divider? (2)

Answer in 1993 is : YES (Oberman & Flynn, 1993)

... and this divider should be a fast one, because of Amdahl law:
Although division is not frequent, (...) a high latency divider can contribute an additional
0.50 CPI to a system executing SPECfp92

Digit recurrence algorithms

Generalizations of the paper-and-pencil algorithm

large radix: from 23 to 26

fancy internal number systems to speedup

digit-by-number product
subtraction
finding the next quotient digit

Heavier iterations, giving one digit (2 to 5 bits) per iteration.

A lot of research, worth one full book (Ercegovac and Lang, 1994)
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Should a processor include a divider? (3)

Answer in 2000 is : NO (Markstein)

The Itanium: a brand new, expensive processor... without a divide instruction.
Instead of a hardware divider,

a second FMA (fused multiply and add) is more generally useful
... and can even be used to compute divisions:

Multiplicative division algorithms

several algorithms
using a handful of multiplications

the freedom of software:

quick and dirty, or accurate but slow
high throughput or short latency
...

and with a second FMA,
BLAS and FFTs are 2x faster ! ... and two more books.
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Should a processor include a divider? (4)

Answer in 2022 is : YES again (Bruguera, Arith 2018)

a double-precision divider in 11 cycles for ARM processors

thanks to a totally redneck implementation

hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
(hardware speculation all over the place, etc)

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,

we save energy if we can switch it off a few cycles earlier
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A good example of dark silicon made useful

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

“Dark silicon” is the percentage that must be off at a given time

(picture from a 2013 HiPEAC keynote by Doug Burger)
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Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation
(compared to a software implementation that would take many more cycles)

when unused (i.e. most of the time), serve as radiator for the parts in use
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Should a processor include elementary functions? (1)

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Current performance of exp or log is 10 to 100 cycles,
to compare with 1 to 5 cycles for add and mult.
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Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)

... and the initial x87 floating-point coprocessor was designed with a basic set of elementary
functions

implemented in microcode

with some hardware assistance,
in particular the 80-bit floating-point format.
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Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support
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Should a processor include elementary functions? (4)

Answer in 2022 is... maybe?

A few low-precision hardware functions in NVidia GPUs
(Oberman & Siu 2005)

The SpiNNaker-2 chip includes hardware exp and log
(Mikaitis et al. 2018)

Intel AVX-512 includes all sort of fancy floating-point instructions to speed up
elementary function evaluation (Anderson et al. 2018)
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I won’t answer the other questions here

✓ Should a processor include a divider and square root?

✓ Should a processor include elementary functions (exp, log sine/cosine)

Should a processor include decimal hardware?

Should a processor include an FFT operator?

Should a processor include an AI accelerator?

...

Should a processor include a divider by 3? A multiplier by log(2) ?
no, of course.
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At this point of the talk...

... everybody is wondering when I start talking about FPGAs.
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One nice thing with FPGAs

On FPGAs, there is a simpler answer to all these questions

✓ divider? square root? Yes iff your application needs it

✓ elementary functions? Yes iff your application needs it

✓ decimal hardware? Yes iff your application needs it

✓ multiplier by log(2)? By sin 17π
256 ? Yes iff your application needs it

...

In FPGAs, useful means: useful to one application.
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In an FPGA, you pay only for what you need

If your application is to simulate jfet,

... you want to build a floating-point unit with 13 adds, 31 mults, 2 divs, 2 exps,
and nothing more.
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Conclusion so far

FPGA arithmetic ̸= arithmetic for CPUs or GPGPUs

Application-specific arithmetic

All sorts of arithmetic operators that just wouldn’t make sense in a processor can be
useful in FPGAs.
This is what the FloPoCo project is about.

This is a qualitative question, but there is a related quantitative question:

Computing just right

In FPGAs, data formats may be tightly fitted to the requirements of the application
(not only 8, 16, 32 or 64 bits)...

Let us discuss this, too.
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Computing just right?

This is the pathetic logo of the FloPoCo project:

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x log x

(the proper term is probably allogory)

This is the kind of thing FloPoCo does −→
It is a floating-point exponential operator
where each wire, each component is

tailored to its context with love and care.

(not a very good logo either)
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Save power! Don’t move useless bits around!

What is true for transatlantic cat videos is also true inside a circuit.

In software, if your result is correct, it is probably wasteful

Did you really need the bits 18 to 31 of this 32-bit word?

If they carry useless noise, you don’t want to compute them...

... and you want even less to compute on them.

But in software, you don’t really have the choice (it’s 32 bits or 64 bits)

Here we have more freedom when designing hardware

In a circuit, we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges
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Some opportunities
of hardware computing just right

Anti-introduction: the arithmetic you want in a processor

Some opportunities of hardware computing just right

Conclusion: the FloPoCo project
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Opportunity #1: Over-parameterization
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Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24



Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24



Over-parameterization is cool

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

People used to publish “An exponential architecture for single-precision”,
standard is now “A family of exponential architectures for each precision”
Application-specific optimal, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using ILP or common sense (whichever gives the best results)

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 24



Opportunity #2: Operator specialization

Ha, that’s something software people don’t get!

Multiplication by a constant

multiplication by integers: 17X = (X ≪ 4) + X
but also by reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
An FFT mostly consists of constant multiplications

Division by 3 (for various values of 3)

in floating point for Jacobi and other stencils
integer (quotient and remainder) for addressing in 3 memory banks

A squarer is a multiplier specialization

× x2x

Specialization of elementary functions to specific domains

...

321
× 321

321
642
963

103041
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Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

3F 2 D
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Getting inspiration from the vexations of childhood

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.
Being unable to trust my reasoning, I learnt by heart the results of all the possible divisions

(adapted from E. Ionesco)

If you’re too lazy to compute, then tabulate

... here a table of 26 entries of 6 bits each.
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What, my taxpayer money is wasted on studies of division by 3?

We did it for the fun of it, but it turns out to be useful for

correctly rounded floating-point division by 3 and 9 (Jacobi, etc)

round-robin addressing with 3 banks of memory (need quotient and remainder)

...
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Opportunity #3: target-specific optimizations

reg

clk

rst
DivBy3

Xi

k

Ri
rr

Qi

k

(Xi ,Ri−1)

/6

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

/6

(Ri ,Qi )

Generalizing hexadecimal to radix 2k

... or, how over-parameterization allows for adaptation

to various values of 3, like D = 5, or 7, or 9

to a given FPGA

Perfect match to modern FPGAs

Unit of area: the LUT, with α input bits (here α = 6)

Isn’t over-parameterization cool?
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Opportunity #3: target-specific optimizations

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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tio

n
b
its uo

R

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Opportunity #4: Tabulation
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Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.
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Opportunity #5: Generic approximators (when tabulation won’t scale)
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Polynomial Coefficient Table

× + × + × +
S2 S1

C0C1C2C3

X

A

α

w

Y

w − α
Ỹ3 Ỹ2

Ỹ3 = X

fi
n
a
l
ro
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n
dP̃(Y )

R

The FloPoCo FixFunctionByPiecewisePoly operator

state-of-the-art polynomial approximation

each multiplier tailored with love and care

Also multipartite tables, filter approximators, and more to come.
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Opportunity #6: merged arithmetic in bit heaps

One data-structure to rule them all... and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
......

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation
Spartan 5

Spartan6
Zynq 7000

Virtex-4Virtex-5Virtex-6Kintex-7

...... Stratix IIIStratix IVStratix VStratix 10

The sum of weighted bits as a first-class arithmetic object

A very wide class of operators: multi-valued polynomials, and more

Captures the true bit-level parallelism, enables bit-level optimization opportunities

Bit-array compressor trees can be optimized for each target
... and optimally so for practical sizes, thanks to M. Kumm
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When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013):

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ
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A sine/cosine architecture (Iştoan, HEART 2013): 5 bit heaps

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 34



Bit heaps for some operators and filters

w=16 bits

Why are some people still insisting I should call these “bit arrays”?
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Conclusion: the FloPoCo project

Anti-introduction: the arithmetic you want in a processor

Some opportunities of hardware computing just right

Conclusion: the FloPoCo project
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Hey, but I am a physicist !

... I don’t want to design all these fancy operators !

You don’t have to, it is my job

And it is a very comfortable niche

There is an infinite list of operators to keep me busy until retirement.

They are small arithmetic objects, relatively technology-independent.
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The FloPoCo project

http://flopoco.org/

e

x

√
x2+

y2+
z2

πx

sin
e x+

y

n∑
i=
0

x i

√
x log x

A generator framework
written in C++, outputting VHDL
open and extensible

Goal: provide all the application-specific arithmetic operators
you want (even if you don’t know yet that you want them)

open-ended list, about 50 in the stable version, and a few others in “obscure branches”
integer, fixed-point, floating-point, logarithm number system
all operators fully parameterized
flexible pipeline for all operators

Approach: computing just right
Interface: never output bits that are not numerically meaningful
Inside: never compute bits that are not useful to the final result
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Where do we stop?

My own personal definition of an arithmetic operator

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect

▶ (even DSP filters are defined by a transfer function)

An operator is the implementation of such a function

... mathematically specified in terms of a rounding function
e.g. IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification
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One small problem

FloPoCo can generate an infinite number of operators, I don’t want to test them all...

Solution

Each operator comes with its testbench generator

expected outputs built from the mathematical specification,

not by emulating the operator architecture!
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Here should come a demo

Command line syntax: a sequence of operator specifications

Options: target frequency, target hardware, ...

Output: synthesizable VHDL.

FloPoCo is open-source and freely available from

http://flopoco.org/

F. de Dinechin FPGAs computing Just Right: Application-specific arithmetic 41

http://flopoco.org/

	Anti-introduction: the arithmetic you want in a processor
	Some opportunities of hardware computing just right
	Conclusion: the FloPoCo project

